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Abstract. Frequently, multiobjective optimization 

problems are solved using non-dominated based 
evolutionary algorithms or gradient-based methods. In 
the last years, successful proposals that combine the 
two approaches have been developed. In this work, we 
propose the Normal Attractor Intersection (NAI) and the 
NAImopso. The NAI avoids the a priori definition of the 
search direction and the equality constraints; it uses a 
set of attractors that cover the entire Pareto Front to 
generate solutions in the Pareto front. The NAImopso is 
a multiobjective optimization algorithm based on 
decomposition; we used it to prove the ability of the NAI 
to obtain the Pareto front. We compared our proposal 
against four state-of-the-proposals, and it was evaluated 
using three well-recognized indicators as performance 
metrics, the hypervolume indicator, the coverage, and 
the ε-indicator. The experimental results showed that 
solutions obtained with the NAImopso were better than 
the solutions obtained with the other algorithms with it 
was compared. 

Keywords. Multi-objetive optimization, MOO classic 

method, decomposition algorithm, particle 
swarm optimization. 

1 Introduction 

Optimization problem-solvers aim to find solutions 
that minimize or maximize at least one objective 

function (OF). So broadly speaking, optimization 
problems can be divided according to the number 
of OF that the solver handles to obtain the optimal 
values; hence, there are two big groups: In the first 
one, the problem-solver use only one objective 
function, thus we are dealing with a single objective 
optimization problem (SOOP). 

In the second group, the problem-solver 
compromises the solutions to satisfy in the best 
possible way more than one OF; these kinds of 
problems belong to a class known as 
multiobjective optimization problems (MOOP). 
MOOPs are harder to solve than SOOPs; 
consequently, through history, there have been 
many proposals focused on reducing obstacles in 
the diverse facets of the problem solver, i.e., the 
algorithms or methods. 

Some ideas of the first proposed methods 
referred to as classical methods, to distinguish 
them from metaheuristic-based methods were 
classified by Miettinen in [1] as follows: 

a) No-preference methods. 

b) Posteriori methods. 

c) A priori methods. 

d) Interactive methods. 
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The no-preference methods use a heuristic to 
find a single optimal solution without assuming any 
information concerning the importance of the 
objectives. In contrast, posteriori methods use 
preference information about each objective and 
generate a set of Pareto optimal solutions [2]. 

The a priori methods usually find a preferred 
Pareto optimal solution using information 
concerning the preferences of objectives [3]. 
Interactive methods work with preference 
information progressively along the optimization 
process [4]. 

Three of the more popular classical methods 
are the weighted sum approach (WSA), the 

Benzon method [5], and the normal boundary 
intersection (NBI) [6, 7]. 

Regarding metaheuristic methods, Shaffer 
proposed to solve a MOOP using a genetic 
algorithm to find a solution in each run of a WSA 
[8]. A different way to deal with a MOOP is with a 
multiobjective optimization evolutionary algorithm 
(MOOEA), which find multiples solutions in the 
Pareto front in each run. 

MOOEA has significantly grown since the 
Pareto dominance concept was proposed by 
Goldberg [9] and still being the preferable option to 
obtain a set of optimal viable solutions. The use of 
the NBI presents several significant drawbacks; 
some of them are: 

 Transforming a MOOP containing 𝑀 objectives 

to a set of single optimization problems with 
𝑀 equality constrains, for problems with a big 
number of decision variables is more laborious 
than solving the MOOP. 

 In some runs, the NBI returns non-Pareto 
optimal points. A solution was given in [10], 
where Logist and Impe, propose a removal 
criterion for these points using the Lagrange 
multiplier vectors, then the pay-off matrix and 
the permutation matrix do not need 
further comparisons. 

 It is necessary to use Robust Parameter 
Design when solving a MOOP with correlated 
objective functions [11]. This approach throws 
unrealistic feasible solutions in the Pareto 
Front; however, they can be avoided using 
Principal Component Analysis to obtain 
uncorrelated objective functions. To deal with 
correlated objective functions, Dias Lopes et 
al. [11], proposed the RPD-MNBI that 
combines Robust Parameter Designs, 
Principal Component Analysis, and Normal 
Boundary Intersection preserving the original 
correlation of the problem and reducing the 
effects of the noise variables. 

A way to deal with the difficulty of the constraint 
equation in the NBI is combining it with a 
metaheuristic algorithm and penalize the solution 
that did not fulfill the constraints like the proposed 
by Zhang and Li in the MOEA/D [12]. The MOEA/D 
decompose the objective space of a MOOP in  𝑁 
subproblems with different weight vectors, to solve 

 

(a) 

 

(b) 

Fig. 1 Graphical representation of the CHIMmod that 

cover the entire Pareto front in (a) the zdt1 problem, and 
(b) zdt3 problem 
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these subproblems, the authors reported 
experiments with three classic methods: The 
Weighted Sum Approach, the Tchebycheff 
Approach, and a Boundary Intersection 
(BI) Approach. 

Similarly, in [13], the NBI and the Tchebycheff 
method are used to guide the search in the 
neighborhood of the MOEA/D; in this algorithm the 
classic method and the evolutionary algorithms 
works together to solve a MOOP; however, the 
search direction needs to be defined yet. 

Another weakness of the MOEA/d is that the 
recombination operators affect their performance, 
to solve this in [14] Luo et al. proposed the 
genetically hybrid differential evolution strategy for 
recombination that use one mutation strategy 
focused on the diversity and another focused 
in convergence. 

The problems of the quick convergences and 
the loss of the diversity affect also the particle 
swarm optimization algorithms, to avoid this a 
fusion learning strategy that improved the 
leadership selection strategy is presented in [15]. 
The Radial Boundary Intersection based 
decomposition with an Interior-Point method (RBI-
IP) [16] is an algorithm that also uses the NBI. 

This algorithm decomposes the objective space 
in 𝑁 sub-problems, each of one is solved to find the 
closets solution to the reference point on the 
respective radial line, these solutions are found 
using the interior point method. 

Another improvement of the NBI is presented 
by Cui et al. [17] they use the adaptive weight sum, 
the adjust uniform axes method and Mahalanobis 
distance to get a wide and uniform distribution of 

the Pareto Frontier. In this paper, we propose the 
Normal Attractor Intersection (NAI) method and the 
Normal Attractor Intersection multi-objective 
particle swarm optimization (NAImopso). 

The first one is a method inspired by the NBI 
[6], the improved NBI [18], and the Tchebycheff 
approach. The NAI avoids the a priori definition of 
the search direction and the equality constraints; a 
set of attractors that cover the entire Pareto Front 
are used, minimizing the normal distance to one of 
these attractors, then a Pareto point is obtained. 

The second one is a multiobjective optimization 
algorithm based on decomposition; we used it to 
prove the ability of the NAI to obtain the Pareto 
front. It guides the search, and the structure of the 
randomly selected neighbors-particle swarm 
optimization (RSN-PSO) proposed in [19] adapted 
to deal with multiobjective optimization is used to 
generate new solutions. 

We compare our proposal against four 
multiobjective metaheuristics based on the PSO 
that are in the state-of-the-proposals; they are the 
pccsAMOPSO [20] and the KGMOPSO [15]. The 
evaluation was achieved using three well-
recognized indicators used as performance 
metrics; they are the hypervolume indicator, the 
coverage, and the ε-indicator. The experimental 
results showed that solutions obtained with the 
NAImopso were better than the solutions obtained 
with the other algorithms with it was compared. 

The rest of this paper is organized as follows: 
Section 2 describes the theory of the NBI to 
understand the inspiration of the NAI. Sections 3 
and 4 introduce the proposed NAI and NAImopso 
respectively. Section 5 reports the experimental 
results. Section 6 concludes the paper. 

2 Normal Boundary Intersection 

The NBI divides a MOOP with 𝑀 OFs in 
subproblems of a SO; each subproblem NBIw is 

solved using different weight vectors 𝒘 [6]. 

In the NBI the first step is to find the ideal vector 
𝐳∗ = [𝑓1

∗(𝐱), 𝑓2
∗(𝐱), … , 𝑓𝑀

∗ (𝐱)]𝑇 used in the 
Convex Hull of Individual Minima (CHIM) described 
in equation (1): 

CHIM = {Φ𝐰: 𝐰 ∈ 𝑅𝑀, ∑ 𝑤𝑖

𝑀

𝑖=1

= 1, 𝑤𝑖 ≥ 0}, (1) 

 

Fig. 2 Graphical representation of the NAI in the 
zdt1 problem 
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where Φ ∈ RM,M is a matrix defined in equation (2): 

Φ =
𝑓1(𝐱𝟏

∗ ) − 𝑧1
∗ 𝑓1(𝐱𝟐

∗ ) − 𝑧1
∗ … 𝑓1(𝐱𝐊

∗ ) − 𝑧1
∗

𝑓2(𝐱𝟏
∗ ) − 𝑧2

∗ 𝑓2(𝐱𝟐
∗ ) − 𝑧2

∗ … 𝑓2(𝐱𝐊
∗ ) − 𝑧2

∗

⋮ ⋮ ⋱ ⋮
𝑓𝑀(𝐱𝟏

∗ ) − 𝑧𝑀
∗ 𝑓𝑀(𝐱𝟐

∗ ) − 𝑧𝑀
∗ … 𝑓𝑀(𝐱𝐊

∗ ) − 𝑧𝑀
∗

, 
(2) 

In the CHIM, 𝑛 indicates the normal direction to 
it; so, using geometry, the intersection between the 
normal and the surface of the Pareto front is 
defined as shown in equation (3) [21]: 

𝑡 [
𝑛1̂

⋮
𝑛�̂�

] = [
𝑤1Φ1,1 + ⋯ + 𝑤𝑀Φ1,𝑀

𝑤𝑀Φ𝑀,1 + ⋯ + 𝑤𝑀Φ𝑀,𝑀
] [

𝑓1(𝐱)

𝑓𝑀(𝐱)
], (3) 

where 𝑭(𝒙) = [𝑓1(𝑥), 𝑓2(𝑥), … , 𝑓𝑚(𝑥)]𝑇 are the 
coordinates intersection vector between the 
normal direction of the CHIM and the Pareto front. 
Therefore, a MOOP can be converted into a set of 
subproblems of a SO. The aim is to maximize the 
distance of 𝑡 between the normal direction of the 
CHIM and the Pareto front as follows: 

max
𝑥,𝑡

𝑡, (4) 

Subject to: 

𝛷𝑤 + 𝑡�̂� = 𝐹(𝑥), (5) 

ℎ𝑘(𝑥) = 0, 𝑘 = 1,2, … , 𝐾, (6) 

𝑔𝑗(𝑥) ≤ 0, 𝑗 = 1,2, … , 𝐽. (7) 

The constraint Φ𝒘 + 𝑡�̂� = 𝑭(𝒙) guarantees that 

the point 𝒙 mapped by 𝐹(𝑥) in the objective space 
is on the normal direction of the CHIM. Each sub-
problem is refereed as NBI𝑤. In the practice 

instead of 𝑛, a quasi-normal direction �̂� given by 
(8) is used: 

�̂� = −Φ𝒆, (8) 

where 𝑒 is a column vector of ones. 

3 Normal Attractor Intersection 

The algorithms that transform a MOOP into a 
single-objective optimization problem are easier to 
implement and use than the Pareto dominance-
based algorithms, but the preference of each 
objective needs to be defined as a priori in a 
weight vector. 

The NBI has advantages over other classical 
methods that obtain solutions with a better 
distribution on the Pareto front; in contrast, it 
converts a MOOP in a set of SO optimization 
problems with equality constraints that could be 
hardest to solve than the MOOP. In gradient-based 
methods, the Karush-Kuhn-Tucker condition is 
used to deal with equality constraints. In 
evolutionary algorithms, it is common to penalize 

Algorithm 1. NAImopso algorithm 

1 Initialize the weight vector 𝑤 ∈ 𝑅𝑁/𝑀 
2 for each 𝑖 = 1,2, … , 𝑀 find the atracctor β𝑖 =

{β1
𝑖 , β2

𝑖 , … , β𝑁/𝑀
𝑖 } 

3 Initialize the swarm 𝑝1, … , 𝑝𝑁 and assign an 

attractor to each one 
4 for each particle 𝑝𝑖 in the swarm initialize a sub-

warm with 𝜏 particles 
5 for each particle 𝑝𝑖 find the 𝜏 closest attractors 

and assign one of these attractors to each 

particle in the sub-swarm of 𝑝𝑖 
6 while Stop criteria is not fulfilled do 

7  for 𝑝 ← 1, 𝑁 

8   for 𝑖 ← 1, τ 

9    if stagnation(𝑖) ≥ renewalGap then 

10     Select randomly 𝑛𝑠 particles 
from the subswarm 

11     Update RSNbest with the 
particle with best fitness of the 
previously selected 

12     stagnation(𝑖) = 0 
13    end if 

14    update velocity and position using 
the equations (7) and (8) 

15    evaluate each objective function for 
the new position. 

16    update the particle fitness using the 
NAI 

17    if fitness of particle 𝑖 is better than 
fitness of Pbest then 

18     update Pbest 
19    else 

20     stagnation(𝑖) = stagnation(𝑖)
+ 1 

21    end if 

22    if fitness of particle 𝑖 is better than 
fitness of Sbest then 

23     update Sbest 
24    end if 

25   end for 

26  end for 

27 end while 
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the individuals that do not satisfy the constrains; an 
example is the penalty-based boundary 
intersection (PBI) approach [12]. 

In the NBI, the search direction needs to be 
defined. If the objective space has a convex region 
and a non-convex region, the direction needs to 
change. In [18] use the CHIMMOD, a dashed line 

over the axis 𝑓1(𝑥), the problem of maximize 𝑡 in 

the original NBI is changed to minimize 𝑡,and the 
search direction is not dependent of the objective 
space form, in [18] only are reported results for bi-
objective problems. 

In our proposal, the Normal Attractor 
Intersection (NAI) method, the normal vector 
direction to CHIM, does not have to be defined a 
priori, which is an advantage over the NBI. The 

above advantage is due to the NAI uses a set of 
attractors {𝛽1, 𝛽2, … , 𝛽𝑁}, where 𝛽𝑛 ∈ 𝑅𝑀,  instead 
of using the CHIM. The attractors enclose the 
entire Pareto front, as shown in the ¡Error! No se 
encuentra el origen de la referencia., so the set 
of attractors is a set of points distributed in M lines 
parallel to the objective axis. 

Equation (9) allows to obtain each element  βm
n  

of an attractor point 𝛽𝑛 = [𝛽1
𝑛 , 𝛽2

𝑛, … , 𝛽𝑀
𝑛 ]𝑇 parallel 

to the i objective axis. Where 𝑤𝑛 ∈ [0, 1] is the 
weight of the attractor point n. The equation (9) 

only applies for 𝑚 = 𝑖. For 𝑚 ≠ 𝑖, 𝛽𝑚
𝑛 = 𝑧𝑚

∗ , this is 

to ensure that the attractor point n is parallel to the 

objective axis i, and it covers all the Pareto front: 

𝛽𝑖
𝑛 = 𝑤𝑛(𝑚𝑎𝑥(𝐹(𝑥)𝑘

∗ ) − 𝑚𝑖𝑛(𝐹(𝑥)𝑘
∗ )); 

∀𝑘 = 1,2, … , 𝑀;  𝑘 ≠ 𝑖. 
(9) 

Using the set of attractors, the NAI convert a 
MOOP in 𝑁 subproblems of one objective were to 
obtain a point in the Pareto front the value of the 
normal distance 𝑡𝑛 between the objective space 
and the attractor β𝑛 is minimized like is shown in 

the Fig. 2, so using this approach a 𝑛 subproblem 
of the MOOP is solving as follows: 

Minimize: 

𝑡𝑛. (10) 

Subject to: 

β𝑛 + 𝑡�̂� = 𝐹(𝑥), (11) 

𝑔𝑗(𝑥) ≥ 0, 𝑗 = 1,2, … , 𝐽, (12) 

ℎ𝑘(𝑥) = 0, 𝑘 = 1,2, … , 𝐾, (13) 

where �̂� is the normal vector obtained by the 

equation (14) and 𝑒 is a vector of ones: 

�̂� = −�̂� = −Φ𝑒. (14) 

The previous approach has the same problem 
of the 𝑁𝐵𝐼 and the improved 𝑁𝐵𝐼; the equality 
constraints still need to be satisfied. 

For these reasons, we propose to use a method 
like Tchebycheff decomposition, but instead of 
minimizing the maximal distance between a point 
and the ideal vector multiplied by a weight, we 
minimize the maximal distance between a point 
and an attractor. 

Table 1. Comparative of the NAImopso, 

pccsAMOPSO,and KGMOPSO algorithms using the 
IGD in the ZDT1, ZDT2, ZDT3, ZDT4 and 
DTLZ2 problems 

Functions 
NAImo 

pso 
pccsAMOPSO 

KGMO 
PSO 

ZDT1 
Mean 2.20E-3 4.01E-3 4.04E−3 

Std. 1.15E-3 6.28E-5 8.23E−5 

ZDT2 
Mean 5.45E-5 4.09E-3 3.98E−3 

Std. 1.66E-1 4.81E-5 4.99E−5 

ZDT3 
Mean 1.30E-2 3.32E-3 5.51E−3 

Std. 5.53E-3 9.95E-5 9.67E−5 

ZDT4 
Mean 2.3E-1 7.97E-3 4.21E−3 

Std. 1.62E-1 1.47E-3 7.13E−5 

ZDT6 
Mean 3.33E-2 3.4E-3 3.39E−3 

Std. 2.09E-2 2.28E-4 1.46E−4 

DTLZ2 
Mean 1.80E-3 6.14E-2 7.48E−2 

Std. 8.71E-6 1.89E-3 2.50E−3 

Table 2. Comparative of the NAImopso and MOEA/d 

algorithms using the 𝑺, 𝟎 y 𝑰𝝐+ metrics in the the ZDT1, 
ZDT2, ZDT3 and DTLZ2 problems 

 A= NAImopso y B=MOEA/d 

Metric ZDT1 ZDT2 ZDT3 DTLZ2 

𝑆(𝐴) 3.7865 3.7802 5.3166 2.8787 

𝑆(𝐵) 3.9638 1.9843 3.1667 3.9998 

𝐶(𝐴, 𝐵) 0.4455 0.3069 0.5940 0.6079 

𝐶(𝐵, 𝐴) 0.0099 0 0.3964 0 

𝐼ϵ+(𝐴, 𝐵) 0.1358 0.0271 0.0559 1 

𝐼ϵ+(𝐵, 𝐴) 0.0079 0.1095 0.0144 0.0949 
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To ensure that the obtained Pareto optimal 
point is parallel to the attractor, the angle α 

penalize the solution, while α is closer to zero, the 

point is closer to the normal, so α𝑡𝑛is an image of 
𝑡𝑛 in the previous approach, this new method is 
called Normal Attractor Intersection NAI, so a 
MOOP is decomposed in 𝑛 subproblems, each of 
one is solved as follow: 

Minimize: 

𝑡𝑛 = 𝛼 max𝑚
𝑀{|𝑓𝑚(𝑥) − 𝛽𝑚

𝑛 |} (15) 

Subject to: 

𝑔𝑗(𝑥) ≥ 0, 𝑗 = 1,2, … , 𝐽, (16) 

ℎ𝑘(𝑥) = 0, 𝑘 = 1,2, … , 𝐾, (17) 

where α = atan (
𝑓𝑖(𝑥)−β𝑖

𝑛

𝑓𝑘(𝑥)−β𝑘
𝑛) > 0 is a variable to keep 

the solution normal to the 𝑖 axis, and 𝑓𝑘(𝑥) − β𝑘
𝑛 is 

the distance of the solution in any 𝑘 ≠ 𝑖 axis to the 
attractor point. 

4 Normal Attractor Intersection 
Based Multi-objective Optimization 
Using Particle Swarm Optimization 
NAImopso 

The NAImopso is a PSO based algorithm that 
decomposes the objective space of a MOOP in 𝑁 
subproblems; each one is solved using the NAIB 
with different attractors. The fitness of each particle 
is obtained evaluating one subproblem, so the size 
of the swarm is 𝑁 too; each particle 𝑝 has an 

attractor β𝑝 and a neighborhood 𝐵𝑝, where 𝐵𝑝 is a 
set with the τ closets attractors to β𝑝, for each 

particle 𝑝 a new subswarm is generated with τ 
particles that are evaluated with one of the 
attractors in 𝐵𝑝. 

To preserve the diversity and ensure to obtain 
a good approximation to the Pareto front, the 
particles in NAImopso learn from Sbest which is 
the particle with the best fitness in the subswarm 
and from RSNbest that is the best particle in a 
randomly selected neighborhood of size 𝑛𝑠 from 
the subswarm. The use of the RSNbest was 
proposed in [19] were to avoid the stagnation used 
the renewelGap parameter, which is the maximal 
number of iterations without update the Sbest. 

 

(a) 

 

(b) 

 

(c) 

Fig. 3 We indicated the True Pareto front using a `-', 

the Pareto approximate front obtained with the 
MOEA/D with an 'x', and the Pareto approximate front 
obtained with the NAImopso with an '*'. (a) Pareto front 
of the ZDT1. (b) Pareto front of the ZDT2. (c) Pareto 
front of the ZDT3 
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The position and velocity of each particle 𝑖 in 
the subswarm is updated using the equations (18) 
and (19) where 𝑐1, 𝑐2 and 𝑐3 are the coefficients, 

𝑆𝑏𝑒𝑠t𝑖
𝑑(𝑡) is the decision variable 𝑑 of the particle 

in the subswarm with the best fitness, and 

𝑅𝑆𝑁𝑏𝑒𝑠ti
d(𝑡) is the value of the best particle in the 

random selected neighborhood: 

𝑣𝑖
𝑑(𝑡 + 1) = 𝑋 (𝑣𝑖

𝑑(𝑡)

+ 𝑐1𝑟1 (Pbest𝑖
𝑑(𝑡) − 𝑥𝑖

𝑑(𝑡))

+   𝑐2𝑟2 (RSNbest𝑖
𝑑(𝑡)

− 𝑥𝑖
𝑑(𝑡))

+ 𝑐3𝑟3 (Sbest𝑖
𝑑(𝑡) − 𝑥𝑖

𝑑(𝑡))), 

(18) 

𝑥𝑖
𝑑(𝑡 + 1) = 𝑥𝑖

𝑑(𝑡) + 𝑣𝑖
𝑑(𝑡 + 1), 

(19) 

To calculate the fitness of the new position 
𝑥𝑖(𝑡 + 1) of each particle 𝑖 first each objective 

function is evaluated with this position, 𝐹1(𝑥𝑖(𝑡 +

1)), 𝐹2(𝑥𝑖(𝑡 + 1)), … , 𝐹𝑀(𝑥𝑖(𝑡 + 1)), then a 

scalar fitness is calculated using the NAIB with the 

attractor 𝛽𝑖 ∈ 𝐵𝑝 previously assigned. 
If the fitness of the new position is minimal, 

assuming that it is a minimization problem, the 
Pbest fitness and the Sbest fitness are updated. 
The NAImopso pseudocode is shown in Algorithm 
1; the output is the Pbest of each particle, i.e., 𝑁 
points distributed in the Pareto front. 

5 Experiments 

To test the performance of the proposed 
NAImopso the two objective benchmark function 
ZDT1, ZDT2, ZDT3, ZDT4 and ZDT6 [22] and the 
three-objective function DTLZ2 [23] were used. We 
compared the results against other state-of-the-art 
multiobjective metaheuristics based on the PSO; 
they are the pccsAMOPSO [20] and the 
KGMOPSO [15]. In the tests performed with the 
NAImopso, the number of particles used was 
𝑁 = 100. This number is equal to the numbers of 
attractors; for each one, we have a point in the 
Pareto front. 

The number of particles in the subswarm of 
each particle was 𝜏 = 40; the size of the subswarm 
was selected according to the most common size 
reported in the literature; we obtained good results 
in performance and computational time with 
this  size.  

A value of the size of the neighborhood that can 
obtain a good balance between exploration and 
exploitation, according to [19] is 𝑛𝑠 = 5. The 
parameters of the PSO were set as 𝑋 = 0.7298 

and 𝑐1 = 𝑐2 = 𝑐3 = 2.05. 

The experiments were running in a computer 
with the processor Intel(R) Core (TM) i7-8650U 
CPU @ 1.90GHz and 16 Gb of RAM. The 
algorithm was implemented in C++, the mean 
execution time for each run was 165.21 seconds, 
the faster time was 44.0 seconds and the slower 
was 239.0 seconds.  

The inverted generational distance (IGD) is 
used to compare the performance of the 
NAImopso, the IGD is a measure between the 
solution 𝑆 and a set of targeted points on the 

Pareto Front 𝑅 [24]. The IGD is calculated 
as  follows: 

 

(a) 

 

(b) 

Fig. 4 Non-dominated and Pareto front candidates 

obtained with the MOEA/D and the NAImopso for DTLZ2 
function. (a) Pareto front of the DTLZ2. (b) Pareto front 
of the DTLZ2 obtained with the NAImops 
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𝐼𝐺𝐷(𝑠, 𝑅) =
1

|𝑅|
∑ min𝑗=1

𝜇
(𝑑(𝑟𝑖 , 𝑠𝑗))

|𝑅|

𝑖=1

, (20) 

where 𝑑(𝑟𝑖 , 𝑠𝑗) is the euclidean distance between 

the solution 𝑆 ∈ 𝑆1, 𝑆2, … , 𝑆μ and the targeted point 

𝑅 ∈ 𝑅1, 𝑅2, … , 𝑅|𝑅|.  

We executed the NAImopso 30 times to obtain 
the mean and the standard deviation of the IGD. 
The results and comparisons are shown in the 
Table 1, we can observe that the NAImopso 
obtained better results than other algorithms when 
optimizing the ZDT1, ZDT2, and DTLZ2 problems. 

The NAImopso does not use any non-
dominated method, because of that for multimodal 
problems as the ZDT4 and non-uniform (ZDT6) all 
the solution is not in the Pareto Front, but with a 
non-dominated method in the last population we 
can remove the dominated solutions. There are 
different metrics (indicators) to evaluate the output 
quality or the different evaluated algorithms [25, 
22]. In this work, we chose to perform the 
evaluation using the next three metrics: the 
hypervolume indicator 𝑆(𝑋′) [26], the additive 

epsilon indicator 𝐼ϵ+(𝑋′, 𝑋′′) [26], and the coverage 

𝐶(𝑋′, 𝑋′′) metric [27]. 
The hypervolume indicator is proportional to the 

distribution of the solutions $X'$ in the Pareto front; 
hence this metric captures the proximity of the 
solution set to the true Pareto front as well as its 
distribution in the objective space, better solution 
sets are those with the larger values. The additive 
epsilon indicator measures the smallest distance 
by which a Pareto approximate front (𝑋′), obtained 
by one algorithm, must be shifted in the objective 
space to dominate another Pareto approximate 
front (𝑋′′) obtained by another  algorithm.  

It provides a relative measurement that 
expresses the minimum necessary value of ϵ that 

should be added to the solutions $𝑥′
𝑖 ∈ 𝑋′, and 

then they dominate all solutions in 𝑋′′ [28]; the 
smaller values represent the best solutions. 

The coverage 𝐶(𝑋′, 𝑋′′) indicator describes the 

percentage of solutions in the set 𝑋′ that dominates 
the solutions in the set 𝑋′′; in this case, it is 
desirable to get big values from this indicator [27]. 
Table 2 shows the results of these evaluations. In 
the table, we can observe that the hypervolume 
value of the solutions obtained with the NAImopso 
𝑆(𝐴) is better for the ZDT2 and ZDT3 problems. 

 

Fig. 5 Final solutions of the NAImopso for the ZDT4 

problem 

 

Fig. 6 Solutions of the NAImopso for the ZDT4 

problem after eliminated de dominated solutions 

 

Fig. 7 Solutions of the NAImopso for the ZDT6 

problem after eliminated de dominated solutions 

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1613–1623
doi: 10.13053/CyS-28-3-5177

Josue Dominguez-Guerrero, Oscar Montiel-Ross, Victor Carrillo, et al.1620

ISSN 2007-9737



In the four problems, the solutions of the 
NAImopso cover a larger percentage of the 
solutions of the MOEA/d 𝐶(𝐴, 𝐵); conversely, the 
MOEA/d cannot cover the range of solutions 
obtained with the NAImopso 𝐶(𝐵, 𝐴). Additionally, 
according to the additive epsilon indicator, the 
NAImopso is better in the ZDT2 problem. In the 
Fig. 3 is shows the Pareto front of the ZDT1, ZDT2, 
and ZDT3 problems, the non-dominated points 
obtained with the MOEA/D and the Pareto 
candidates obtained with the NAImopso. 

In Fig. 3 (a) and Fig. 3 (b) show the results 
obtained for the ZDT1 and ZDT2 functions, we can 
observe that the solutions of the NAImopso have a 
better distribution on the Pareto front than 
MOEA/d, the above can be corroborated because 
the value of the 𝑆 metric is higher as can be seen 
in Table 2 which also shows that the coverage of 
the NAImopso over the MOEA/d is therefore 
higher. In Fig. 3 (c) we can observe that the 
solution of the NAImopso is closer to the Pareto 
front but to there are a set of points that no are non-
dominated solutions. 

In Fig. 4 (a) the Pareto front of the DTLZ2 
function,  the non-dominated points obtained with 
the MOEA/D, and the Pareto candidates obtained 
with the NAImopso are shown, the results of the  
NAImopso are on the Pareto front but as can see 
in the Fig. 4 (b) are only the solutions normal to the 
axis and not the entire Pareto front. 

For the ZDT4 problem due to it is multimodal, in 
the final solution there are non-dominated and 
dominates solutions, as shown in the Fig. 5, in the 
solution of the NAImopso we use the algorithm 
proposed by Mishra and Harit [28] to find the non-
dominated solutions, the final population is the 
show in the Fig. 6. For the ZDT6 problem, we also 
used the Mishra and Harit algorithm to keep only 
the non-dominated solutions, as shown in Fig. 7. 

6 Conclusion 

In this paper, we proposed the NAI and the 
NAImopso methods; they provide a synergetic 
combination of a classical method and a bio-
inspired algorithm that performs better than the 
MOEA/d. The combination of methods allows 
obtaining good results without using the non-
dominated search that uses most of the 

Evolutionary algorithms. The solutions are Pareto 
candidates, and we do not use any strategy to 
ensure that the solutions are Pareto points; 
however, the decision-maker could apply a non-
dominated method or evaluate only the 
selected solutions. 

For problems with three objectives, a good 
representation of Pareto front is obtained which in 
real multi-objective optimization problems could 
facilitate the work for the decision-maker, although 
the solutions are not distributed in the entire Pareto 
front. We compared the NAImopso with other PSO 
multi-objective algorithms, such as the 
pccAMOPSO, cdAMOPSO, clusterMOPSO, and 
the pdMOPSO. The IGD metric was used to 
evaluate the different algorithms. The NAImopso 
obtained better solutions when optimizing the 
ZDT1, ZDT3, and DTLZ2 problems. In the case of 
the ZDT2, the results of NAImopso were as good 
as those obtained with the other algorithms. 

Independently of the NAImopso, the NAI can be 
used with other multi-objective algorithms to guide 
the search. Moreover, it can be used in preference 
algorithms and to optimize problems with many-
objectives. Also, to improve the capacity to find 
better non-dominated solutions we can prove to 
add dynamic adjustment of the parameters with 
fuzzy logic like the proposed in [29] or use 
NAImopso with a Bacterial foraging optimization 
(BFO) as is described in [30]. 
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