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Abstract. This article is a systematic review of
available studies in the area of word embeddings with
an emphasis on classical matrix factorization techniques
and contemporary neural word embedding algorithms
such as Word2Vec, GloVe, and Bert. The efficiency and
effectiveness of these methods for mapping semantic
and lexical relationships are evaluated in greater detail
providing analysis of the topology of these techniques. In
addition, this approach demonstrates a model accuracy
of 77%, which is 3% below the best human performance.
At the same time the study has also shown the
weaknesses of some models such as BERT, which
lead to unrealistic high accuracy due to spurious
correlations in the datasets. We see that there are
three bottlenecks for the subsequent development of
NLP algorithms: assimilation of inductive bias, common
sense embedding, and generalization problem. The
outcomes from this research help in enhancing the
strength and applicability of word embeddings in natural
language processing tasks.
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word embeddings, natural language processing,
deep learning.

1 Introduction

The idea of dealing with words the same way
we deal with numbers comes from ancient times,
with the attempts of medieval Judaic, Islamic, and
Greek scholars to discover secret knowledge from

Holy scriptures such as the Torah, Quran, and
Gospel. The method that was used back then
is called the gematria calculation [18], which
assigns a numeric value to each letter of the
Hebrew alphabet.

This method was used to analyze the Torah,
where words with the same numerical values could
be interpreted as being related in meaning. This
echoes the modern concept of embeddings, in
which similar words are “close” to each other in
vector spaces. There is an analogous methods
for the Arabic (abjadiya) which is also associated
letters of the alphabet with numerical values.

In Islamic culture, this system was used for
mystical interpretations of the Quran. Like modern
embedding models, abjad allowed symbols to
be transformed into numerical sequences while
preserving semantic relationships. Moreover, Jifr
was a mystical method in the Islamic world that was
used to create codes and divination based on the
numerical values of letters.

This numerical manipulation of texts can also
be interpreted as an ancient form of mathematical
analysis of language. Next is an isopsephy which
in ancient Greek culture used the numerical values
of Greek letters to find hidden meanings in texts.

Pythagoras, a prominent philosopher and
mathematician, posited that numbers form the
foundation of all things, including language. His
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ideas about the numerical nature of words can be
seen as a precursor to modern embeddings.

Thus, words were turned into a sequence
of numbers, which then were manipulated
arithmetically. Interestingly, such methods allowed
for preserving semantics and logical constructs
linking the words, so we can consider these early
research as ancient word embeddings.

This historical perspective closely aligns with
the development of the distributional hypothesis in
natural language processing. The core idea of this
hypothesis states that “the meaning of a word can
be known from the company it keeps” [13]. It has
provided the pathway for many modern algorithms.

Over the decades, the concept of distributional
semantics has inspired the development
of various methods for representing words
numerically. The initial methods included simpler
approaches like Bag-of-Words and TF-IDF (Term
Frequency-Inverse Document Frequency).

These approaches were based on word
frequency, but they often overlooked contextual
information, which result in a loss of semantic
depth. Word representation experienced a
revolution with the introduction of techniques like
Word2Vec [24] and GloVe [27].

These approaches provided more complex
distributed representations that successfully
maintained semantic links in high-dimensional
environments. Word2Vec uses architectures that
are trained to predict a word from its context or
vice versa, such as Continuous Bag of Words
(CBOW) and Skip-Gram.

Words with similar semantic content could
be represented as dense vectors (embeddings)
in the vector space thanks to these models.
Representing words as vectors in high-dimensional
space has proven to be one of the most important
parts of natural language processing (NLP).

They enable various machine learning
models working with numbers to parallelize
the processing loop, preserving some semantic
and syntactic information. Nowadays, natural
language processing (NLP) has gone through a
significant transformation.

It initially started from the elaboration of
task-specific representations and architectures.

NLP advanced towards the adoption of
task-agnostic models and pre-training methods.

This upgrade has led to major attainments
in various challenging NLP tasks, like reading
comprehension, question answering, and logical
inference. A substantial growth in this field is the
rise of Large Language Models (LLMs).

Famous and convenient GPT-4 is the illustration
of LLMs, which build on the foundational work of
models like GPT-3. These LLMs leverage larger
datasets and more complex architectures, which
provides enhanced performance across a wide
range of tasks [7].

Moreover, there is growing interest in
multimodal embeddings. These embeddings
combine text with other modalities, like
images and video. The features of these
embeddings enable models to better understand
context and perform tasks which require a
comprehensive understanding of both textual and
visual information.

For instance, using context-specific prompts
has been shown to improve performance in various
datasets, such as specifying the type of image or
object being described. As a result, it expands their
real-world applicability [30].

The paper is organized as follows. In section
2, we describe the issue of word vectorization
as the search for the context-dependent optimum
aggregate function.

In section 3, the fundamental concepts behind
context-independent techniques like as LDA,
Word2vec, Glove, and FastText are presented.
In section 4, we describe context-dependent
techniques for both short and long context
embeddings.

Short-context embeddings include models such
as ELMo, BERT, and ELECTRA, and long-context
embeddings include variants of several transformer
designs (Longformer, Linformer, Reformer, Sparse
Transformer, BigBird, and Synthesizer) or methods
such as GPT-3.

In section 5, we explain the data used to
run several models. In the next part, we
present an experiment undertaken to compare the
effectiveness of all embedding approaches. In
section 7, we then discuss the findings.
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2 Problem Statement

There is a text corpus C represented as the
sequence S of tokens (t1, t2, ..., tN ). Each token
of the sequence S corresponds to dense feature
vector hti [25]. In an old fashioned manner, the
main structure that preserves semantic features is
a matrix of words co-occurrences W ∈ R|V |×|V |,
where |V | is the dictionary size. This structure can
be obtained directly from the sequence S or from
document-term matrix D ∈ R|C|×|V |, where |C| is
the number of texts in the corpus C.

In real-world problems, the values of the corpus
size |C| or the dictionary size |V | are great
enough to produce an extra complexity during
the calculation. It is convenient to reduce the
dimensions of the matrices W in such a manner
that there is a new embeddings matrix E ∈
R|V |×d, d ≪ |V |, where d is the dimension size
of word embeddings. In particular, each row ei

of E relates to the semantic representation of
word i in the dictionary V . There are the models
that developed this approach with local context
Word2vec [24] and Glove with global context [27].

Then again, techniques that learn contextual
embeddings maps every token ti to vector
representation hti that takes into account every
element of the current input sequence S(j), where
j is the position in the original sequence S, limited
with window width w. Strictly speaking, the
embedding vector of contextual representation can
be written as hti = f(et1,et2, ...,etN ). The vector
hti can be considered as the part of optimization
problem of Language Model (LM), that formulated
as follows:

p (t1, t2, . . . , tN ) =

N∏
i=1

p (ti|t1, t2, . . . , ti−1) ,

where p(ti|ti−1) is conditional probability density
function. The language model is the text generative
method, which is the maximum likelihood of
a sequence of multiple n words. These
context-dependent representations are best suited
for capturing semantics at sequence level than
algorithms of non-contextual terms. For f , there
are multiple model architectures, which we are
considering here.

3 Context-independent Embeddings

3.1 Latent Dirichlet Allocation (LDA)

Blei et al. [5] propose a technique that models
topics of documents. The approach assumes
that each document contains a mixture of topics
characterized by the word usage statistics and
uses LDA to identify sets of words for each
topic and calculates probabilities of attribution to
topics for each document. LDA is based on the
probabilistic model shown in (1):

p(d,w) =
∑
t∈T

p(d)p(w | t)p(t | d), (1)

where T is the set of topics, p(d,w) is the
probability of appearance of a document-word pair,
p(d) is the prior distribution on the documents set,
p(w|t) is the conditional probability of a word w
given a topic t, p(t|d) is the conditional probability
of a topic t given a document d. With the
additional assumptions:

– Document vectors θd = (p(t|d) : t ∈ T ) are
derived by the same probabilistic distribution on
normalized vectors of size |T |; this distribution
can be taken from parametric distribution family
of Dirichle: Dir(θ,α),α ∈ R|T |.

– Topic vectors ϕt = (p(w|t) : w ∈ W ) are
derived by the same probabilistic distribution on
normalized vectors of size |W |; this distribution
can be taken from parametric distribution family
of Dirichle: Dir(ϕ,β),β ∈ R|W |.

LDA parameters are typically determined using
methods like Gibbs sampling, variational Bayesian
inference, or Expectation-Propagation.

The main problem is to correctly choose the
number of topics we seek, which can be solved by
running the algorithm on several topic numbers and
calculating the quality metric for each version.

The quality of each topic number variant is
measured by the topic words coherence [33] as
their semantic closeness, which is the euclidean
distance between words in a vector space.
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3.2 Neural Network Language Model

In [4], authors proposed the model named
Neural Network Language Model (NNLM), which
produces vector representations of a word during
the optimization of a neural network, which
interpolates a prediction function of the next word.
Like the conventional language model, at NNLM,
there is a context window with the width N − 1 of
previous words.

However, there is a difference between LM
and NNLM, which consists in finding such function
that approximates LM with fewer parameters rather
than accurately predicting with the help of words
counting. In other words, the main idea of
NNLM is replacing large multi-dimensional tensors
(e.g., statistical language models) by bounded and
low-dimension representations that calculated with
the help of distributed word interrelations across all
texts of large corpus.

Another advantage of NNLM is the replacement
of the computational difficulty from the processing
stage to preprocessing. Of course, the cost of
this additional step requires more computations,
but the hardware requirements scale linearly, not
exponentially, with the number of conditioning
variables, how it was in statistical LM. All models
presented in this section exploits this idea.

3.3 Latent Semantic Analysis (LSA)

Probabilistic latent semantic analysis (PLSA) is a
statistical technique for the analysis of two-mode
and co-occurrence data proposed by Hofmann and
Thomas [17]. It has applications in information
retrieval and filtering, topic modeling. Due to latent
correlations between terms and topics, one can
use PLSA for embedding generation.

The main mechanics behind the scene is a
Singular Value Decomposition of co-occurrence
tables, also there is a mixture decomposition
derived from a latent class model.

In order to avoid overfitting, the method uses
a widely applicable generalization of maximum
likelihood model fitting by tempered EM. Let a set
of documents D = {di}i=1...n be given, where
each document is a sequence of tokens di =
(w1, . . . ,wni

) from the dictionary W . Formally, the
task is formulated by (2):

p(d,w) =
∑
t∈T

p(t)p(w | t)p(d | t),

=
∑
t∈T

p(d)p(w | t)p(t | d),

=
∑
t∈T

p(w)p(t | w)p(d | t),

(2)

where T is a set of topics, p(t) is the unknown prior
distribution of topics in the entire collection; p(d)
is the prior distribution on the set of documents;
and p(w) is the prior distribution on the word
set. It is worth noting that the approximation of
p(w | t) gives the required word embedding with
preserved semantic properties. In other words,
co-occurrence matrix word-topic has semantic
knowledge about word meanings. The main
shortcomings of PLSA are:

1. The number of parameters grows linearly with
the number of documents in the collection,
which can lead to model over-fitting;

2. When adding a new document d to the
collection, the distribution p(t | d) cannot be
calculated using the same formulas as for other
documents without rebuilding the entire model.

3.4 Word2Vec

It is important to note that relationships can be
approximated in both directions, from the central
word to its context (skip-gram) and from the context
to its central word (CBOW, Continuous Bag of
Words). In the last decade, the first of the most
popular algorithms is word2vec [25]. The central
idea of Word2Vec is to utilize cosine distance
properties between word vectors, transforming the
point cloud so that words with similar meanings
are close in vector space. And vice-versa words
with different meanings should be far enough, in
terms of cosine distance. Formally, the model of
word2vec in terms of skip-gram is following:

T∑
j=1

∑
−h≤k≤h,k ̸=0

ln
w⃗T

j+kw⃗j

|V |∑
i=1

exp
(
w⃗T

i w⃗j

) , (3)
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where T - the amount of tokens in text corpus, j
- current token, h - the size of context window, k -
the index of the context word of current token, |V | -
the size of word dictionary.

3.5 Global Vectors for Word Representation

A variation of the metric approach to word
embeddings is GloVe, or Global Vectors for Word
Representation. In contrast to the previously
mentioned algorithm it uses the approximation of
the global context with the help of co-occurrences
matrix [27]. The definition of GLoVE model
is following:

|V |∑
i,j=0

f (Xij)
(
w⃗T

i w⃗j + bi + bj − log (Xij)
)
, (4)

where Xij is a frequency value of the
co-occurrence matrix; f is a normalization
function. Both of the algorithms mentioned above
have one common drawback. Namely, if there
is a case during the production stage, that a
high-level system tries to process words that don’t
belong to its vocabulary, then all pipeline models
of the system have to be trained once again
considering new words. The FastText algorithm
solves the problem outside the vocabulary word
(Out-of-Vocabulary, OOV) by taking into account
the alphabetic bigrams and trigrams that make up
the encoded-word in the resulting vector [6].

It was shown that the algorithms of this
approach have a drawback, namely, instability
of reproducibility of the results [35], due to the
random initialization of weights, the random order
of training examples. When expanding the size of
the dictionary, the entire correlation structure of the
word cloud changes, resulting in a machine model,
the training below in the pipeline processing also
require retraining.

3.6 FastText

The models of Word2Vec with negative sampling
and FastText looks pretty the same, but unlike
Word2Vec, Fasttext considers words as a
combination of N-grams. For the word “text,”
it could be [“te,”, “tex,” “ext”, “xt”], depending on

the parameters of the maximum and minimum
n-gram. The word-vector is composed as the sum
of the vectors of all the n-grams of this word. The
objective function of the FastText model can be
written as follows:

T∑
j=0

∑
c∈Cj

log (1 + exp (−s(wj ,wc)))

+
∑
n∈Nj

log (1 + exp (s(wj ,wn)))

 , (5)

where wj is the central word, Cj is the set of
words in the context of the central word, Nj is
the set of negative sampling words. The proximity
function can be defined as follows (4):

s(w, c) =
∑

g∈Gw

z⃗Tg w⃗c. (6)

As a result, this method allows you to get
better representations for words, not only based
on the co-occurrence of words, but also the
co-occurrence of their syllables and n-grams.
Notably greatly improved are vectors for rare
words, but at the same time, their parts are found
in other, more frequent words.

Another significant advantage is the solution
to the problem of out-of-vocabulary words due
to the consideration of subword information. In
other words, FastText allows us to work with words
that were not available in the training set since
the vectors of these words can be composed of
the sum of its n-grams. On the other hand, we
get increased learning time and more memory
requirements [6, 22, 21].

4 Context-dependent Embeddings

Pre-trained bidirectional language models (biLMs)
form the backbone of contextualized word
embeddings [29]. Originally, they supposed
to solve two issues:

1. Syntax and semantics characteristics of word.
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2. The changing of these characteristics across
variety of linguistic contexts (e.g., homonymy
and polysemy). Subword information
and contextual.

They have been used to improve performance
for many NLP tasks. Formally bidirectional
language model defined as the probability of next
token with given set of previous tokens:

p (w1,w2, . . . ,wN ) =

N∏
k=1

p (wk|wk+1,wk+2, . . . , tN ) .
(7)

The embedding models based on the such
LM take into account only the past information.
The need to incorporate the information of future
context is useful for the improvement of model
performance. Hence, the design variation of BLM
consists in consideration the context of current
token in both directions:

N∑
k=1

(
log p(wk | w1,w2, . . . ,wk−1;

−→
θ )+

log p(wk | wk+1,wk+2, . . . ,wN ;
←−
θ )

)
, (8)

where
−→
θ and

←−
θ are the forward and backward

parameters of LM, respectively. For instance, the
task of translation between Russian and Kazakh
languages requires to see the relations of words
inside the text. These relations are syntax
structure, coreference links.

The text summarization task also exploits the
context features to determine key-words and most
relevant sentences. Another industry application
of contextual embeddings algorithms is semantic
sentiment analysis if there are ironic or sarcastic
statements, then the model can detect them only
with the help of context features.

The question answering systems exploit the
idea that the lexical distribution of the question
correlates with the lexical distribution of the answer.
In other words, these systems need to understand
the contexts of answers and questions to find the
correct answer. In this paper there are considered
contextual embedding models based on the
variety of LM, namely Bi-directional Language

Model (BLM), Masked Language Model (MLM),
Permutation Language Model (PML) and extension
of MLM with ideas of Generative Adversarial
Network(GAN). All these models extend the basic
model LM in an original way to achieve specific
properties about which we explain further in the
paper. Based on the length of the context and
the data processed by the described methods,
embeddings may be split into two types: long and
short-context embeddings.

The methodology to processing such
information differs across various techniques.
When processing a lengthy context, the
algorithm’s complexity, processing time, and
amount of resources utilized are frequently
problematic. In order to circumvent this issue,
specialized algorithms intended to operate in such
circumstances have been developed.

4.1 Short-context Embeddings

4.1.1 Embeddings from Language
Models (ELMo)

The popular recurrent neural network
architectures, such as the Long Short Term
Memory (LSTM) [16], the Generalized Recurrent
Unit (GRU) [9], have opened a new stage in the
development of Natural Language Processing
(NLP), namely their combination in the form
architecture Encoder-Decoder, please see Fig. 1.

In paper [28], authors obtained
context-sensitive vector representations of words,
which partially solved the problems of polysemy
coding and homonymy. The key advantages that
have allowed the development of NLP systems to
a new level are the inclusion of word order in the
text and bidirectional language models:

p (w1,w2, . . . ,wN ) =

N∏
k=1

p (wk | w1,w2, . . . ,wk−1) .
(9)

p (w1,w2, . . . ,wN ) =

N∏
k=1

p (wk | wk+1,wk+2, . . . , tN ) .
(10)
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Fig. 1. The neural network architecture of RNN encoder-decoder

Rk =
{
xLM
k , h⃗LM

k,j , h⃗k,j | j = 1, 2, . . . ,L
}

=
{
hLM
k,j | j = 0, . . . ,L

}
.

(11)

Recursive architectures carried additional
challenges such as slow learning speed, explosion,
and fading gradients. Models based on the
Transformer [37] neural network architecture, such
as BERT [11] and XLNet [40], solved the above
problems and are the last word in the field of
word vectoring.

4.1.2 BERT

The architecture of Bidirectional Encoder
Representations from Transformers (BERT)
exploits the idea Encoder-Decoder approach. The
Transformer model was proposed by Vaswani et
al. [37]. The basic element of the Transformer
model is a Dot-Product Attention unit, which is
included in a Multi-Headed Attention unit.

In return, each layer in the Encoder and
Decoder consists of Multi-Headed Attention units,
they compute vector representations between
a given token and all other tokens in the
sequence S, after that position-wise feed-forward
network calculate the output. BERT is an
acronym for Bidirectional Encoder Representations
from Transformers.

Input data is corrupter by replacing certain
words with unique tokens like “[MASK]” for a
training model to reconstruct the original sentence.
Like the GPT, the BERT architecture is based on
the Transformer model. Basically it’s a multi-layer

bidirectional Transformer encoder [11]. BERT base
consists of 12 layers with 12 self-attention heads
each and hidden size=768. BERT large consists
of 24 layers with 16 self-attention heads each and
hidden size=1024.

Both models are pre-trained using two
unsupervised tasks. The first training task is
Masked LM. 15 percents of words in each
sentence are replaced by “[MASK]” token. The
second task on which this model was trained is
NSP or Next Sentence Prediction. In the training
process model learns to predict second sentence
in the pair of sentences given as input.

Half of input pairs are subsequent sentences,
and other half is random sentences from a
corpus paired together. In the beginning of a
sentence “[CLS]” token is inserted and “[SEP]”
token at the end for model be able to distinguish
between sentences.

Due to the fact that Bert learned not only to
predict the next word in a sentence, but learned to
predict a masked word on the basis of the previous
and next words on it, he got high results and
pushed GPT from the GLUE dataset leaderboard.

4.1.3 XLNet

The algorithm allows you to simulate bidirectional
contexts by maximizing the expected probability
for all permutations up to the factorization order
and overcomes the limitations of BERT due to its
autoregressive architecture. Also, XLNet brings
together ideas from Transformer-XL, the most
advanced autoregressive model.
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Fig. 2. The scheme of pre-training and fine-tuning BERT.
The figure from [11]

Experimentally, XLNet surpasses BERT in 20
tasks, often by a wide margin, and achieves
the most excellent results in 18 tasks, including
answering questions, output in natural language,
analysis of tonality, and ranking of documents. The
original idea that distinguishes XLNet from BERT
is the Permutation Language Model (PLM).

For a sequence x of length T , there is T !
various options for autoregressive factorization. It
is intuitively clear that if the model parameters are
common to all factorization options, then the model
will learn to take into account bi-directional context
information. Formally, let ZT be the set of all
possible permutations of length T , then index the
sequence [1, 2, . . . , T ], the PLM model can be
written in the following form:

max
θ

Ez∼ZT

[
T∑

t=1

log pθ (xzt | xz<t)

]
, (12)

where zt is the t-element of the sequence, and zt<
is the t− 1 of the first elements of the sequence.

Essentially, for a text sequence x, we select
the factorization order z at a time and expand
the probability pΘ(x) by the factorization order.
Since all factorization orders share the same
model parameter Θ during training, each possible
element xi ̸= xt in the sequence is taken into
account in the calculation of xt; therefore, it can
cover a bidirectional context.

Moreover, since this objective function
corresponds to the approach of autoregressive

models, it naturally avoids the assumption of
independence and inconsistency between the
pre-workout and fine-tuning settings that were
mentioned earlier [40].

The proposed objective function rearranges
only the factorization order, not the sequence
order. In other words, the original word order
preserved with positional coding corresponding
to the original sequence, and the corresponding
attention mask in Transformers are used to obtain
a permutation of the factorization order.

Please note that this choice is necessary, as
the model only encounters text sequences with a
natural order during training. Let us demonstrate
an example of the prediction of the token x3 for
the same input sequence x, but with different
factorization orders in Figure 3.

4.1.4 ELECTRA

There is another original idea in contrast to
the previous models that are based on masking
and permutations. [10] proposed a new
pre-training approach called “Replaced token
detection.” Instead of masking, they replace
some tokens by synthetically generated and then
learns a model to distinguish real tokens from
generated replacements.

The main idea of the approach is to train
two neural networks the first one is a generator
and second one is discriminator, each of
them consisting of a Transformer network that
maps input tokens X into contextualized vector
representations h. The first one is a generator
G; second is discriminator D. Probability for
generating a token xt at given position t:

pG(xt|x) =
exp(e(xt)

ThG(x)t)∑
x′

exp(e(x′)ThG(x)t)
, (13)

where e stands for token embeddings. And
prediction of discriminator whether token xt is real:

D(x, t) = sigmoid
(
wThD(x)t

)
. (14)
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Fig. 3. Illustration of the PLM model, several permutation
steps for predicting x3 for the same input sequence x, but
with a different factorization order. Figure taken from [40]

4.2 Long-context Embeddings

Since the introduction of Transformer architecture
[37], there was a rapid development of
transformer-based models. BERT being the
most successful one [11]. However, the classical
transformer is not without flaws, and there
were many attempts to refine and improve
it over the years.

Contemporary researches state the problem
of Transformer optimization in terms of time
and memory expenses. The fact of scientists
and engineers have to train large models in
long periods of time with the help of costly
computational devices, e.g., sizes up to 64 layers
with a width of 500 million parameters in each layer.

This resource limitation is especially evident
in tasks with longer sequences. So the main
research question is “does the Transformer really
need such a volume of resources, or is it the
inefficiency of the model?” Briefly, the main
bottleneck of Transformer algorithm is contextual
mapping matrix P = Q × KT , that computes as
a part of dot-product-attention function:

Att(Q,K,V ) = softmax
(
Q×KT

√
dhidden

)
V , (15)

where
1√

dhidden
is scaling factor; Q ∈ Rn×dhidden -

query matrix; K ∈ Rn×dhidden - key matrix; V ∈
Rn×doutput - value matrix; n is a sequence length;
dhidden is a size of internal states, doutput is a size
of resulting state. So, the P matrix has quadratic
complexity against the input sequence length. So,
at this section there is a discussion about various
optimization approaches of Transformer.

4.2.1 Reformer

RevNets proposed by Gomez et al. [14], the idea
of which is that the activation of each next layer can
be obtained from the activation of the previous one,
using only the model parameters. This allows not
to save the activation of each layer, i.e. allows you
to get rid of N in the complexity of the algorithm.

In their model Reformer, Nikita Kitaev,
Łukasz Kaiser and Anselm Levskaya [23]
proposed another way to complexity reduction
for transformers. Reversible layers allow you to
store only one copy of the activation for the entire
model instead of N times.

Handling activation in chunks allows you
to reduce memory in fully connected layers.
An approximate calculation of the attention
mechanism based on locality-sensitive hashing
reduces the complexity from O (L2) in the
corresponding layers to O (L logL) and also allows
you to work with long sequences.

Locally Sensetive Hashing (LSH). Main
constraint of the attention mechanism is the dot
product of QKT , also known as a context mapping
matrix, which is dependent on the length of the
input sequence in a quadratic fashion.

A context mapping matrix may also be
calculated using vector-matrix dot-product instead
of matrix-matrix dot-product. This is less effective,
but it reduces memory requirements by a factor of
length. Deduced from Q and K, the LSH attention
computation starts with two tensors Q = K and V .

Considering that just softmax(QKT ) is of
importance, not QKT . That softmax is impacted by
the biggest elements, but only in the keys nearest
to qi. Only the 32 or 64 nearest keys are evaluated.

To swiftly locate neighbors, local-sensitive
hashing is utilized, in which nearby vectors have
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Fig. 4. The neural network architecture of ELECTRA

a high possibility of having similar hashes. Pi is the
set to which the query at position i pertains, and z
is the normalizing term in the softmax. They skip
scaling by

√
dk as well:

oi =
∑
j∈Pi

exp(qi · kj −m(j,Pi)− z(i,Pi))vj , (16)

where m(j, Pi) =

∞ if j /∈ Pi,

0 otherwise.

4.2.2 Sparse Transformer

Sparse Transformer was created [8] to tackle the
quadratic memory growth that can be attributed
to the Transformers’ design. The model’s
factorized attention mechanism takes advantage of
an algorithmic innovation to extract patterns from
twenty to thirty times longer sequences than was
previously possible.

When modeling the density of lengthy
sequences, the model produced performance

comparable to or superior to that of conventional
Transformers, although requiring a large reduction
in the number of operations.

Sparse Transformer also demonstrated
the exploitation of long-term context and the
generation of globally coherent samples. On the
basis of some ideas described above, OpenAI
created their new model called GPT-1.

4.2.3 OpenAI GPT

In 2020, OpenAI, a group devoted to “discovering
and implementing the route to safe artificial
intelligence,” announced the launch of GPT-3,
the most advanced natural language processing
technology (Generative Pre-trained Transformer).
It is characterized as a superintelligent system that
learns and adapts from the immense sea of digital
text to independently produce fresh, intelligent, and
creative material.

It has been hailed as a stunning artificial
intelligence text generator capable of imitating
human writing with exceptional fluency. GPT
models have revolutionized the landscape of
Natural language processing (NLP) with their
potent capacities to accomplish diverse NLP tasks.

The outcomes include faster reaction times and
increased precision. These language models need
extremely few or even no examples to comprehend
the job and execute with even more accuracy and
inventiveness than models that are highly trained
on a vast number of examples.

OpenAI’s GPT-3 is the third in a series of
natural language processing (NLP) tools. Before
its release, the model underwent years of research
and development to achieve the current stage of
innovation in the area of AI text production.

GPT-1. was launched in 2018 by OpenAI.
Trained on an enormous BooksCorpus dataset,
this generative language model was able to
learn large range dependencies and acquire vast
knowledge on a diverse corpus of contiguous text
and long stretches [31].

In terms of its architecture GPT-1 applies the
12-layer decoder of the transformer architecture
with a self-attention mechanism for training.

As a result of its pre-training, one of the
significant achievements of GPT-1 was its ability

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2005–2029
doi: 10.13053/CyS-28-4-5225

Alexandr Pak, Atabay Ziyaden, Timur Saparov, et al.2014

ISSN 2007-9737



Fig. 5. The neural network architecture of transformer encoder-decoder

to carry out zero-shot performance on various
tasks. This ability proved that generative language
modeling can be exploited with an effective
pretraining concept to generalize the model.

With Transfer learning as its base GPT became
a powerful facilitator to perform natural language
processing tasks with very little fine-tuning. It
generated pathways for other models which
could further enhance its potential in generative
pre-training with larger datasets and parameters.

GPT-2. Later in 2019, OpenAI created a
Generative pre-trained Transformer 2 (GPT-2) [32]
by using a bigger dataset and including extra
parameters to create a more robust language
model. Similar to GPT-1, GPT-2 utilizes the
transformer model’s decoder.

With 1.5 billion parameters, GPT-2 is 10 times
bigger than GPT-1 (117 million parameters), and
it contains 10 times as many parameters and 10
times as much data.

It is trained on a varied dataset, making it
effective at handling numerous language problems
such as translation, summarization, etc., utilizing

just raw text as input and little or no training
samples. GPT-2 beat its predecessors by greatly
boosting the accuracy of recognizing long-range
relationships and predicting words across many
downstream datasets.

GPT-3. GPT-3 is an earlier open version
of the Generative Pre-training Model, paving the
way for the more advanced closed GPT-4 and
GPT-4o [39]. OpenAI has created a huge
language prediction and generation model capable
of creating extended sequences of the original text.

GPT-3 became the groundbreaking AI
language software for OpenAI. Simply put,
un some tasks, such as text generation,
abstractive summarization, etc, it came close
to human-level performance.

It includes around 175 billion parameters and is
100 times bigger than the GPT-2 database. It is
trained using a 500-billion-word data set (referred
to as “Common Crawl”) obtained from the large
internet and content repository.

It can also do basic arithmetic problems,
including producing code snippets and executing

Computación y Sistemas, Vol. 28, No. 4, 2024, pp. 2005–2029
doi: 10.13053/CyS-28-4-5225

Word Embeddings: A Comprehensive Survey 2015

ISSN 2007-9737



Fig. 6. On the left side there is a neural network architecture of dot-product attention. On the right side there is
multi-head dot product attention

intelligent activities, which is a remarkable and
unique skill. The outcomes include a quicker
reaction time and higher degree of precision,
enabling NLP models to aid businesses by
successfully and continuously maintaining best
practices and decreasing human mistakes.

Due to its complexity and massive scale,
several academics and developers have referred
to it as the ultimate black box approach to
artificial intelligence.

This makes it very costly and unpleasant to
execute inference, and its billion-parameter size
makes it resource-intensive and difficult to apply
to practical applications in its present form. GPT-3
was designed to make language processing more
potent and quicker than its predecessors, without
requiring any further tweaking.

The majority of earlier language processing
models (such as BERT) need extensive fine-tuning
using thousands of examples to educate the model
how to execute downstream tasks. The GPT-3
eliminates the need for fine-tuning.

The size of the three GPT models differs
amongst them. The first Transformer Model had
over 110 million parameters. GPT-1 accepted
the size, whereas GPT-2 increased the number of
parameters to 1.5 billion.

With the addition of 175 billion parameters
to GPT-3, it became the biggest neural network.
GPT-3 was designed to be more robust than GPT-2
in that it can address more specialized issues. It

was recognized that GPT-2 performed poorly in
specialized fields like as music and narrative.

GPT-3 can do more complex tasks like
as question answering, essay writing, text
summary, language translation, and computer
code generation. Data contamination is a unique
problem that GPT-3 must address.

Due to the internet origin of their training
dataset, it is probable that part of the training data
may overlap with the testing data.

Although this subject was addressed in GPT-2,
it is especially pertinent to GPT-3 175B due to the
fact that the datasets and models used for GPT-3
175B are about two orders of magnitude greater
than those used for GPT-2, hence increasing the
likelihood of contamination and memorization.

To study the effect of data contamination, the
OpenAI team generates a “clean” version of the
testing dataset for each downstream job, removing
any possibly leaky instances, loosely described as
“examples having a 13-gram overlap with anything
in the training set”.

They next analyze GPT-3 on these “cleaned”
test datasets and compare the results to those of
the “uncleaned” original datasets.
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Table 1. Comparison of embedding methods

Embedding
Method

Model
Type

Context
Sensitivity Architecture Training

Method Use Cases Strengths Limitations

Word2Vec Static None
Feed-forward

Neural
Network

Predictive
(Skip-gram,

CBOW)

Text
classification,

document
retrieval

Efficient, good
for semantic
relationships

No context
sensitivity,

struggles with
polysemy

GloVe Static None
Matrix

Factorization
Global

statistical info

Text
classification,

keyword
search

Captures
global word

co-occurrences

Static
representations,
same issues
as Word2Vec

FastText Static None
Feed-forward

Neural
Network

Predictive

Text
classification,
morphological

analysis

Handles
subword

information
well

Still lacks
contextual

understanding

ELMo Contextual Yes
LSTM

(Bidirectional)
Contextual

embeddings

Sentiment
analysis,
question

answering

Captures
context,
handles

polysemy

Computationally
intensive

BERT Contextual Yes
Transformer

(Bidirectional)

Masked
language
modeling

Question
answering,
dialogue
systems

Excellent at
understanding

context

High
computational

cost, input
length limits

GPT-3 Contextual Yes
Transformer

(Unidirectional)
Generative
pre-training

Text
generation,

creative
writing

Strong text
generation
capabilities

High resource
demand,

interpretability
issues

ChatGPT Contextual Yes
Transformer
(Fine-tuned)

Fine-tuning
on dialogues

Conversational
agents,
chatbots

Maintains
context in

conversations

Bias issues,
high latency

4.2.4 Linformer

Experiments with traditional Bidirectional
Transformers demonstrate that a context mapping
matrix has a low rank [38]. The structure of the
trials was predicated on the observation of ensuing
unique values of P across multiple layers and
different heads, averaged across 10k words, after
the learning process.

Long-tail spectrum distribution is uniform
throughout each head and layer. Consequently,
the matrix P may be estimated with
little performance loss by using a more
straightforward representation.

In addition, we should note that the upper
levels have a context mapping matrix P with a

lower rank than the lower layers. Consequently,
such a characteristic gives rise to a number
of dimension-reduction-related optimization
strategies, such attention kernalization and
attention low-dimensional projections.

Consequently, using the Eckart–Young–Mirsky
Theorem [12], one may approximate self-attention
using a low-rank representation Plow with time and
space complexity reduced to O(nk). In this way,
the resultant model is as follows:

headi = Attention
(
QWQ

i ,EiKWK
i ,FiVWV

i

)
= softmax

(
QWQ

i

(
EiKWK

i

)T
√
dk

)
︸ ︷︷ ︸

P̄ :n×k

·FiVWV
i︸ ︷︷ ︸

k×d

, (17)
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where Ei,Fi ∈ Rn×kkey linear projection matrices
and query matrices coincide. Thus, a relatively
tiny projected dimension k, such that k ≪ n,
should be used to significantly reduce memory and
space usage.

4.2.5 Longformer

The strategy that was presented by the authors
of the paper “Longformer: The Long-Document
Transformer” [2] was based on the concept of
shrinking the attention window in such a manner
that it would fit particular regions, hence reducing
the amount of memory needed and the amount of
time needed to execute calculations.

How were these objectives attained? They
employed three types of attention. The sliding
attention window is the first of them. Instead of
taking the whole n×n window, restrict it to the main
diagonal of the attention matrix with a width of w,
where each token attends to 1/2w tokens on each
side, as shown in the graphic below.

Thus, the complexity of computing becomes
O(n × w). Based on this technology, the authors
devised a technique with a far larger receptive
field by expanding the windows even further. This
Dilated sliding window introduces the d parameter,
which defines the distance between windows.

However, we know that in multi-head attention
approaches, various heads have varied attention
scores, therefore by varying the dilation window,
the authors were able to accomplish the outcome
that some heads focus more on local context and
others on long context.

The authors devised a second method dubbed
“global attention” that utilizes unique tokens to
further restrict the attention window. This strategy
is based on increasing emphasis symmetrically at
certain spots, based on the positioning of specific
tokens in text. However, the number of these global
attention windows is still quite modest compared
to the total size of a n × n window, therefore the
complexity remains O(n).

4.2.6 BigBird

The BigBird method, a descendant to the
Longformer algorithm explained above, employs
similar attention window principles. By combining
global attention and window attention with
so-called random attention, Zaheer et al.
hypothesized that they may get superior outcomes
in Natural Questions Long Answer (LA), TriviaQA,
and WikiHop activities [41].

A computation approach that boosts the
GPU/performance TPU’s is a further technological
advancement. The attention matrix is divided
into blocks of size 2 × 2, which accelerates
retrieval owing to sparsity, while “rolling” is the
transformation of a sparse matrix into a smaller
nonsparse counterpart for quicker computing.

4.2.7 Synthesizer

Synthesizer model has no the query-key-values
block in the self-attention module, instead of it the
context matrix mapping is directly synthesized from
input x [36]. For simplicity, in the current paper
the explanation assumes the per head and per
layer computation. The first step of Synthesizer
model is an projection parametrized function
Fh,ℓ : R

d → Rl:

Bi,h,ℓ = Fh,ℓ (Xi,h,ℓ) , (18)

where an input Xh,ℓ ∈ RN×d, i is a number
of token. Intuitively, this can be interpreted as
learning a token-wise projection to the sequence
length N. Essentially, with this model, each token
predicts weights for each token in the input
sequence. In such a manner, the prediction
function can be presented as follows:

Fh,ℓ (Xi,h,ℓ) = W2,h,ℓ (σR (W1,h,ℓ (Xi,h,ℓ))) , (19)

where σR is ReLU activation function, W1,h,ℓ ∈
Rd×d, W2,h,ℓ ∈ Rd×l is two simple layers of
neural network:

Yh,ℓ = softmax (Bh,ℓ) ·Gh,ℓ (Xh,ℓ) , (20)
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where Gh,ℓ(.) is additional parameterized function
of X that is similar to value matrix Vh,l in the
standard Transformer model.

This approach eliminates the dot product
attention Y = softmax(Qh,lK

T
h,l)Vh,l , altogether by

replacing query matrix Q in standard Transformers
with the synthesizing function Fh,ℓ.

5 Data

In our experiments, we utilized a variety of
datasets to evaluate the performance of different
word embedding models. Table 1 lists the
datasets used for each model, along with a brief
description of their contents: The use of these
datasets not only allows for the assessment of
the performance of various models but also helps
identify their strengths and weaknesses across
different contexts and tasks.

6 Evaluation

In our evaluation, we aimed to compare the
efficiency of various word embedding methods by
employing several performance metrics tailored to
different tasks. We include these types of dataset:

1. Massive Multitask Language Understanding
(MMLU), which comprises a diverse array of
tasks spanning multiple domains, including
mathematics, science, and social studies.
MMLU serves as a critical benchmark
for assessing the reasoning capabilities
of language models across varying
levels of difficulty.

2. The Stanford Question Answering Dataset
(SQuAD) was also utilized; this reading
comprehension dataset requires models to
answer questions based on a set of Wikipedia
articles, making it instrumental in evaluating
their abilities to understand and extract relevant
information from text.

3. Additionally, we employed GLUE (General
Language Understanding Evaluation)
and SuperGLUE, which consist of a
collection of tasks designed to evaluate
model performance on various language
understanding challenges, including sentiment
analysis and textual entailment.

4. Other domain-specific datasets, such as the
TREC AP corpus and the Brown corpus,
were also included to evaluate performance in
specific contexts.

In order to ensure comparability, the input data
and the training conditions were standardized in
the experimental setups for each model. This
also included preparation of the text resources
from the chosen datasets, such as cleaning and
tokenization. In the case of multilingual datasets,
certain rules regarding tokenization were followed
in order to suit other languages.

Each word embedding model was fitted to data
trained on the respective corpus using standard
settings. In the case of BERT, GPT-2, and T5
models, we applied their pre-trained versions and
adjusted them on the specific datasets to achieve
better outcomes.

Hyperparameters, including but not limited to
learning rate, batch size, and the number of training
epochs, were thoroughly tuned for each model so
as to improve performance. Various metrics were
employed to assess model performance.

1. Accuracy is the ratio of the total number
of correct predictions made out of the total
population of predictions by the model, and this
has been reported in most text classification
tasks of the system performance.

2. The F1 score, which is the mean of recall
and precision, is very applicable to problems
with skewed classes because it helps to strike
a chord between the positives retrieved and
instances that are required.

By employing these metrics, we can effectively
compare the efficiency of different word embedding
methods. This approach enables us to evaluate not
only how accurately the models predict or classify
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data but also how well they generalize across
various tasks and datasets.

Furthermore, modern benchmarks like MMLU,
XNLI, and SQuAD enable a robust evaluation
framework by incorporating diverse tasks and
languages, ensuring that the models are assessed
under realistic conditions.

Analyzing performance across these datasets
and metrics provides insights into the strengths
and weaknesses of each embedding method,
ultimately contributing to ongoing advancements in
natural language processing.

7 Discussion

In this section, we reflect on the findings
regarding matrix factorization and neural network
methods for generating embeddings, particularly
in the context of natural language processing and
recommendation systems.

7.1 Matrix Factorization Methods vs. Neural
Network Methods

Matrix factorization is a method that breaks
a given Matrix into parts in such a way
that a lower-dimensional representation of it is
produced. A well-known instance of this is seen in
collaborative filtering, where the user-item matrix is
broken into user and item latent feature matrices A
and B correspondingly.

Thus, within this class, there are numerous
known factorization techniques, which include
Singular Value Decomposition (SVD) as it shrinks
a high dimensional data but retains important
information; Non-negative Matrix Factorization
(NMF) as it is suitable for applications where
it makes sense to constraint vendors’ factors
to positive values; and Probabilistic Matrix
Factorization (PMF) which means addition of
a probabilistic approach to the process of
the factorization for the purpose of improving
its robustness.

Matrix factorization offers numerous benefits to
users. They are easy to apply and understand
which allows for their use in many situations. Also,
they can be performed on very large and sparse
interaction patterns very well. Further, they seem

to have the best performance when dealing with
the cold start problem especially when the new
item/user has very few or no data at all.

This is achieved by tapping into the hidden
factors from the simple product metrics present in
the implemented system. That being said, it is not
without weaknesses that matrix factorization has
come. Most of them will be based around data
which leads to a problem of linearity which does not
explain more creative and complex data. Without
a deeper description of temporal or contextual
information, there is the possibility that these
procedures are not going to be entirely effective
in any problem where these aspects are critical.
It is likely to perform poorly in problems where it
is necessary to appreciate an even higher level of
meaning than carried different perspectives. On
the other hand, there are differences, especially
in the use of thin portions of these matrices
because convolution neural networks and neural
network structures such as fast hidden units
enable horizontal problems to be addressed more
effectively. They are also made up of several
layers used for feature extraction and classification
analysis ready via softwares in CNN.

Some of the widely applied varieties within
neural network methodologies are feedforward
neural networks having adjacencies with neurons
exchanging information in one neural direction;
recurrent neural networks, which process
quasi-periodic spectral components and design
utilizing recurrent neural connections spanning
over a length of time; classifiers which act as
a series of connected operations in CNN; and
finally, transformer models. Which has been an
incredible transformation in advancing natural
language processing – BERT and GPT – by
means of capturing long-range dependencies.
Neural network techniques serve the purpose
very well. They are good at grasping intricate,
non-linear patterns within the data making it easier
to improve the performance on different fronts.

Besides, some state-of-the-art models such
as BERT and GPT are equipped with strong
contextual embeddings that contribute to a better
understanding of meaning and relations between
data points. These models also do well in that they
are highly changeable, allowing them to be altered
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Table 2. Datasets and models used in experiments

Model Dataset
Latent Dirichlet Allocation 16,000 documents from a subset of the TREC AP corpus
Neural Network Language Model Brown corpus, Associated Press (AP) News from 1995 and 1996
Latent Semantic Analysis MED, CRAN, CACM, CISI
Word2Vec Google News corpus
GloVe 2010 Wikipedia dump, 2014 Wikipedia dump

FastText 2016 Wikipedia data in nine languages: Arabic, Czech, German,
English, Spanish, French, Italian, Romanian, and Russian

ELMo One billion word benchmark for measuring progress in statistical
language modeling (Chelba 2014)

BERT BooksCorpus and English Wikipedia

XLNet BooksCorpus and English Wikipedia, Giga5 (16GB text),
ClueWeb 2012-B, Common Crawl

ELECTRA ClueWeb, CommonCrawl, and Gigaword
Reformer enwik8 and imagenet64
Sparse Transformer CIFAR-10, Enwik8, ImageNet 64x64
GPT-1 BooksCorpus dataset
GPT-2 Common Crawl, WebText

GPT-3 Common Crawl (filtered) 410 billion, WebText2 19 billion, Books1
12 billion, Books2 55 billion, Wikipedia

Linformer BookCorpus, English Wikipedia
Longformer text8 and enwik8
BigBird Books, CC-News, Stories, and Wikipedia
Synthesizer SuperGLUE
RoBERTa SQuAD, GLUE
XLM-R XNLI
DeBERTa MMLU, SQuAD
T5 (Text-to-Text Transfer Transformer) MMLU, GLUE, SuperGLUE, SQuAD

according to the requirements and application
making them suitable for any type of given problem.

On the other hand, it is not all roses. There
are cons to the application for neural networks
due to several reasons. These models are
computationally expensive and calls for huge
resources in terms of memory size and processing
capability. This may put a disadvantage to some
businesses, particularly.

Also, most applications of the machine learning
Neural Networks typically require rich training
data which could be difficult to obtain in some

applications. Finally, a key component, which is
training process for such models is usually longer
as compared to matrix factorization methods hence
being unable to meet deadlines on certain tasks.

Projection of User-Item invocations onto
k-dimensional spaces is also a general process
that is more suitable for simpler tasks and
situations where understandability, and ubiquitous
and geographically expansive use is the norm, as
opposed to capturing the different hidden layers of
a network.
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The essence of Neural Network Methods is on
the other hand more robust and target based as
it is well adapted for complex, high-dimensional
data and intense contextual relationships but incurs
higher resource outlay and structural intricacies.

It is mostly focused on the needs of a specific
task, including but not limited to the volume
of information such as data, performance and
computational infrastructure level, and the aspect
of the problems or solution under consideration.

7.2 Differences between Embedding Methods

In the course of the development of natural
language processing (NLP), historically famous
models like Word2Vec and GloVe have attracted
interest with their understanding specialized in the
word embeddings. However, as the evolution of
the field entails, new models are developed such
as BERT, GPT-3, and ChatGPT, which constitute
solutions for significantly advanced problems.

Models of content-dependent and independent
models were discussed in the previous sections.
But no comparative studies were given. Types
of context-independent models (Word2Vec and
GloVe) are useful in conducting basic functions
including text classification, document retrieval,
and tasks where context is not important. They
are less time-consuming and can be trained with
smaller datasets.

On the other hand, context-dependent models
such as BERT and ELMo are more efficient
for advanced operations e.g., understanding
the relationship between concepts, answering
questions, translating. They are most useful in
text manipulation due to the high level of precision,
however, they require more resources and a larger
sample data set for training.

As described earlier, not all embeddings are
created equal as they have intricate differences
in terms of their design, training procedures,
use, and effects. Various embeddings are
employed because different tasks underscore
different strategies in text manipulation and
understanding of the context. We will also focus
on the differences between different types of
embeddings, their benefits and drawbacks, and
their applicability in various tasks.

7.2.1 Traditional Models: Word2Vec and GloVE

The model developed by [24], known as Word2Vec,
works by constructing vectors such that the
relationships between words are predicted.
Word embeddings can be created using the
Skip-gram and Continuous Bag of Words model
implementations. The ultimate result of this
guideline is that it considers the distance or being
among the words in terms of meaning but does not
consider their abstract meaning in context, making
use of the same word sense in multiple situations
(polysemy) problematic. On the contrary, static
efficiency is known as the inefficiency of traditional
methods in handling such cases due to the
surrounding words or, simply put, the context. This
is the same case for GloVe. This fails on the
notions of global statistics which comes from the
complete corpus leading to static representation
and insensitivity of context. These embeddings
can come in handy for use in such situations,
those being:

– When a quick solution is needed and deep text
analysis is not required;

– When the data volume is limited, and as a result,
the context does not matter;

– For tasks like text classification,
keyword-based search, and creation of
recommendation systems.

7.2.2 Limitations of Traditional Models

The adaptivity of embeddings from the Word2Vec
and GloVe models is limited by the fact that
these vectors are constant regardless of the given
semantic unit. This is unsuitable for fine linguistic
uses. The two technologies are economizing of
computational resources allowing for hardly more
burdensome operations at an immense proportion
whilst the effectiveness of these technologies falls
back very quickly when large data sets and
advanced NLP applications are used. This is one
of the reasons why they are not good is real-world
applications. The following are the most significant
they did not include the following limitations:
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– No Context Sensitivity: Due to the nature of such
embeddings, they provide a fixed vector to every
word such that a word’s meaning cannot be
distinguished in different contexts. For example,
the word ‘bank‘ is the same whether it is used
about a financial institution or a riverbank;

– Dealing with Ambiguity: If there are two
meanings to one word, for instance the verb
“lead” and the metal “lead” the situation I the
same and this is one of the causes to error
in fierce contextualized work patterns such as
machine translation and answering questions;

– Sparse Data Headache: The most difficult part in
working with these models is helping them cope
with training statistics that never catches up with
some target vocabulary items. This follows that
some rare words or expressions will be hard to
learn even when using these models;

– Limited Reach: They are typically meant to
capture co-occurrences of words within a small
contiguous region— hence they cannot report
word relations which span beyond the window;

– Fixed Representations: Embedded
representations do not admit of variability that
would take into account changing conditions
within the context such as a word’s difficulty;

– Data Requirement: These methods call for
huge amounts of well-prepared data so that the
provided embeddings will be correct, and it is
impossible to represent anything informative with
a limited amount of data.

7.2.3 Newer Models: BERT, GPT-3,
and ChatGPT

Nevertheless, BERT (Bidirectional Encoder
Representations from Transformers) makes use of
a transformer architecture to generate embeddings
for a given term considering both left-to-right and
right-to-left context.

Consequently, BERT is good at various NLP
benchmarks because it can cope with the
ambiguity and the context in which it is available.
Different from it, GPT-3 (Generative Pre-trained

Transformer 3) employs a one-way transformer
model trained on an enormous source text.

The collaborative writing abilities such as
few-shot text generation and coherence text enable
to aid in the creation of text or stories.

The modifying of GPT-3 to be a chatbot is
referred to as ChatGPT, and this improvement
assists in context preservation and engagement
dissonance. We present a criterion based on when
it is preferable to use content-specific approach for
these reasons:

– When There is need of a deep understanding
of the context controlling a certain word:
These types of embeddinings are best
suited for tasks that are dependent on the
context of words. This includes tasks like
question-answering, sentiment analysis, and
natural language understanding;

– Polysemy and Ambiguity are Both addressed
by content Dependent models: One of the
examples: The word “bank” in one case
is a financial institution and in another case
it is a side of a river, in such cases,
contextual embeddings differentiate these two
meanings according to the context in which the
word is used;

– Cardinals in Dialogue Agents and
Conversational AI: For such systems as
chatbots or virtual agents, continuing and
comprehending the context across utterances
are pivotal, with the model used GPT-3 and
its customization into ChatGPT being best at
producing contextually appropriate responses;

– Tasks with Entailment: in cases where there
exist words or phrases that are semantically
related, but are way too distant in a sentence
or even in a document, embedding models work
better than non-embedding models;

– Text Summoning and Synthesis: Content-aware
models generate relevant and context-coherent
text by understanding the organization of the
input text in the cases of machine translation,
text summarization or even fiction writing;
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– Chores that Offer a Challenge to Transferrable
Mechanisms Such As Machine Translation
or Restatement: In contrast, when changing
languages or redirecting meaning to certain
sentences, contextually-dependent models
demonstrate a better understanding of the
sentence or paragraph construction and its
purpose, hence expressing translations or
modifications more accurately;

– Wide-Ranging and Varied Tasks: Moreover,
such models are capable of carrying out
Intelligent NLP designs for multiple and
wide-ranging tasks like language translation
when dealing with big varying data because
they are capable of self-adjusting their
knowledge instantly.

7.2.4 Limitations of Newer Models

Even several outstanding developments such as
the BERT, GPT-3, and ChatGPT models seem to
have their own obstacles. These new designs can
undertake at greater length various problems and
perform well in several tasks than the traditional
designs; there comes a cost, however, because
of their capacity and they have some setbacks.
let us look at some of the draw backs and
issues that these modern models have as they
may be needed.

Here is a short version for dependent
representations of the content such as BERT,
GPT-3, and ChatGPT:

– Appropriate for tasks that require more than
basic understanding; it is more necessary
with tasks like sentiment analysis or
answering questions;

– Mainly linguistic Use in a broader sense gets
intensive sedated erasing within given context;

– Best for pertinent usage cases, i.e. chatbots
where one needs to preserve the context
through multiple conversational turns;

– Used for requests with words that are
geographically far from one another;

– Outputs are generated ensuring coherence and
text relevancy;

– Outstanding in translation and rephrasing by
perceiving the meaning of a sentence;

– Able to address the issue of different contexts
correctly and efficiently in different data worlds.

7.2.5 Comparative Analysis

The advancements in context handling are
significant; while traditional models provide
static representations, BERT and GPT-3 adapt
embeddings based on context, leading to improved
performance. In terms of scalability, newer
models leverage large datasets and sophisticated
architectures, allowing them to scale effectively in
complex applications.

Furthermore, BERT and GPT-3 demonstrate
superior efficiency in real-world applications,
showcasing their ability to understand and
generate human-like text, thus addressing the
challenges faced by traditional models. Table 2
provides a comparative overview of various word
embedding methods, summarizing key aspects of
each model.

7.3 Special Types

The landscape of Natural Language Processing
(NLP) is continuously evolving, and with it comes
an explosion of specialized embedding techniques
designed to better suit individual needs or use
cases. This section takes an in-depth look at some
of the special types of embeddings that help NLP
models to learn better and perform well.

7.3.1 Multimodal Embeddings

This offers multimodal embeddings (that is,
information from textual and visual or auditory
modalities) for models to be able to more
extensively capture context..) These embeddings
are exceptionally effective in captioning a picture,
understanding the content of a video and
cross-modal retrieval.
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For example, models such as CLIP (Contrastive
Language-Image Pretraining) use textual and
visual information together to increase the
accuracy in tasks where fine-grained knowledge of
both modalities is needed.

7.3.2 Domain-specific Embeddings

So domain-specific embeddings literally mean they
are embeddings which are specifically trained on a
certain field of text such as the biomedical, legal or
financial texts.

The additional embeddings are useful for
capturing customized lingo and context that
broader, or generalized perhaps the word in am
looking for, embeddings might miss. BioBERT,
on the other hand, is BioMedically-oriented BERT
and training it on biomedical literature helps
the model to better understand and process
domain-relevant information.

7.3.3 Contextualized Embeddings

The main goal of contextualized embeddings was
to account for context (that adds a higher level) —
that means words change representations based
on surrounding text. ELMo, BERT, RoBERTa
which are contextualized embeddings help to solve
challenges like the presence of homonymous
or polysemous tokens. Such flexibility vastly
enhances the effectiveness of NLP duties as it
permits spacious semantic representations.

7.3.4 Graph-based Embeddings

Graph-based embeddings come from graph
structures, showing connections between entities
in a network. These embeddings are important
in knowledge graphs, social networks, and
recommendation system applications. Models
such as Node2Vec and GraphSAGE generate
embeddings by the graph topology, which results
in learning much deeper relational data.

7.3.5 Temporal Embeddings

Time-aware entities are temporal embeddings
to capture the changes in meaning or usage
from a historical context. That is useful for
trend analysis, event prediction, and time-relevant
recommendations. Models that use temporal
information, like Temporal Graph Networks, tend to
be able to model well the language dynamics and
how it walks over time.

7.3.6 Adversarially Trained Embeddings

Adversarially trained embeddings are adversarially
robust and incrementally learned by an adversarial
training approach. This is particularly important
in applications like sentiment analysis and spam
detection, where models must perform well even
when attacked. The adversarial training techniques
along with these embeddings, along improve the
quality and reliability of the model as a whole.

7.3.7 Zero-shot and Few-shot
Learning Embeddings

Zero-shot learning (and few-shot learning)
embeddings are meant for cases in which models
are required to generalize from only a handful of
examples. These embeddings are very beneficial
in classification and translation tasks with less or
no labeled data. This is how GPT-3 models work,
they are capable of performing a wide range of
tasks with few examples, this way opening more
possibilities for using NLP systems.

8 Bias in Word Embedding

This topic of bias in word embeddings is
particularly relevant as we continue to move
towards artificial intelligence and natural language
understanding/processing. Societally-biased
training data can create models that perpetuate, or
worse, amplify societal biases.

For example, a word embedding that
encodes gender stereotypes may lead to
models associating specific genders with certain
professions or characteristics which in turn can
lead to discrimination and bias in hiring practices,
exposure within media, etc.
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While likewise, racial prejudices can be present
in how communities are represented by data-driven
applications. These biases have severe ethical
ramifications, especially in applications that require
fairness and equity.

The same type of scrutiny should be used
with the datasets on which AI systems are trained
as organizations increasingly deploy them. This
has spawned a burgeoning set of communities
demanding the ethical development of AI, calling
on researchers and practitioners to think first about
fairness, accountability and transparency in their
work. To extend this discussion, we have found
more recent research a useful reference as in
[3] who write about the dangers of using large
language models and the ethical obligations that
their developers have.

Additionally, [30] have explored the implications
of multimodal models that utilize language
and vision together, emphasizing the need for
careful consideration of bias in both domains.
By addressing these ethical concerns and
incorporating a comprehensive analysis of bias
in word embeddings, we can contribute to a
broader understanding of the implications of AI
technologies in society. This approach not only
enhances the readership of our work but also
aligns with the growing emphasis on fairness in AI
research and development.

9 Future Challenges

Presented work is dedicated to the fundamental
task of mapping human language concepts into a
vector space, with the preservation of topological
properties in terms of semantics and lexics.
This paper discusses the features of various
approaches that developed in neurocomputing
science. The paper’s key analysis and findings are
described as follows.

This paper outlines unsettled tasks posed by
the modern state of industry and technology, and
proposes several related approaches as well. In
details, despite all the mentioned successes in the
field of natural language processing [11, 34, 40,
10], several authors [20, 1, 19] showed that most
modern systems are “fragile” and “fictitious”.

Some researchers suggest that the voiced
problems should be solved by integrating
“common sense” at various levels of word
processing, including the level of word
vectorization. Attention-based models also
have such drawbacks.

The peak accuracy of 77 for BERT in the
problem of understanding arguments reaches
only three points below the average level of an
unprepared person.

However, this result is entirely explained by
false statistical patterns in the data set. The reason
these models achieve random accuracy lies in the
methodology for constructing the data set [26].

To study how BERT “makes a decision,”
examples were considered that are most easily
classified through many runs of the algorithm.

The authors of [15] performed a similar analysis
with the SemEval dataset, and as evidence of their
results, it was found that BERT uses the presence
of a hint word to confirm a sentence, for example,
denial words such as “no” or “not.”

Through point experiments, a method isolating
such an effect was developed; indeed, the
accuracy of the BERT model can be entirely
dependent on random statistical laws [26]. The
question of “fragility” and “deceit” of XLNet
remains open; studies in the areas of machine
translation, machine reading of a text, construction
of argumentative models, tonality analysis, and
others seem interesting.

In our opinion, there are three main areas
of development of natural language processing
algorithms, namely:

1. The use of the inductive bias approach for better
control over the result, the use of linguistic
structures in neural network architectures is one
of the main trends of 2017.

It should be noted that such architectures
become more dependent on the manual work
of researchers and developers. Nevertheless,
the approach allows learning more complex
behavior with fewer data.
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2. The integration of common sense in the natural
language processing model; indeed, most of
the urgent tasks of text processing involve such
qualities as abstraction, logic, comprehensive
knowledge of the world.

3. Modeling data and distributions that do not
belong to the training set, since most systems
are oriented to a specific knowledge domain
and do not have, in a broad sense, the quality
of generalization.

Acknowledgements

This research has been/was/is funded by the
Science Committee of the Ministry of Science and
Higher Education of the Republic of Kazakhstan
(Grant No. AP23489782).

References

1. Belinkov, Y., Bisk, Y. (2017). Synthetic and
natural noise both break neural machine
translation. International Conference on
Learning Representations, pp. 1–13.

2. Beltagy, I., Peters, M. E., Cohan, A. (2020).
Longformer: The long-document transformer.
DOI: 10.48550/ARXIV.2004.05150.

3. Bender, E. M., Gebru, T., McMillan-Major,
A., Shmitchell, S. (2021). On the dangers
of stochastic parrots: Can language models
be too big? Proceedings of the ACM
Conference on Fairness, Accountability, and
Transparency, pp. 610–623. DOI: 10.1145/
3442188.3445922.

4. Bengio, Y., Ducharme, R., Vincent, P.,
Jauvin, C. (2003). A neural probabilistic
language model. The Journal of Machine
Learning Research, Vol. 3, pp. 1137–1155.

5. Blei, D. M., Ng, A. Y., Jordan, M. I.
(2003). Latent dirichlet allocation. The Journal
of Machine Learning Research, Vol. 3,
pp. 993–1022.

6. Bojanowski, P., Grave, E., Joulin, A.,
Mikolov, T. (2017). Enriching word vectors
with subword information. Transactions of
the Association for Computational Linguistics,
Vol. 5, pp. 135–146. DOI: 10.1162/tacl a
00051.

7. Brown, T., Mann, B., Ryder, N., Subbiah,
M., Kaplan, J. D., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A.,
Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A.,
Ziegler, D., Wu, J., Winter, C., Hesse, C.,
et al. (2020). Language models are few-shot
learners. Advances in Neural Information
Processing Systems, Vol. 33, pp. 1877–1901.

8. Cho, K., van-Merriënboer, B., Gulcehre,
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