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Abstract. We analyze the use of Compensatory Fuzzy
Logic (CFL) applied to an optimization model to reflect an
investor’s preferences regarding portfolio stock selection.
CFL is a framework that allows the construction of fuzzy
predicates using fuzzy parametrized linguistic variables.
Although the potential of a CFL predicate to model
preferences is high, to the best of our knowledge, this
is the first use of this strategy to do so. Real data
from the Mexican Stock Exchange was employed to
create a test instance. Portfolios were obtained using the
Particle Swarm Optimization algorithm. By maximising
the degree of truth of the predicate representing the
investor’s preferences, the model is able to reflect
investor profiles regarding the return-risk relation of the
portfolios. Three artificial investor profiles were defined
during the experimentation; the model was able to reflect
all of these preferences.

Keywords. Swarm particle optimization, preference
incorporation, metaheuristic algorithm, prescriptive
analytics, fuzzy optimization.

1 Introduction

Investments have been essential in improving
welfare levels since the last century [5]. The search
for tools to help investors is constituted by the
formulation of optimization problems.

These approaches aim to provide solutions that
offer a good compromise for the investor in a
relatively short computational time and allow the
incorporation of criteria close to the reality in which
the investor lives day by day.

Markowitz Portfolio Stock Selection (PSS) is a
bi-objective optimization problem that maximizes
the investment return on a given set of possible
investments while minimizing investment risk [14].

In this model, investors seek the highest
return possible by using the mean return of each
investment. Investors also consider the investment
risk in terms of the variance. Thus, a portfolio
should balance return and risk.

A portfolio x is defined as a set of n possible
investments, where:

n∑
i=1

xi = 1, xi ≥ 0. (1)

The return Ri for investment i is calculated
by the average return of the investment during a
time period T . The risk is calculated by using the
covariance matrix σ of x. the quality of the portfolio
is measured by the following bi-objective function:
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F =



max f1

n∑
i=1

xi ·Ri,=

min f2

n∑
i=1

n∑
j=1

xi · xj · σ(xi,xj).=

(2)

Many researchers have addressed this problem
by obtaining the Pareto front. However, investors
often have preferences regarding the portfolio.
Some desire the highest possible return, others the
lowest possible risk, and some would rather strike
a particular balance between return and risk.

We use Fuzzy Logic (FL) to deal with investors’
subjective preferences. FL is a multi-valued logic
used to deal with uncertainty [17]. FL is a popular
tool to model the preferences of investors [1, 3,
4]. One of the variants of FL is Compensatory
Fuzzy Logic (CFL) [7]. CFL involves the use of
fuzzy logical operators. These operators allow the
construction of fuzzy predicates.

Although CFL predicates may be useful to
reflect investor preferences, to our knowledge,
there have been no studies using them. Our goal
is to use a CFL predicate to guide the algorithm to
a portfolio that satisfies a given preference.

This paper is organized as follows. In Section 2,
we briefly review the scientific literature. In
Section 3, we present some preliminaries for CFL.
In Section 4, we introduce the proposed model. In
Section 5, we conduct a parametric analysis of the
proposed model. Lastly, in Section 6, we discuss
the conclusions and directions for future research.

2 Related Work

This section presents an overview of the progress
in this research topic. Amiri et al. [2] developed two
models for portfolio selection. First, a mathematical
programming model to maximize the minimum of
the Sharpe ratios.

Second, a probabilistic programming model
based on the necessity theory, which deals with the
uncertainty of the parameters and the low quality of
the decisions caused by this same uncertainty.

Table 1. Studies in portfolio stock selection

Study Strategy Fuzzy Variable Preferences

Amiri et al. 2019 Mathematical
Programming Model

Trapezium
Distribution

Li et al. 2021 Genetic Algorithm Uncertain
Distribution

Corazza et al. 2021 PSO-Dynamic Risk Measure ✓

Dai et al. 2021 Genetic Algorithm Uncertain
Distribution

Harris et al. 2022 Cubic Spline
Smoothing Utility Values

Thakur et al. 2022 Ant Colony
Optimization

Trapezoidal
Numbers

Hamdi et al. 2022 PSO and ICA ✓

Fazli et al. 2022
Deep
Reinforcement
Learning

LR Numbers

Nozarpour et al.
2023 PSO

Triangular and
Trapezoidal
Numbers

This paper PSO Sigmoid ✓

Others who have presented innovative portfolio
optimization methods are Li et al. [12], who
proposed a three-step model to deal with this
problem with different risk preferences. In addition,
they used entropy to describe the degree of
diversification of portfolio selection to obtain a
favorable balance between return and risk.

Corazza et al. [3] proposed solving the
unconstrained portfolio selection problem
using a hybrid metaheuristic based on Particle
Swarm Optimization (PSO) with a dynamic
penalty approach, and when compared with
the most recent (up to that time) proposals,
they concluded their proposal needed only 4%
of the computational time consumed by their
predecessors to find good compromise solutions
to the portfolio selection problem.

Dai et al. [4] proposed a genetic algorithm for
the problem of multi-period portfolio optimization
in an uncertain environment, where uncertain
variants describe the return risks.

Considering the restriction of the minimum
number of transaction batches in the real world,
they formulated the uncertain mean-VaR model.
Moreover, this model is in two concrete forms,
assuming the values of the risk have zigzag or
regular returns.

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1349–1359
doi: 10.13053/CyS-28-3-5187

Luis Cisneros, Raul Porras, Gilberto Rivera, et al.1350

ISSN 2007-9737



Harris et al. [10] explored how an investor
with behavioral preferences determined by the
cumulative prospect theory can make investment
decisions in a range of realistic situations by
considering 7 rational benchmarks. In addition,
they proposed an alternative behavioral objective
function and incorporated the investor’s short- and
long-term memories into the portfolio decisions.

Thakur et al. [16] proposed a novel fuzzy expert
system model to evaluate and rank the stocks in
the Bombay Stock Exchange. Evidence from the
Dempster-Shafer theory is used to develop a fuzzy
rule base to decrease the implementation time and
the overall cost of the system.

Hamdi et al. [9] formulated the Conditional
Value at Risk using Data Envelopment Analysis
(DEA), and then this same model was tested
with a PSO algorithm and finally with the Imperial
Competitive Algorithm (ICA). They concluded that
when DEA is used for portfolio selection modeling,
better results are obtained, and the PSO algorithm
performs better in portfolio optimization.

A new strategy to address the portfolio
management problem is proposed by Fazli et
al. [8]. They present a reinforcement learning
framework which they use to extract the meaning of
the stock price history, and using this information,
they generate the vector of weights for the portfolio
selection. Nozarpour et al. [15] considered
different time horizons for the portfolio assets.

Thus, an investment cannot be traded before
a specific point in time, and transaction costs
were added to make it more realistic. Table 1
presents some of the significant characteristics
of the research reviewed in this paper, such as
the strategy used to solve the model, the fuzzy
variables that stand out in each approach, and
whether or not the preferences of the investor are
incorporated in the strategy used.

The PSO and GA are among the most widely
used; there are also innovative proposals, such
as using neural networks. The fuzzy membership
function most used in the state-of-the-art literature
is the trapezoidal function. As we can see,
there are several studies that incorporate the
use of fuzzy logic in the PSS. However, to our
knowledge, CFL predicates have yet to explored
for to modeling investor preferences.

3 Introduction to Compensatory
Fuzzy Logic

Compensatory Fuzzy Logic (CFL) is a multivalued
logic axiomatic approach based on three
operators. These operators correspond to
conjunction (c : [0, 1]n −→ [0, 1]), disjunction (d :
[0, 1]n −→ [0, 1]), and negation (n : [0, 1] −→ [0, 1])
[7]. The operators of conjunction and disjunction
can be defined as t-norm T functions [7] that have
the following properties.

– Commutativity: T (x, y) = T (y, x).

– Monotonicity: T (x, y) ≤ T (u, v), if x≤u and y≤v.

– Associativity: T (x, T (y, z)) = T (T (x, y), z).

CFL also provides some useful definitions:
the parametrized sigmoid function and the
Generalized Continuous Linguistic Variable
(GLCV). The parametrized generalized sigmoid
function is defined by:

S(x, α, γ) =
1

1 + eα(x−γ)
. (3)

It should be mentioned that the sigmoid function
has several properties that make it favorable for
optimization. First, the function is asymptotic
in 1. Because of this, a higher value of x will
always have a higher degree of truth. Whereas a
non-asymptotic function, such as the trapezoidal,
doesn’t recognize increments regarding the value
of x within a certain range.

Second, the asymptotic nature of the sigmoid
function complies with the notion of Pareto
dominance because a non-dominated solution will
always have a higher degree of truth than the
solutions it dominates (the better the objective
value, the higher degree of truth). Using Equation
3, CFL is able to define the parametrized GLCV as
follows [6]:

GLCV(x, α, γ, m) =

(S(x, α, γ))m · (1− S(x, α, γ))m−1.
(4)

Each GLCV has three parameters that modify
its behavior: α is used to express the level of
tolerance of variations in x. A high value of α is
used to indicate that the tolerance is low, whereas
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Fig. 1. GLCV as a sigmoid function

Fig. 2. GLCV as an inverse sigmoid function

Fig. 3. CFL conjunction predicate

a lower value would indicate a higher level of
tolerance. γ is used to define the magnitude of x at
which the truth value of the GLCV is 0.5, while m
is used to determine the behavior of the function.
With m = 1, the GLCV will behave like a sigmoid
function, as depicted in Figure 1, which expresses
the maximization of the input variable.

On the other hand, m = 0 will make the GLCV
behave like an inverse sigmoid, as depicted in
Figure 2, which expresses minimization. Using
GLCVs, we are able to create CFL predicates like
the one described in Equation 5:

p(x) = n
√

GLCV1(x) ·GLCV2(x) · · ·GLCVn(x). (5)

The predicate will behave as a sigmoid function
if all of the GLCVs are sigmoids, as an inverse
sigmoid if all of the GLCVs are inverse sigmoids,
and as a concave function if some GLCVs are
sigmoid and others inverse sigmoid. The last case
is depicted in Figure 3.

4 Proposed Model

To create a test instance, we selected 14 indexes
pertaining to the Mexican Stock Exchange. The
mean return value for each index was calculated
using the daily value at the beginning and the value
at the cut from 2021 to 2022.

Then, those indexes with negative returns were
discarded. Our proposed model employs the
GLCV [6] to create fuzzy predicates that reflect the
investor’s preference.

4.1 CFL Predicate

For the Portfolio Stock Selection (PSS), we defined
a predicate p that expresses ‘A portfolio that has
a high return and a low risk.’ Here, we employ
two linguistic variables: A: ‘Portfolio x has a high
return,’ and B: ‘Portfolio x has low risk’.

To model these linguistic variables, we use two
GLCVs, one for each linguistic variable. Because
investors seek to maximize return in all cases, the
GLCV assigned to A is set to be a sigmoid, as
shown in Equation 6:

µ(A) = GLCVi(f1(x), αi, γi, 1). (6)

Here, the higher the return, the higher the value
of truth the linguistic variable will have. γi will
indicate where the investor starts to consider the
return to be ‘high’. The other GLCV will model
linguistic variable B. Unlike the return, the risk is
set always to be minimized.
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Fig. 4. Optimization process

Because of this, we assign an inverse sigmoid
to the GLCV, as shown in Equation 7:

µ(B) = GLCVj(f2(x), αj , γj , 0). (7)

Just as with the previous GLCV, γj will indicate
where the risk starts to be considered low. Then,
both GLCVs will be linked using a conjunction
operator, as shown in Equation 8:

p(x) =
√
µ(A) · µ(B). (8)

Using this predicate, the best portfolio would be
one that has a ‘high’ return and a ‘low’ risk, with
‘high’ and ‘low’ being subjective values.

For example, suppose that an investor
has defined the fuzzy parameters as follows:

αi = 1, γi = 5, αg = 1, γi = 2.

With this configuration, a portfolio with
return f1(x) = 4.3 and risk f2(x) = 1.25
would have the following evaluation:
µ(A) = 0.3318, µ(B) = 0.6899, p(x) = 0.4711.

In this case, the truth value of the predicate
is below 0.5, which means that the investor
would not be satisfied with this portfolio.
However, a portfolio with f1(x) = 8.2 and
f2(x) = 0.7 would have the following evaluation:
µ(A) = 0.9608, µ(B) = 0.7858, p(x) = 0.8689.

Here, the increased truth value of the predicate
indicates that this portfolio better complies with the
investor’s preference. By modifying the parameters
of the GLCV of Equations 6 and 7, the predicate is
able to model the subjective preferences of a wide
range of investors.

In the previous example, the investor may
change his/her mind about the amount of risk (s)he
can tolerate.

Therefore, (s)he could modify γj = 2 to
γj = 0.5. With this change, the investor
expresses a preference for a portfolio with lower
risk. Now the same portfolio with f1(x) = 8.2
and f2(x) = 0.7 is evaluated as follows:
µ(A) = 0.9608, µ(B) = 0.5498, p(x) = 0.7268.

Then, the investor may decide that an
acceptable value of the risk should be close to
γj . Therefore, (s)he makes the change αj =
3. Now the portfolio is evaluated as follows:
µ(A) = 0.9608, µ(B) = 0.731, p(x) = 0.838.

This predicate will replace Equation 2 as the
objective function during the optimization process,
becoming the objective function of the PSO.
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4.2 Particle Swarm Optimization

PSO is a population-based heuristic used to solve
optimization problems. The optimization process
is depicted in Figure 4. The first step is used to
initialize the swarm. This involves creating a new
PSS solution for each particle. Within the PSO,
we refer to the solution assigned to the particle as
its position.

Then, all particles are evaluated by the
objective function, the CFL predicate, and the
best particle position is saved as the best
swarm position. After this step, the optimization
process begins.

This process starts by choosing whether the
search operator will be applied to the best swarm
position or to the best solution found by the particle
so far. This selection is done with Equation 9:

xi(t+ 1) =

s(p, v) ifR1ap > R2ag,

s(g, v) ifR1ap ≤ R2ag,
(9)

Here, xi(t + 1) denotes the next position of the
particle, R1 and R2 are random numbers in the
range [0,1], while ap and ag are the acceleration
constants. Lastly, v is the velocity constant.

The mentioned constants modify the behavior
of the swarm. The acceleration ones are used
to favor either the selection of the best position
of the particle or the best position of the swarm.
The velocity constant indicates how many times the
search operator is applied.

After creating this new position, the objective
function will be used to evaluate it. If the new
position is not better than the previous position, it
is discarded, and the iteration ends. Whereas if
the new position is better, it replaces the current
position. Lastly, the position is compared with the
best swarm position.

If it is better, it will also replace it, and the
iteration ends. This process will continue until
PSO reaches the maximum number of iterations
previously set by the user.

Fig. 5. Portfolio example

Fig. 6. Modified portfolio

Fig. 7. Solution adjustment

Fig. 8. Initial population

4.2.1 Solution Coding

To represent each portfolio, we used a float array
where each number represents the percentage of
the budget to be invested for index i. In Figure
5, we show an example of a solution for the test
instance. In Figure 5, we can appreciate how one
of the indexes has 0% of the budget. This is an
acceptable case within our PSS model, as well as
one index having the whole budget.

4.2.2 Search Operator

The search operator creates a new solution from a
given solution. To do this, the operator randomly
selects an index xi with a budget percentage over
0%. After selecting the index, a percentage p
between 1% and 100% is randomly set to extract
from xi. Then, the extracted budget is added to a
random index xj .
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Table 2. Reference portfolios

Return Risk

High return 22.5 -2127.5

Low risk 13.86 -4986

Table 3. Investors percentages

Profile
Return Risk

α γ α γ

Ia 99% 90% 99% 70%

Ib 99% 85% 99% 85%

Ic 99% 70% 99% 90%

Table 4. Test parameters

Parameter Values

Velocity constant 10 5 1

Acceleration constant p 1 1.5 2

Acceleration constant g 1 1.5 2

Fig. 9. PSO results on combination 17

To illustrate the operator, we will apply it to
the portfolio shown in Figure 5. First, x1 is
randomly selected. Then, p is randomly set at 25%,
corresponding to 0.05 of the budget percentage
assigned to x1. After that, x5 is randomly selected
to receive the 0.05 from x1.

The budget is assigned to x5 and extracted
from x1, resulting in the solution shown in Figure
6. Since the operator bases the budget exchange
on percentages, there is no need to satisfy any
budget constraint.

4.2.3 Initial Swarm

To create the first swarm, each solution is created
by assigning equally the budget to each index.
The percentage is calculated by 1/a, where a is
the number of indexes to consider. The result is
truncated to two digits. Because of the nature of
this operation, it is possible that the total budget
could be less than 1.

To correct this, we simply determine the missing
budget and randomly assign it to an index. In
Figure 7, we show how a solution is created using
this method where the number of indexes is 6.

As shown in Figure 7, each index is assigned
a budget percentage of 0.16 in the first step.
However, when calculating the total budget for this
solution, the result is 0.96. Because of this, the
remaining 0.04 to reach 1.0 is randomly assigned
to the 5th index.

After creating the first solution, the PSO will
use it to create the initial population. This is done
by applying the local search operator to the initial
solution to create each particle. In Figure 8, we
show an example of this process.

Because this is the first solution for each
particle, it is set as the best personal solution
found so far. Each particle is evaluated using
the objective function. An implementation of the
proposed model is available at GitHub1.

5 Results

To determine the ability of the proposed model to
implement multiple preferences, we defined three
investor profiles. The first one, Ia, is an aggressive
investor, meaning that it will prioritize a higher
return over the risk. Second, Ic is a conservative
investor that prioritizes a low risk. Lastly, Ib
is a balanced investor seeking an advantageous
trade-off between risk and return. The model was
coded in Python 3, and all experiments were run
on a Windows 10 PC with 16GB of RAM and a 3.9
GHz CPU. All of the investor profiles will use two
portfolios as references. One with high return and
one with low risk.
1github.com/luis-cis/CFL Preference Portfolio Selection
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Table 5. Parametric results

Combination Ia Ib Ic

1 0.5407 0.6604 0.5513

2 0.9667 0.9715 0.9244

3 0.9712 0.8765 0.9062

4 0.8057 0.8059 0.7817

5 0.9972 0.9917 0.9937

6 0.9432 0.9652 0.9583

7 0.9410 0.8214 0.8615

8 0.9002 0.9878 0.9597

9 0.9927 0.9810 0.9847

10 0.2085 0.3331 0.2580

11 0.9172 0.9177 0.9000

12 0.9173 0.7654 0.8195

13 0.6307 0.5604 0.5987

14 0.9916 0.9361 0.9671

15 0.9247 0.9172 0.9210

16 0.8160 0.7692 0.7362

17 0.9990 0.9917 0.9947

18 0.9795 0.8613 0.9360

19 0.1512 0.1593 0.1473

20 0.8201 0.7508 0.7533

21 0.7003 0.6167 0.6405

22 0.4322 0.3710 0.4282

23 0.9297 0.8783 0.8793

24 0.9303 0.8280 0.8396

25 0.5272 0.5540 0.5329

26 0.9908 0.9755 0.9705

27 0.9708 0.9104 0.9303

In practice, an investor should have this
knowledge a priori. The values employed for
our experiments are shown in Table 2. Using
these values as a reference, we can initialize the
fuzzy parameters for each investor profile. In
the case of γ, we simply need to indicate a
reference value between the highest and lowest
value to indicate where the investor assigns a 0.5
level of satisfaction.

For the value of α, we first need to indicate
a reference value where the investor assigns the
0.99 level of satisfaction. Once γ is defined, we
use Equation 3 to isolate α; this equation is used
because of the generalized sigmoid function used
within the GLCV:

α =
ln(1/0.99)− 1

x− γ
. (10)

Here, x denotes the reference value. It should
be noted that while calculating α for the risk GLCV,
we use −α to reflect its minimization. We selected
the reference values for each profile based on a
given percentage for each profile. The percentages
used for each profile are shown in Table 3.

As shown in Table 3, all investors have an α of
99%. This indicates that every investor will have
the maximum truth value on the highest return
value and the lowest risk value. In the case of the
aggressive investor, we see that the γ point will be
90% close to the highest return value and 70% to
the lowest return value.

This means that this investor will only assign
values above 0.5 to the highest return portfolios
while allowing the portfolio to have a higher risk.
In contrast, the conservative investor will only
assign values above 0.5 to those portfolios that
are 90% close to the lowest risk while allowing the
return to decrease.

5.1 Parameter Tuning

To assess the performance of the preference
model, we ran a series of experiments with different
PSO velocities and acceleration constants using a
swarm of 50 particles for 120 iterations. The test
values are shown in Table 4. Each combination
of parameters was run 30 times. The average
truth value of the predicate for each combination
is shown in Table 5.

Table 5 identifies combination 17 as the best
and combination 19 as the worst. Combination
17 has the values of velocity = 5, p = 1.5,
and g = 2. Combination 19 has the values of
velocity = 1, p = 2, and g = 1. In Figure 9,
we can see the non-dominated solutions regarding
combination 17.
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Table 6. Average portfolio values

Profile Return Risk

Markowitz function 14.6413 -4088.2392

Ia 23.1744 -4576.151

Ib 22.1876 -4664.703

Ic 20.5939 -4801.2728

Table 7. Reference portfolios

Return Risk

High return 23.2645 -2424.8184

Low risk 14.471 -5193.4265

Table 8. Average truth values

Degree of truth

A priori approach 0.6383

A posteriori approach 0.4233

Table 9. Mann-Whitney-Wilcoxon results

Variable Value

z-score 3.6794

u-value 5452

p-value 0.00024

Figure 9 shows how the profile solutions reflect
the desired preference. The aggressive profile
obtains solutions that have the most return and
risk, while the conservative profile favors those
solutions with lower return and risk, and the
balanced profile is between the two.

These results are achieved due to the fuzzy
parameters of Equation 8. The parameters set
for the aggressive profile evaluate the solutions
belonging to the conservative profile with a lower
truth value and vice versa.

Only those solutions that align with the
preference reflected by the fuzzy parameters will
be assigned a high truth value. This guides the
PSO to the desired Pareto-efficient solutions.

5.2 Comparative Analysis

In this section, we analyze the impact of the
use of the CFL predicate during the optimization
process. First, we set the PSO’s parameters
to those corresponding to the 17th combination.
Then, we ran PSO 30 times using Equation 2 as
the bi-objective function to approximate the whole
Pareo frontier (a posteriori approach).

After that, we ran the PSO 30 times using
Equation 8 for each investor profile to approximate
the best compromise solution (a priori approach).
The average return and risk of the best portfolios
obtained in every execution are shown in Table 6.

From this set of solutions, we selected two
new reference portfolios to create a second set of
investor profiles. The values of these reference
portfolios are shown in Table 7. Then, we
reevaluated every portfolio using those reference
points. Then, we evaluated every portfolio using
both sets of investor profiles. Then, we reevaluated
every portfolio using those reference points. The
average truth value is shown in Table 8.

Lastly, we used the Mann-Whitney-Wilcoxon U
test to determine the statistical significance of the
differences between the results from the a priori
approach and the a posteriori one. The U test
is a non-parametric test to evaluate differences
between two independent sets of values [13]. To
determine if a difference exists or not, a given
confidence level is employed, in this case 0.95.

Table 9 shows the test results. Given the 0.95
confidence level, a p-value below 0.05 indicates
statistical differences between the two populations.
In this case, this means that using the CFL
predicate during the optimization process is more
adequate to identify the solution that best matches
the investor’s preferences.

6 Conclusions and Future Research

In this paper, we proposed a preference model
based on Compensatory Fuzzy Logic (CFL) to
solve the Stock Portfolio Selection (PSS) problem.
Using CFL, we were able to create predicates that
expressed an investor’s preferences regarding the
return and risk of the desired portfolio.
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These predicates are composed using sigmoid
linguistic variables linked with CFL logical
operators. The sigmoid function is selected
because of its asymptotic properties that allow for
a finer evaluation of a variable.

We integrated this model into a Particle Swarm
Optimization (PSO) algorithm and ran a series of
experiments with three investor profiles using data
from the Mexican Stock Market. First, we did a
parameter tuning experiment that revealed the best
and worst PSO parameter values regarding the
truth value of the CFL predicate.

The results suggest that the performance of the
PSO is at its best when the swarm slightly favors
global search with a medium velocity. In contrast,
the worst performance corresponds to a swarm
that has the minimum velocity and greatly favors
local search.

Using the best combination of parameters,
we see how the preference model consistently
reflects the preference of each investor profile. It
should also be noted that we in order to adjust to
each investor profile, we only need to modify the
parameters of the linguistic variables that form the
CFL predicate.

We made a comparison based on the solutions
obtained with PSO without the use of the CFL
predicate during the optimization process and
the solutions obtained by using CFL predicates.
Investor profiles were created based on both
results. Then, every solution was evaluated using
both sets of investor profiles.

The results showed that the investor profiles
obtained by using the CFL predicate during the
optimization process have a higher truth value. The
Mann-Whitney-Wilcoxon test showed that there
were significant statistical differences between the
two sets of solutions.

The main limitation of the model is that it needs
to have information about the desired solution.
Therefore, an investor unfamiliar with the possible
outcome in terms of risk and return would not be
able to initialize the CFL predicate properly.

For this reason, as future research, we propose
the integration of an interactive module within the
optimization process. This module should interact
with the investor by presenting information about
the found solutions and adjusting the sigmoid

functions and the CFL predicate based on the
investor’s preferences. Another topic for future
research is the use of another instance using
indexes belonging to other markets. We also
propose the implementation of the CFL predicate
within a more complex heuristic, such as [11].
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