
HELI: An Ensemble Forecasting Approach for Temperature Prediction 
in the Context of Climate Change 

Erick Estrada-Patiño1, Guadalupe Castilla-Valdez1, Juan Frausto-Solis1,*, 
Juan Javier Gonzalez-Barbosa1, Juan Paulo Sánchez-Hernández2 

1 Tecnológico Nacional de México, 
Instituto Tecnológico de Ciudad Madero, 

Mexico 

2 Universidad Politécnica del Estado de Morelos, 
Information of Technology Division, 

Mexico 

estrada1792@gmail.com, gpe_cas@yahoo.com.mx, 
jjgonzalezbarbosa@hotmail.com, juan.paulosh@upemor.edu.mx 

Abstract. Climate change is a critical challenge, 

demanding the development of effective methods for 
temperature forecasting. Statistical and machine 
learning models emerge as promising alternatives. 
However, there is no widely accepted superior method; 
ensemble approaches integrate strategies that take 
advantage of each forecasting method. Ensemble 
methodologies combine methods, weighing their 
participation to integrate each of them. Forecasting 
researchers have shown that evolutionary algorithms 
are highly effective in achieving an ensemble that is at 
least as effective as the best single method. This paper 
presents HELI, a forecasting methodology designed to 
forecast the climate temperature variable; its 
architecture is modular, aiming to provide a flexible 
forecasting application in the climate change area. We 
present experimentation and a hypothesis test for a 
region in Mexico City and show HELI's competitiveness 
compared to leading strategies. Besides, we present 
experiments with other climate change variables that 
show HELI flexibility in the context of climate change. 

Keywords. Ensemble methods, LSTM, CNN, 

evolutive ponderation. 

1 Introduction 

The current climate change phenomena are crucial 
problems that require exhaustive study [1]. 
Understanding and correcting these dynamics is 
essential to anticipate and mitigate their possible 
long-term consequences [2]. 

Besides, the United Nations Framework 
Convention on Climate Change, specifically the 
2015 Paris Agreement, proposed that global 
average temperature increase should not exceed 
1.5 °C, with a critical threshold of 2°C by 2100 [3]. 
This convention defined temperature as a 
fundamental variable for estimating the evolution 
and impacts of climate change [4, 5, 6, 7]. 

Therefore, it is imperative to research strategies 
and tools for predicting temperatures beyond 
seasonal periods to cover the medium and long 
term [8, 9]. Although traditional climate models use 
current and past observations, they are not 
accurate methods due to anthropogenic, natural, 
and other factors associated with climate change. 
On the other hand, forecasting models, whether 
classical or based on machine learning algorithms, 
are a valuable alternative. 

These approaches model nonlinear 
relationships among several climate change 
variables based on historical data. Their 
effectiveness in many areas, including weather 
forecasting in the context of climate change, has 
been demonstrated and equated with conventional 
meteorological strategies [10, 11, 12]. Many 
authors have explored climate phenomena using 
statistical strategies such as SARIMA and 
Exponential Smoothing, which capture complex 
behaviors with good performance [8, 10].In 
addition, neural networks such as LSTM and CNN, 
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Random Forest Regression (RFR), and Support 
Vector Regression have yielded competitive 
results [11, 12, 9]. The Forecasting and Machine 
Learning communities have observed that no 
method is superior to any other for all instances of 
a given problem in their areas [13, 14]. 

Given this difficulty of choice, hybrid and 
ensemble models have been proposed to enhance 
the forecast of a variable in any domain. This work 
proposes forecasting temperature; thus, we 
designed HELI to combine single forecasting 
methods with a relevant variable for climate 
change. Ensemble methods, in their general form, 
unify several strategies, taking advantage of the 
best of each one to deliver a high-quality integrated 
forecast [15, 16, 17]. 

These strategies have demonstrated success, 
highlighting the superior performance of SMYL in 
the M4 competition [18]. These are comparable to 
individual machine learning or classical 
strategies [18, 19]. In this paper, we present HELI, 
a methodology for temperature forecasting in the 
context of climate change. HELI incorporates 
robust preprocessing that facilitates the tuning and 

learning of multiple forecasting strategies, both 
classical and machine learning. 

These strategies are combined and optimized 
for improved participation to produce a regression 
function that is at least as effective as the best 
single-trained method. The results evidence the 
competitiveness of HELI against leading state-of-
the-art assembly forecasting approaches, with a 
low computational cost and high scalability and 
flexibility in adjusting the methods and their 
configuration in the assembly. 

The structure of this paper is as follows. Section 
two presents a comprehensive review of the 
approaches and methodologies used and their 
advantages and disadvantages; we provide a solid 
context for the proposed methodology. Section 
three describes the HELI methodology in detail, 
including its main components, the configuration 
used in this work, and considerations for 
its replication. 

The fourth section presents the results of a case 
study demonstrating the performance of HELI in 
temperature forecasting in Mexico; we decided to 
test HELI and present its forecasting results with 
other climate change variables, letting us evaluate 
its flexibility in scenarios different from the 
original. We discuss the implications of the results 
for the decision-making and future improvements. 
Finally, in section five we present the conclusions 
of this work. 

2 Related Methods 

In this paper, we explore two forecasting 
approaches applicable to time series: classical 
approaches and approaches supported by 
machine learning algorithms. 

Classical forecasting approaches are strategies 
that base their predictive model on statistical 
methods, allowing the identification of possible 
trends and seasonal patterns in the data. These 
models are powerful because they generally 
involve tuning a few parameters and effectively 
adjusting to previously described behaviors. In 
addition, they have a low computational cost [20]. 

In contrast, forecasting strategies based on 
machine learning facilitate an exhaustive analysis 
of historical data, especially when these exhibit 
complex or highly nonlinear patterns [21]. These 

 

Fig. 1. Division of information into a random forest 

 

Fig. 2. Confidence intervals in support vector regression 
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approaches have a high adaptive capacity and a 
remarkable tolerance to irregularities in the data; 
however, they usually entail a high computational 
cost, and the parameters to be adjusted are 
significantly more numerous compared to classical 
strategies [22]. 

Additionally, we explore strategies that evaluate 
the efficiency of algorithms beyond the 
improvement in error metrics on a data set [23]. 
Ranking methods, such as BIC or AIC, allow other 
metrics to be considered for scoring the 
effectiveness of an algorithm, with the 
understanding that a lower amount of error can 
mean an adequate strategy or an overfitted 
strategy for a given behavior [24]. 

These metrics make it possible to consider 
algorithms that present balanced results, 
translating into good performance in the long term 
[25]. Likewise, the weighting adjustment methods 
allow the solutions created by the ranking methods 
and some other random ones to evolve to find the 
best-weighted combination of the forecasting 
methods to issue a quality forecast. 

2.1 Classical Forecasting Models 

Classical forecasting methods are characterized 
by robust and solid strategies with statistical 

fundamentals, refined over an extensive period, 
enabling the development of robust models 
yielding competitive results [26]. 

These techniques are characterized by 
adjusting their hyperparameters based on 
historical data [27]. These methods maintain 
competitiveness when integrated in a hybrid mode 
with contemporary strategies, such as machine 
learning [18]. 

2.1.1 SARIMA 

AutoRegressive Moving Average (ARMA) models 
have proven to be highly recognized and practical 
tools in the field of forecasting, dedicated to the 
analysis and prediction of time series 
[28]. Although ARMA focuses mainly on analyzing 
the autocorrelation and moving average present in 
the time series, it does not consider other 
significant factors that may manifest themselves in 
more complex series [29]. 

In this context, Seasonal Auto Regressive 
Integrated Moving Average (SARIMA) emerges as 
an evolution of ARIMA or an extension of ARMA. 
SARIMA addresses the limitations of ARMA by 
incorporating specific trend and seasonality 
components, thus allowing the generation of 
forecasts that adapt more efficiently to the behavior 
of the training data [30]: 

SARIMA(𝑝, 𝑑, 𝑞)(𝑃, 𝐷, 𝑄)𝑠. (1) 

In general terms, SARIMA uses the orders 
specified in equation 1, where 𝑝, 𝑑, 𝑞 represent the 
orders for autoregressions, differences, and 
moving averages, respectively, applied to 
seasonally adjusted data. Likewise, 𝑃, 𝐷, 𝑄 indicate 
the corresponding orders for autoregressions, 
differences, and moving averages, but this time 
applied to seasonal data. 

The parameter 𝑠 represents the size of the 
seasonal window, a crucial component for 
capturing temporal patterns. SARIMA fitting is 
carried out using model selection techniques, such 
as the Akaike Information Criterion (AIC) or the 
Bayesian Information Criterion (BIC), as described 
in detail in later sections of this paper. These 
strategies provide a solid basis for model 
optimization, ensuring higher prediction accuracy 
and adaptability to the inherent complexities of the 
time series [31]. 

 

Fig. 3. Hankelization process 

 

Fig. 4. LSTM cell 
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2.1.2 Exponential Smoothing 

Exponential Smoothing (ES) is an old and popular 
technique based on weighting the last data with the 
previous forecast; however, it is effective only for 
one period ahead. Holt & Winter is a valuable ES 
method, mainly combined with machine learning 
and ensemble methods [32]. 

This technique represents an advanced 
methodology commonly known as Holt&Winters-
Triple (H&WT) in time series forecasting [33].  
Derived from the simple exponential smoothing 
proposed by Brown & Holt, H&WT constitutes a 
sophisticated extension of double exponential 
smoothing [34]. 

In contrast to its predecessors, H&WT not only 
estimates a weighting that controls the influence of 
the current period in forecasting the next but also 
incorporates weights for the current trend and 
seasonality [35]. 

These weights are reflected in equations 2, 3, 
and 4, where the smoothing variables 𝛼, , 𝛽, 𝛾, 
which require tuning for optimal adaptation to the 
behavior of the data, are highlighted. 

The synthesis of these components is 
expressed in equation 5, which represents the 
expected observation for the next period: 

𝐴𝑡 = 𝛼(𝑌𝑡 − 𝑆𝑡−𝐿) + (1 − 𝛼)(𝐴𝑡−1 + 𝑇𝑡−1), (2) 

𝑇𝑡 = 𝛽(𝐴𝑡 − 𝐴𝑡−1) + (1 − 𝛽)𝑇𝑡−1, (3) 

𝑆𝑡 = 𝛾(𝑌𝑡 − 𝐴𝑡) + (1 − 𝛾)𝑆𝑡−𝐿, (4) 

𝑌𝑡+𝑝
′ = 𝐴𝑡 + 𝑝𝑇𝑡 + 𝑆𝑡−𝐿+𝑝. (5) 

Despite the longevity of H&WT, it remains a 
highly effective strategy, evidenced by its accuracy 
in estimating seasonal components [18]. The 
consistent results it presents reinforce its 
continued relevance as a reliable tool in the time 
series forecasting landscape. 

2.2 Machine Learning Forecasting Models 

Machine learning methods represent artificial 
intelligence strategies dedicated to creating 
generalizations and learning patterns in data, 
which may be imperceptible to the human eye [22]. 

This achievement is materialized through the 
exhaustive analysis of data through statistical 
techniques that enable the identification of 
thresholds for the issuance of forecasts or 
decision-making. In this context, we address 
machine learning strategies specifically designed 
for time series forecasting in a general way [22]. 

These strategies focus on the ability to 
anticipate and model the evolution of data over 
time, thus improving forecasting accuracy in this 
context. This approach is essential to address 
problems related to the temporal dynamics of data 
and to maximize the usefulness of machine 
learning applications in the field of time series [32]. 

2.2.1 Random Forest 

Random forest (RF) is one of the most effective 
decision tree strategies. RF builds an adaptive 
structure, defining and adjusting itself on a limited 
data set, this allows the trees to train with different 
sections of data and decreases the incidence of 
overfitting. As visualized in Figure 1, this structure 
exhibits reliability, allowing the adjustability of 
hyperparameters such as loss function, tree depth, 
and number of leaves. 

However, the RF effectiveness may be 
bounded by high nonlinearity in the data or when 
the data are presented in large quantities [36, 37]. 
In response to these limitations, an effective 
technique is the integration of several decision 
trees operating on typically small data sets. 

These techniques, known as bagging or 
boosting, provide superior results compared to 
individual decision trees [36, 38]. Random Forest 
Regression is positioned as a bagging technique 
that generates an abundance of decision trees 
[39]. These trees are trained with reduced 

 

Fig. 5. Ensemble process 

 

Fig. 6. Ponderation of forecasting models 
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fragments of information, each emitting its 
forecast. Then, an ensemble criterion is 
implemented, following the philosophy of masses. 
In the regression area, an arithmetic mean is 

commonly described by 𝑦 =
1

𝑇
∑ 𝑦𝑡

𝑇
𝑡=1 , where 

𝑦𝑡  corresponds to the results of each decision tree. 
This ensemble approach offers notable 
advantages, such as its high parallelization 
capability, robustness, and adaptability to a wide 
variety of problems [40]. 

2.2.2 Support Vector Regression 

SVR constructs a regression function aimed at 
minimizing error concerning the regression of the 
training data. The chosen kernel directly influences 

the efficacy of this function's fit. Additionally, two 
confidence intervals are established and depicted 
alongside the proposed regression curve. 

These intervals are determined by the 
hyperparameters C and epsilon, which play a 
pivotal role in defining the flexibility and width of the 
tolerance margin [41]. Support Vector Machines 
(SVM) have demonstrated remarkable efficiency at 
a modest computational cost [42]. 

In this context, we delve into its variant suitable 
for time series: Support Vector Regression (SVR). 
The efficacy of SVR lies in its capacity to adapt to 
scenarios characterized by nonlinear behavior, a 
common occurrence in time series marked by 
significant noise levels or intricate seasonal 
patterns [41]. 

The SVR process is illustrated in Figure 2, 
wherein the SVM technique endeavors to optimize 
the fitting of the regression line to the data, 
accounting for the inherent complexity of the 
dataset, be it due to its nonlinear nature, presence 
of noise, or the existence of sophisticated 
seasonal patterns. 

2.2.3 Convolutional Neural Networks 

The convolutional neural network (CNN) 
methodology is a promising approach to the 
forecasting area, standing out for its ability to 
perform deep learning based on convolutional and 
pooling processes [43, 44]. 

Central to the model, these processes 
automatically identify relevant features in data sets 
[44]. This auto-generalization capability enables 
the model to discover significant patterns and 
features, which can be used to determine forecasts 
[8]. Traditionally, image recognition area involving 
matrix information successfully uses CNN models. 

However, in the case of univariate time series, the 
representation takes a vector form. Figure 3 
illustrates the Hankelization process, a technique 
that, by defining an amplitude value, generates a 
matrix representation of a time series [45]. The 
convolutional procedure in CNNs is deployed 
sequentially through one or more convolution and 
pooling layers. 

The convolutional layers, fundamental in the 
architecture, apply convolution operations to the 
input data, enabling local pattern learning. In the 
specific context of time series forecasting, 

 

Fig. 7. HELI (Heuristic ensemble for learning 

information) methodology 

 

Fig. 8. Data collection area 
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convolutional layers are employed to discern 
temporal patterns in the data. 

For example, a convolutional layer may 
specialize in identifying trend patterns, cycles, or 
seasonality. Pooling layers are incorporated to 
reduce the dimensionality of the data resulting from 
the convolutional layers. This process helps to 
optimize learning efficiency and mitigate the risk of 
overfitting. In the specific context of time series 
forecasting, convolutional layers are used to 
discern temporal patterns in the data. 

Thus, a convolutional layer may specialize in 
identifying trend patterns, cycles, or seasonality. 
Pooling layers play a crucial role in reducing the 
amount of data to be processed, which is 
particularly beneficial for time series with many 
elements. After the convolutional phase, we apply 
internal vectorization to connect a multilayer 
perceptron (MLP) network. 

In the forecast context, this network outputs a 
numerical value representing the forecast for a 
specific input. This connection process between 
the convolutional stage and the MLP culminates in 
generating the desired forecast. 

2.2.4 Long Short-term Memory 

This approach is based on recurrent neural 
networks, standing out for its ability to address 
various problems inherent to this structure [46, 
47]. The introduction of cells represents a 
significant advance, substantially improving the 
forecasts' quality. 

These cells, equipped with gates, play a crucial 
role in selecting which information to retain or 
discard in the short, medium, and even long term; 
this makes it possible to generate quality results in 
problems related to time series forecasting, 
enabling the generalization of short-term changes 
such as those of a seasonal or cyclical nature [48]. 

In contrast to traditional neural networks, which 
lack a structure that facilitates the relationship 
between sequences of previous and subsequent 
inputs, and recurrent networks that attenuate the 
influence of the past in large temporal data sets 
due to their nature, long short-term memory 
(LSTM) networks represent a functional 
alternative [8]. 

This model replaces single neurons with cells, 
which can be organized in layers and support 
stacking. This configuration contributes 
significantly to the learning of long-term 
dependencies. LSTM structure has four 
fundamental gates: the output gate, the input gate, 
the forgetting gate, and the memory gate. 

These gates operate through activation 
functions, exercising precise control over the data 
flow, as illustrated in Figure 4. This level of control 
provided by the gates increases the model's 
predictive capability and confers essential flexibility 
to adapt to complex patterns and changes in the 
time series under study. 

Algorithm 1. General structure of methodology 

 

Algorithm 2. Generation of heuristic population 
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2.3 Ensemble Methods 

Forecasting strategies exhibit diverse behaviors, 
varying depending on the series processed and 
even on the specific segment of the series used to 
fit the model [15, 16]. The absence of a universally 
superior model stands out since the optimal 
performance of a model is not guaranteed in all 
cases or all segments of a series. 

This well-recognized problem can be 
addressed by assembling different forecasting 
methods, thus generating a single result that 
incorporates the best individual features of each 
approach, either through hybridization or 
ensemble results [39]. 

Ensemble strategies are based on combining 
the results of two or more forecasting methods, 
assigning each of them a percentage of 
participation [15]. Figure 5 illustrates the essential 
idea of the assembly process by combining two or 
more strategies. 

However, the simple combination or even the 
use of algorithm ranking metrics may, in most 
cases, not be optimal, as it does not match the 
specific behavior of the algorithms on the 
regression curves [49]. For this reason, weighting 
optimization methods emerge as an essential 
practice, ensuring results are at least as good as 
the best single method. 

These methods perform an exhaustive 
exploration of the solution space, adjusting to the 
data and the algorithms participating in the 
ensemble. In this way, a precise and efficient 
adaptation to the inherent complexities of the time 
series is guaranteed, strengthening the robustness 
and accuracy of the forecasting process. 

2.3.1 Evolutionary Weight Optimization 

The weighting adjustment in an ensemble method 
constitutes a combinatorial optimization challenge, 
which may be infeasible to solve exhaustively. 
Therefore, the heuristic strategy obtains results in 
a reasonable time, and in this sense community 
scientists can use it to obtain fast results. 

Evolutionary algorithms find their inspiration in 
biological evolution, where different individuals 
intermingle or mutate over generations, acquiring 
or improving skills necessary for their survival and 
discarding those not necessary or 
counterproductive [50]. 

In this strategy, each weighting or solution is 
treated as an individual, coding it to obtain its 
genotype and evaluating its performance to 
determine its fitness value, as shown in Figure 6. 
The evolutionary weighting strategy is derived from 
Holland's approach, which uses a population 
consisting of a set of solutions that will undergo an 
iterative evolutionary mechanism similar to 
biological generations [51]. 

This process selects parents by evaluating their 
fitness, and then a combination strategy of the 
parents produces offspring solutions. The 
replacement process applies a criterion based on 
the evaluation of the fitness to integrate into the 
next generation. 

Between the process of generating new 
solutions and their evaluation for integration into 
the population, there is the possibility of modifying 
these new solutions by perturbing some genes of 
the solution; this strategy is known as mutation and 
allows greater exploration of the solution space, 
also decreasing the stagnation of the population 
and facilitating the rapid attainment of the 
convergence criterion. 

The evolutionary strategy will evolve over a 
fixed number of generations or may end earlier or 
be extended, depending on the definition of 
different convergence criteria. These criteria 
evaluate the performance of the best solutions for  

Algorithm 3. Evolutive process 
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2.4 Rank Methods 

In machine learning, prediction models are 
nurtured by strategies that seek to minimize a 
specific error metric. This metric commonly 
contrasts the predicted value with the actual value 
in a given period, thus accumulating errors 
throughout the training process. Several error 
metrics are available, each focusing on different 
aspects of the dispersion for the original value. 

However, these metrics only guarantee the 
convergence of the forecast models to an optimal 
fit for the training and validation set. An inherent 
danger in a soon convergence is that it can lead to 
model overfitting, especially in strategies involving 
many parameters and hyperparameters [35]. 

On the other hand, ranking methods take a 
different approach when assessing the quality of a 
model. These methods integrate additional 
features along with the error metric to assign a 
score that more holistically reflects the 
effectiveness of the model. 

This approach allows a balance to be stuck 
between model accuracy, computational 
complexity, run times, and other relevant factors. 
In essence, ranking methods offer a more 
comprehensive perspective for evaluating and 
selecting models, overcoming the limitations 
inherent in pure convergence to the training set fit. 

2.4.1 Akaike Information Criterion 

The Akaike information criterion (AIC) is a 
fundamental statistical tool for evaluating 
forecasting methods [52].  Its purpose is to strike a 
balance between model accuracy, as measured by 
a likelihood function, and model complexity, which 
is mainly determined by the number of 
hyperparameters fitted to perform the forecast [53]. 

The value of the AIC decreases as the models 
achieves better results. This behavior is reflected 
in equation 6, where 𝑘 represents the number of 
hyperparameters of the model, and 𝐿 denotes the 
likelihood function. In this context, the likelihood 
the population in each generation and determine 
whether the strategy has converged prematurely or 
requires a more extensive exploration process 
function is constructed from the Mean Squared 
Error (MSE) of the model evaluated under the 
assumption of the normality of the errors: 

AIC = 2𝑘 − 2 ln(𝐿). 
(6) 

2.4.2 Bayesian Information Criterion 

The Bayesian information criterion (BIC) is an 
essential statistical tool for evaluating and 
comparing various forecasting methods in the 
forecasting field [54]. This approach is based on 
the search for an optimal balance between the 
forecasting accuracy of the model, evaluated 
through the likelihood function, and the inherent 
complexity of the model. A distinctive aspect of the 
BIC is its ability to penalize those models that 
benefit from short sample sizes, contributing to a 
more robust and generalizable evaluation [25]: 

BIC = 𝑛 ∙ ln(𝐿) + 𝑘 ∙ ln(𝑛). (7) 

In equation 7, 𝑛 represents the size of the data 

set, 𝐿 the likelihood function, and 𝑘 the number of 
hyperparameters in the model. Unlike AIC, BIC 
multiplies the number of parameters by the 
logarithm of the sample size, a weighting that 
accentuates the penalty as the complexity of the 
model increases. 

3 Proposed Methodology 

In this section, we present the design and 
configurations of HELI (Heuristic Ensemble for 
Learning Information), a highly flexible and robust 
methodology for time series forecasting in the 
context of climate change. The methodology is 
divided into three fundamental sections: 
preprocessing, training individual forecast models, 
and adjusting the participation weighting of each 
method to form an ensemble. 

These phases are shown in detail in Figure 7. 
Each of these sections houses methods whose 
configurations are detailed below. These methods 
are modularly configurable. Thus, removing, 
extending, or replacing elements with other 
strategies that perform similar functions 
is possible. 

The methodological structure is detailed in 
Algorithm 1, which represents the general 
framework of the methodology. Its input is a time 
series (with the variable time_series), and its 
output consists of the optimal weighting obtained 
together with the evaluation of this weighting using 
various error metrics. 
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Line 2 describes the data cleaning and 
processing process (where the function 

preprocessing cleans the data and is assigned with 
the variable preprocessing_ts); then, the time 
series is divided into the three blocks shown in line 
3. From lines 4 to 8, individual forecast models are 
defined, trained, and evaluated using the mean 
squared error (MSE) metric. This evaluation results 
in the creation of a heuristic population mentioned 
in line 9 and detailed in Algorithm 2. 

Next, an evolutionary strategy, presented in line 
10 and explained in Algorithm 3, explores and 
exploits the population to find a solution at least as 
good as the best individual model. This solution 
reflects the contribution of the individual models to 
the ensemble, and its evaluation to obtain the 
resulting error values is indicated in line 11. 

The generation of the heuristic population, 
described in Algorithm 2, takes as input the 
forecast models together with their corresponding 
MSE evaluation and returns an initial population of 
solutions. This population starts empty in line 1, 
and solutions are generated and subsequently 
added to it. Delimiting lines 3 to 6, the models are 
ranked using the BIC and AIC criteria, which rank 
and score the suitability of the models. 

In this context, the models will receive a 
proportional representation in percentage of the 
score obtained by the ranking methods, and the 
generated solutions will be incorporated into the 
population. For lines 7 and 8, RMSE is used, which 
is not a ranking method but is used to evaluate 
the error. 

The results of this evaluation make it possible 
to rank the algorithms from least to most error, 
generating a percentage inversely proportional to 
their error and adding the solution to 
the population. Lines 9 and 10 describe the 
integration of a uniform solution in which all 
forecasting models have an equivalent 
participation in the ensemble. 

Lines 11 to 15 detail the integration of solutions 
where each forecast model receives 100% 
participation in the ensemble, leaving the others 
with a participation of 0. This strategy ensures that 
the results obtained are at least as good as the 
best individual model. 

A random process generates the remaining 
solutions (lines 16 to 19). These solutions must be 
feasible in terms of the proportionality of their 
participation in the ensemble. Algorithm 3 
describes an evolutionary strategy to optimize the 

Table 1. Hyperparameter for forecasting models 

Hyperparameter Value 

Random Forest 

Criterion Friedman mse 

Estimators 23000 

Maximum features Sqrt 

Bootstrap True 

Maximum samples 0.8 

Minimum samples leaf 10 

Minimum samples split 8 

SVR 

Kernel Poly 

Degree, Epsilon, C 5,0.01,5 

Gamma None 

Kernel Ridge 

Kernel Poly 

Alpha, Gamma 1, 0.1 

Degree, Coef0 4, 0.1 

CNN 

Convolutional Layers 2 Conv2D 

Kernel (15,15) & (5,5) 

Filters 64 

Strides 1 

Pooling Average Pooling 

Dropout 0.25 

Activation  ReLU 

Pooling AverangePooling 

Optimizer Adam 

Learning rate 0.01 

Epochs 5000 

Batch size 10 

LSTM 

LTSM Layers 1 

LSTM Cells 35 

MLP Layers 4 

MLP Neurons 200 

MLP Dropout 0.3 

MLP Activation Tanh 

Output Activation Linear 

Optimizer Adam 

Learning rate, Epochs 0.005,500 

Batch size 10 

Early stopping 40 
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weights in the ensemble participation. This 
algorithm receives the heuristic population, the 
previously adjusted models, and the validation and 
training set, returning the best solution found. 

In line 2, an evaluation of the population is 
performed to temporarily store the best solution. 
From line 4 to line 16, an evolutionary process is 
run to an evolutionary process is executed that 
ends when the convergence criterion is met. This 
process involves the generation of offspring and 
their mutation, explained in lines 5 and 6. The 
generated offspring are evaluated using the same 
metrics and criteria as the initial population, as 
described in line 9. 

When a better solution than the previously 
stored one is found, it is updated, as shown in lines 
10 to 13. Some elements of the population are 
updated with the generated offspring, as described 
in line 15. Finally, the algorithm returns the best 
solution found during the evolutionary process. 

The inherent flexibility of HELI translates into 
the ability to work with various strategies or the 
incorporation of new ones; however, it is essential 
to note that such adaptability entails further 
adjustment and optimization. Nevertheless, the 
results may vary significantly depending on these 
factors and the nature of the test data used. 

3.1 Preprocessing 

Given the inherent complexity of the nature of the 
data, as will be discussed in detail in later sections, 
a preprocessing of the information is required. This 
process becomes crucial to ensure the data's 
integrity and completeness, scale them 
appropriately, and mitigate the presence of noise 
and outliers. 

Although the methods described find 
applicability in various time series, it is crucial to 
recognize that the effectiveness of each strategy 
may vary according to the specific characteristics 
of the data. Therefore, the selection of methods 
must be customized for each data set to be 
evaluated, adjusting optimally to the particularities 
of each time series. 

An initial review revealed the existence of 
missing data in the series. However, these were 
presented in isolation and not consecutively. 
Opting for data trimming could distort the width of 
the seasonal spaces, biasing the learning process 
in specific sections of the series. Therefore, we 
decided to impute the missing data through 
quadratic interpolation, thus ensuring the 
completeness of the series without compromising 
its temporal structure. 

In later stages, we describe two strategies for 
noise reduction and outlier containment are 
implemented. Outlier reduction in data sets that 
may include trend and/or seasonal values 
represents a challenge since robust techniques 
applied to other areas such as IQR that base their 
behavior on median dispersion are not sensitive to 
seasonal behaviors, so important information may 
be considered as noise [13]. 

The 3-sigma technique made it possible to limit 
the series by eliminating outlier observations. In 
consideration of the seasonal nature of the series, 
subject to fluctuations associated with climate 
change, the 3-sigma strategy uses a moving 
window whose size represents a seasonal period, 
allowing relevant information within the seasonal 
periods to be retained and noise to be suppressed. 

The singular Value Decomposition (SVD) 
process was then applied to the data series. This 
technique interprets the low-influence components 
as noise and then allows its smoothing by 
eliminating them. Subsequently, a singular value 
decomposition (SVD) process was carried out on 

Table 2. Description of the best configuration found for 

the evolutionary strategy 

Configuration Value 

Number of Generations Uncertain 

Population Size 500 individuals 

Genotype Size 7 genes 

Selection Technique Weighted Roulette 

Selected Parents 200 parents 

Crossover Type Scattered 

Mutation Probability Adaptative (0.2 – 0.9) 

Mutation Type Double Random 

Allow Duplicates No 

Elitism 50 individuals 

Stopping Criterion 
Rate of change over 20 
generations 

Fitness Objective Minimize MSE  
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the data series. This technique enables smoothing 
by eliminating low-influence components that are 
interpreted as noise. 

To address the seasonal nature of the problem, 
defining the amplitude of the Hankelization matrix 
as a function of a seasonal period is necessary to 
preserve 90% of the explained variance 
components. Climate change studies usually focus 
on medium and long-term changes, since short-
term observations can be affected by other natural 
or anthropogenic phenomena, leading to high 
variability [3]. 

Therefore, weekly or monthly observations 
provide a better generalization of climate behavior. 
We resampled the original data collected from daily 
observations as weekly observations. This process 
applies an arithmetic mean every seven 
observations to obtain a weekly data series that 
facilitates the analysis in a more effective climate 
forecasting context. 

3.2 Training Models 

The previous section gave an overview of the 
forecasting methods used in the methodology 

addressed. The choice of the hyperparameters of 
the forecasting methods was made through fast 
tuning using the grid search strategy. 

This strategy combines the hyperparameters 
from a previously defined list, however, to 
guarantee an optimal performance it is suggested 
the use of other tuning techniques such as 
evolutionary algorithms or Bayesian strategies, 
however, this may significantly impact the model 
fitting times. 

In the same way, the same strategy was used 
for the tuning of the neural network architecture 
whose parameters are listed in Table 1. 

Table 1, shows the hyperparameters used in 
each strategy, which were tuned and optimized 
through genetic algorithms or mesh searches, 
depending on the intrinsic complexity of each 
specific algorithm. This process may be performed 
for each new set of time series, thus ensuring an 
optimal adaptation to the particular characteristics 
of each set of information. 

Additionally, since the forecasting methods 
execute and format the data independently, 
parallel execution was chosen whenever possible, 
thus optimizing computation time on the processor 
or GPU. However, this type of execution demands 
a more considerable amount of working memory. It 
is important to note that the type of execution, 
whether parallel, sequential, or mixed, does not 
affect the results obtained. After training the 
methods, the Mean Squared Error (MSE) value is 
obtained for the validation set. 

Since this set is invisible in the training process, 
it provides a more realistic approximation for the 
models when the entire set of cases is unknown. 
Next, the construction of the heuristic population 
begins. We incorporate a weighting process, 
where the initial set of weights can be determined 
with the following strategies: a) randomly 
generated using a uniform distribution, b) an error 
metric such as RMSE, and c) using ranking 
metrics, such as AIC or BIC. 

Now we describe the ranking generated by BIC 
and AIC, along with an evaluation of the different 
models using these metrics. This ranking 
punctuates the suitability of the models, although 
they do not explicitly give the percentage of 
participation of each one. 

Taking AIC as an example, any individual 
weight is given by equation 8, where 𝐴𝐼𝐶𝑖 

Table 3. Statistical information of the data used in 

the experimentation 

Data filled and re-sampled 

 Count Min Max Media Std Dev. 

Min. Temp 3527 -2.6° 14.83° 8.74° 2.6546 

Max. Temp 3527 7.52° 32.43° 22.16° 2.6836 

Table 4. Average results obtained from the individual 

tuned forecast models for validation set 

Evaluation Models with sMape 

Models Min Temp Max Temp 

SARIMA 25.42% 37.40% 

Holt & Winters 24.8% 24.45% 

CNN 9.63% 7.24% 

LSTM 11.02% 6.93% 

Random Forest 11.74% 6.87% 

SVR 10.23% 6.66% 

Kernel Ridge 19.96% 8.41% 
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represents the ranking value of each model, 𝑁 the 
number of models, and 𝑤𝑖 the resulting 
weight.  The weighting process performed in BIC 
uses a similar equation. The weights process is not 
necessarily the best, but they give us an initial set 
of weights taken to explore their neighborhood and 
evolve toward an optimal set of weights: 

𝑤𝑖 =  
1

𝐴𝐼𝐶𝑖 ∙ ∑
1

𝐴𝐼𝐶𝑗

𝑁
𝑗=1

. (8) 

The initial weights determined for AIC or BIC 
are taken as solutions in the Ponderation 
Optimization process described in the next section. 

3.3 Weighting Optimization 

The previous section pointed out that the initial 
weights obtained by RMSE, AIC, BIC, or a uniform 
distribution are not necessarily the most 
adequate. The ranking or selection methods only 
qualify the most capable strategies but do not 
determine the degree of participation that each one 
should have when integrated into the ensemble. 

Therefore, it is necessary to adjust their degree 
of participation to obtain the best possible 
combination of algorithms. The population in this 
problem consists of 500 solutions, which are 
generated by a heuristic strategy, while the rest of 
the solutions are randomly generated. The order 
generated by the ranking methods and their 
obtained values are converted to participation 
percentages to obtain the heuristic solutions, on 
the other hand, a solution with uniform weighting is 
generated, i.e. in which all the algorithms have the 
same participation in the ensemble. 

To ensure that the strategy allows obtaining a 
solution at least as good as the best individual 
forecasting method, solutions are also generated 

where 100% of the ensemble belongs to each of 
the methods. The parameters of the evolutionary 
algorithm are detailed in Table 2 likewise, a sub-
condition is implemented that is satisfied when the 
rate of change of the best solutions during ten 
generations tends to zero. 

In this case, a population perturbation is 
performed on a random amount, logically 
discarding the elite solutions; this allows us to 
avoid premature stagnation and explore 
unexplored sections of the solution space. When 
the convergence criterion is met, the algorithm 
returns the best solution found, which will 
constitute the best weighting of the forecast 
models and form the ensemble's weights. 

The convergence criterion indicates that the 
algorithm reaches its convergence when the 
variability of the best solution over 20 generations 
tends to zero. The value was chosen based on the 
results of a preliminary test. In this test we 
observed that improvements of the best solutions 
occurred at most every 10 or 12 iterations before 
convergence. That is, when the algorithm stops 
obtaining improvements. 

4 Experimentations and Results 

This section describes the error metrics used to 
tune the strategies and generate the results report 
internally. The specific instances used in the 
experimental process are presented, along with a 
complete exposition of all the results obtained. 

4.1 Experimental Conditions 

The proposed methodology and strategies used in 
the comparison were developed and executed 
using the Jupyter Notebook interactive 
environment in Python. Experiments included 
parallel executions to increase computational 
efficiency, resulting in significantly faster training 
time. Specifically, the deep learning neural 
networks were executed using GPU computing 
capabilities to minimize learning time and increase 
their performance. 

The equipment used to carry out these tasks 
has a Ryzen 5700x processor with 32GB of RAM 
and a Nvidia 4060 graphics processing unit. In all 
cases, the executions were carried out dynamically 

Table 5. Average results for different ensembles for 

validation set 

Ponderations obtained with sMape 

Ponderations Min Temp Max Temp 

Uniform 19.45% 14.12% 

AIC 11.69% 8.45% 

BIC 11.52% 6.23% 

HELI 9.12% 5.87% 
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with access to hardware resources, with no time 
constraints imposed. An analysis based on 
average results derived from at least 30 runs of 
each strategy is presented to ensure consistency 
in the predictions and avoid results biased 
by randomness. 

This rigorous replication is applied to the 
proposed strategies and those from the state of the 
art, providing a more robust and reliable view of the 
effectiveness of each approach. Additionally, to 
ensure the optimality of the results, all models were 
tuned using specific algorithms. 

This tuning phase was carried out 
comprehensively, adjusting the key parameters of 
each model to ensure optimal performance in 
terms of accuracy and generalization. This 
meticulous approach reinforces the validity and 
reliability of the results presented in the framework 
of this comparative analysis. 

4.2 Error Metrics 

Two different types of error metrics are used in the 
proposed methodology: The Mean Squared Error 
(MSE) and the Symmetric Mean Absolute 
Percentage Error (sMAPE). The MSE is used to 
refine the accuracy of the model and adjust its 
hyperparameters, while the sMAPE is used 
exclusively to report model performance. 

The MSE is used as an effective tool during the 
fitting phase, as it amplifies significant errors, thus 
contributing to the learning process to minimize 
this error metric. Its formula is expressed in 
equation 9, where 𝑦𝑖 represents the actual 

observation and �̂�𝑖 represents the prediction 
generated by the model [35]: 

𝑀𝑆𝐸 =  
1

𝑁
∙ ∑(𝑦𝑖 − �̂�𝑖)

2

𝑁

𝑖=1

. (9) 

On the other hand, we try to present the results 
understandably. Thus, we show the sMAPE error 
in percentage terms, allowing a simple comparison 
with other methodologies. Its formula is expressed 
in equation 10, where 𝑦𝑖  represents the actual 

observation and �̂�𝑖 represents the prediction 
generated by the model [35]: 

𝑠𝑀𝐴𝑃𝐸 =  
1

100
∙ ∑

|𝑦𝑖 − �̂�𝑖|
|𝑦𝑖|+|�̂�𝑖|

2

𝑁

𝑖=1

. (10) 

The last two metrics provide a comprehensive 
assessment of the model performance, allowing a 
detailed understanding of internally adjusted 
accuracy and externally reported performance. 

4.3 Data Descriptions 

The time series used in this study were derived 
from meticulously collected observations from 
meteorological stations, which are part of the 
Mexican National Meteorological Service (SMN) 
database [55]. The sample includes data from 
February 1, 1950, to August 31, 2017, with an 
hourly observation period. 

This reliable source, available for free download 
at the SMN's official website, is a fundamental 
resource for analyzing climatic phenomena. The 
time series, specifically for Maximum and Minimum 
Temperature, were structured in Celsius degrees, 
as detailed in Table 3, and reflect carefully 
recorded observations in the southern region of 
Mexico City. The data are public, and can be found 
in the Kaggle repository website [56]. 

The choice of this geographical area was not 
arbitrary; on the contrary, it is based on carefully 
selected criteria. This locality encompasses the 
areas of Milpa Alta, Xochimilco, and Tlahuac, 
regions with specific climatic relevance that are 
observable in Figure 8. The vulnerability of the 
Valley of Mexico to climate change is evidenced by 
the significant population density of this region, the 
most populated in the country. 

The marked anthropogenic influence derived 
from industrialization and the consequent 
generation of pollutants makes this area a crucial 
enclave for understanding the effects of climate 
change in an urban context [57]. Additionally, the 
choice of the southern zone of Mexico City 
responds to its particular orographic condition. This 

 

Fig. 10. Trend component from 2018 to 2028 
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geographical feature mitigates the heat island 
effect, a common phenomenon in urbanized areas. 

The exclusion of this effect allows a more 
accurate analysis of climate variations and the 
impacts of climate change in the region. The 
methodology included to subdividing the data into 
three distinct blocks: the training set, validation, 
and test, allocating 60% for training and 20% for 
each remaining set, respectively. 

The training block played a key role in the 
process, as it was used to train each forecast 
model and adjust the ensemble weights. This 
methodological approach contributes to a 
comprehensive and robust evaluation of forecast 
models in forecasting. 

4.4 Results Obtained 

The first experimental phase focuses on the 
adjustment and optimization of the individual 
forecasting methods. Table 4 presents the results 
obtained for each of them in both instances, 
expressed in terms of the scaled mean absolute 
mean percentage error (sMAPE) for the validation 
set, where an ensemble with which the models are 
not trained is evaluated. 

The effectiveness of forecasting methods 
depends exclusively on the forecasting model, its 
hyperparameter configuration and the data. In this 
case CNN and SVR present the best results in 
general, however for other instances it is not 
guaranteed that they have similar effectiveness, 
the “No free lunch theorem” suggests that there are 

no universally superior methods for all problems 
raised in machine learning [14]. 

Machine learning models outperform classical 
forecasting models, attributable to the complexity 
of the data and the presence of natural 
temperature changes treated as noise. CNN, 
LSTM, and Random Forest generally exhibit 
superior performance. 

However, SVR and Kernel Ridge show good 
results with fewer adjustable parameters, which 
could mitigate the risk of overfitting. Besides, the 
weights of metrics are adjusted by a heuristic 
population that evolves to find an optimal 
combination, thus issuing quality forecasts. Table 
4 shows that classical methods have a more 
limited performance than machine learning 
methods due to the better generalization of the 
latter for time series complexity. 

Neural and Random Forest strategies stand 
out, although they require more hyperparameter 
tuning and training time. In Table 5 includes the 
performance of models with ensemble solutions. 
The uniform ensemble worsens most of the 
individual models since it does not consider the 
differences in the generalization of the curves. 

Although the results improve with metrics such 
as BIC and AIC, they are not guaranteed to 
outperform the best individual method. The 
optimized forecast outperforms the individual 
methods and the evaluated ensemble strategies 
thanks to an initial population that includes other 
ensemble weights. 

In addition, the proposed strategy is compared 
with state-of-the-art ensemble approaches in 
Table 6, such as SMYL. The latter was built from 
the winning paper of the M4 prognostics 
competition, with similar modifications to the 
preprocessing of the proposed strategy and 
hyperparameter tuning by genetic algorithm. 
Although SMYL shows a slight superiority in the 
tests shown in Table 7, a Wilcoxon test reveals no 
significant differences, indicating equivalence 
between both strategies. 

In terms of time, the average time for HELI is 
barely 20 minutes per execution, while SMYL takes 
1 minute if it already knows the instance and has a 
semi-empty pool, and 25 minutes if it does not. 

This value can be misleading since the Smyl 
strategy is designed to have a pool of solutions, so 

Table 6. Average results were obtained from HELI and 

compared to the best state-of-the-art strategy for test set 

Evaluation Methodologies with sMape 

Methods Min Temp Max Temp 

SMYL 8.78% 5.13% 

HELI 9.54% 6.02% 

Table 7. Wilcoxon test shows Heli and SMYL 

are equivalent 

Statistical results 

∞ 0.05 

Z-statistic 2.126 

p-value 0.0554 
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the more knowledge it has, the longer it will take to 
execute [19]. 

4.5 Interpretation of the Forecasts Obtained 

According to the regression curve obtained, the 
actual results can be contrasted with those 
obtained through the proposed forecasting 
method. This comparison is illustrated in Figure 9, 
where the inherent complexity of the forecasting 
task is evident, as well as the ability of the 
ensemble approach to integrate strategies, 
effectively capturing trend, seasonality, and even 
random noise patterns. 

4.6 Results Discussion 

This study focuses on presenting the results using 
the sMAPE metric; however, it is crucial to highlight 
that other metrics allow for discerning the 
effectiveness of the proposed strategy compared 
with the leading method in state-of-the-art. 

In particular, the importance of considering 
training time in this evaluation is emphasized. Smyl 
was executed under the same experimental 
conditions as HELI; however, the architecture 
proposed by SMYL does not implement parallel 
structures, so its execution is sequential. 

The proposed strategy, HELI, and SMYL exhibit 
similar training times in the analyzed instances. 
However, it is essential to note that SMYL 
accumulates knowledge as it is tested with various 
time series. 

In this context, the raw learning time taken by 
Smyl is considerably larger to achieve its results. 
In contrast, the HELI method presents a constant 
adjustment time, depending only on the individual 
complexity of the series and its size. 

From this perspective, HELI provides 
equivalent results in a lower adjustment time; thus, 
it offers a practical and time-efficient alternative. 
The forecasting tasks were not limited to the initial 
test set. 

4.7 Prediction Over New Horizons 

We performed an additional test to evaluate the 
ability of HELI to predict a longer period, by 
extending the forecast beyond the limits of the 
actual time series data until 2028. For this 
experiment we expanded the forecast period in 
521 weeks in the future, which is equivalent to 10 
years ahead. In other words, we projected the 
prediction of HELI since 2018 to 2028. Although 
the data set is limited to 2018, at the time of writing 
this paper is possible to contrast the results up to 
2023. In Table 8, we can observe a clearly 
convergence between the estimated annual 
averages and the actual annual values. These 
results reveal the effectiveness of HELI. 

In addition, Figure 10 shows the estimated 
evolution of the trend component, which presents 
a slight increase in the gap between maximum and 
minimum temperatures as we move into the 
future. This finding suggests that long-term 

 

Fig. 9. HELI results compared to real data 

Table 8. Estimated values of the proposed model 

compared to the actual values from 2018 onwards 

Forecasting results 

 Minimum Temp Maximum Temp 

Year Real Estimated Real Estimated 

2018 10.2° 10.5° 23.5° 22.7° 

2019 10° 10.6° 23.3° 22.9° 

2020 10.1° 10.4° 23.2° 22.7° 

2021 9.8° 10.3° 23° 22.8° 

2022 9.9° 10.4° 23.1° 22.8° 

2023 10° 10.2° 23.2° 23° 

Table 9. Results for second experiment 

sMAPE forecasting evaluation 

Variables Monterrey Guadalajara 

Max Temp 10.8% 9.5% 

Min Temp 12.7% 11.5% 

CO2 6.4% 5.6% 

NO2 4.3% 6.4% 

PM10 7.2% 5.1% 
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weather patterns in southern Mexico City are 
undergoing changes, which could indicate an 
influence of phenomena associated with 
climate change. 

4.8 Evaluation for Other Climate 
Change Instances 

To evaluate the effectiveness of the method, we 
analyzed other instances of climate change-
related variables, this time for the Mexican cities of 
Guadalajara and Monterrey. We used public data 
collected from airport stations. 

Table 9, shows the results obtained for the 
variables of maximum temperature, minimum 
temperature, the gases CO2, and NO2 and the 
PM10 particles. We performed this experiment with 
4012 observations, and we divided the data in the 
same way as in the first experiment. In the second 
experiment, we adjusted the hyperparameters of 
the forecasting algorithms. 

The sMAPE results show that the accuracy is 
maintained, with error values ranging since 4.3 to 
12.7% for Monterrey and 5.1 to 11.5% for 
Guadalajara. Notice that in this second 
experiment, Heli obtained the best forecast for the 
two gases, followed by PM10 particles. Besides, 
the forecast for the two temperature variables is 
reasonably acceptable. 

5 Conclusions and Discussions 

Climate change represents one of the most 
decisive challenges for the present and future of 
humanity. Its profound environmental, economic, 
and social implications demand the urgent 
development of effective methods for temperature 
forecasting. In this context, this paper presented 
HELI, a novel methodology for temperature 
forecasting that integrates robust preprocessing, 
training of several individual methods, and 
optimization of their weights through evolutionary 
algorithms. Experiments performed on extensive 
temperature time series in the southern area of 
Mexico City show promising results. 

HELI achieves a sMAPE error of 9.54% for 
minimum and 6.02% for maximum temperature, 
outperforming both state-of-the-art individual 
methods and sophisticated ensemble strategies 

previously in the state of the art. Rigorous 
statistical tests demonstrate HELI's equivalence to 
SMYL, the leading global method. HELI's 
competitiveness is even more valuable when 
considering its flexibility and scalability. 

Unlike other approaches, HELI does not 
accumulate knowledge between time series but 
performs a specific adjustment for each one. This 
translates into bounded and constant training 
times, dependent only on the individual complexity 
of each series. On the other hand, HELI's 
modularity allows easy incorporation of new 
methods and configurations. The solid results 
obtained position HELI as a highly effective 
alternative for temperature prediction. 

This work lays the groundwork for further 
exploration of integrations with new individual 
methods, improved preprocessing, and more 
comprehensive hyperparameter optimizations. It 
remains a pending task to extend the evaluation of 
HELI to other regions and types of time series 
related to climate phenomena. In conclusion, HELI 
represents a significant advance in the crucial and 
urgent field of climate forecasting. 

Both its methodological design and 
experimental contributions are concrete 
contributions to develop increasingly effective 
solutions to the complex and urgent challenges 
posed by climate change. 

HELI's potential for flexibility, enabling the 
assessment of multiple individual variables; 
scalability, allowing the incorporation of other 
forecasting variables, and competitiveness lay a 
solid foundation for its potential adoption in climate 
studies. We hope this work will stimulate new lines 
of research in this priority area for the 
planet's sustainability. 
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