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Abstract. Multicriteria decision analysis (MCDA) is a 
problem-solving approach that helps to tackle complex 
decision-making problems. It involves analyzing a set of 
alternatives that are assessed based on a set of decision 
criteria by one or more decision-makers. These 
decision-makers use both subjective and objective 
judgments, which can be qualitative and/or quantitative. 
The goal of MCDA is to arrive at a decision that is fair, 
effective, and considers all relevant factors. Some 
MCDA methods lack mechanisms to consistently 
process heterogeneous information provided by the 
decision-maker and reduce it simplistically to numerical 
values to assess subjective criteria and thus obtain 
numerical results with low interpretability. This paper 
presents an extension of the ELECTRE III method that 
considers heterogeneous information provided by the 
decision-maker as input data in the decision criteria. The 
new proposal is based on the 2-tuple linguistic 
representation model, which allows for a flexible 
assessment structure in which the decision-maker can 
provide their preferences by applying diverse levels of 
information according to the nature and uncertainty of 
the decision criteria. It includes a new distance measure 
based on linguistic transformations appropriate for the 
MCDA outranking approach. Finally, the viability and 
pertinence of the proposed method are shown in a case 
to evaluate the environmental impact that can occur 
between the interactions of some industrial activities in a 
petrol station. 

Keywords. Computing with words, heterogeneous 
information, linguistic preferences, multicriteria decision 
analysis, ELECTRE III. 

1 Introduction 

Multicriteria Decision Analysis (MCDA) provides a 
methodological framework for managing complex 
decision-making problems with multiple criteria in 
conflict. The purpose and scope of MCDA are to 
support decision-makers (DMs) while addressing 
complex decision-making problems. 

The MCDA outranking approach involves 
ranking a set of alternatives in decreasing order of 
preferences. This is a multicriteria ranking 
problem, where there may be ties and 
incomparability among the alternatives [1, 2]. The 
ranking means a recommendation for the DM 
generated by the solution method. 

The MCDA outranking methods combine the 
aggregation and exploitation phases. In the 
preference aggregation phase, the DM’s 
preference aggregation model is achieved, 
represented by an outranking relation, which 
usually does not present attractive mathematical 
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properties such as transitivity and 
completeness [3]. 

In the exploitation phase, a partial preorder is 
deduced from the outranking relation, reflecting 
irreducible incomparability and indifference 
between the alternatives [4]. 

ELECTRE III [5] is a representative method of 
MCDA that constructs and exploits a fuzzy 
outranking relation. 

The ELECTRE III method has been widely used 
to solve many real-world problems that can be 
formulated as multicriteria ranking problems. 
However, like any multicriteria method, it has 
weaknesses and limitations when using it for 
specific instances of the ranking problem. For 
example, ELECTRE III is inadequate regarding: 

– Dealing with heterogeneous information: 
DMs must use numerical scales in 
ELECTRE III, which is inflexible as criteria 
can have varied descriptions and be 
assessed in different expression domains. 

– Dealing with uncertainty: ELECTRE III 
cannot correctly handle the uncertainties 
and vagueness of subjective judgments. 

This paper proposes an extension of the 
ELECTRE III method to reduce limitations in 
information management, incorporating a flexible 
heterogeneous evaluation structure in the decision 
criteria to analyze elements of uncertainty and 
vagueness that occur in many instances of the 
multicriteria ranking problem, which is more in line 

 

Fig. 1. Fusion approach dealing with heterogeneous information using the 2-tuple fuzzy linguistic model 

 

Fig. 2. Process for modeling linguistic outranking indices 
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with the quantitative and qualitative essence of the 
decision criteria and with the experience of the DM. 

The fusion linguistic approach converts 
heterogeneous information into a linguistic one [4, 
5, 6]. The fusion approach for an MCDA method 
makes the computations possible and generates 
interpretable results [2]; however, it implies the 
need for utilizing Computing with Words (CW) 
procedures [7, 8]. 

Therefore, we employ the fuzzy linguistic 
approach based on the 2-tuple linguistic 
representation model [9, 10] and a linguistic-based 
distance measure [11, 12] to construct a fuzzy 
outranking relation in such a way that the DM can 

make his evaluations in different sets of linguistic 
terms according to his knowledge of the decision 
problem [6]. 

We consider a modified distillation procedure to 
derive a partial preorder of the alternatives for the 
exploitation phase of the fuzzy outranking relation 
based on 2-tuple linguistic representation 
modeling. This approach’s main advantage is 
tackling the uncertainty of criteria performances 
and DMs’ knowledge without losing information. 

Thus, this new method will be helpful in 
multicriteria ranking problems whose DMs express 
their value judgments through heterogeneous 
values. In these kinds of issues, it is common for 

Table 1. Criteria set description 

 
Name Description Expression Domain �� 

Intensity 
How the action impacts the factor 

Linguistic: L �� 
Extension 

The range within which the action affects the site 
Linguistic: L �� 

Moment 
The duration from the action’s onset to the time the factor 
begins to be affected 

Numerical: N �� 
Persistence 

The estimated duration of the action’s effect Valor Interval-valued: 
I �� 

Reversibility 
The potential for the factor to be naturally restored to its 
original state after being affected 

Numerical: N �� 
Synergy 

The strengthening of straightforward impacts 
Linguistic: L �� 

Accumulation 
The gradual escalation in the expression of the effect 

Linguistic: L �	 
Effect 

How the action’s impact on an environmental factor 
becomes apparent 

Linguistic: L �
 
Recoverability 

The potential for the factor to be restored with the help of 
human action 

Linguistic: L ��� 
Periodicity 

The consistency in which the impact on the environmental 
factor is observed 

Linguistic: L 

Table 2. Assessment for each criterion on each EI using a heterogeneous framework 

  �� �� �� �� �� �� �� �	 �
 ��� �
� L L 0,00 [0,0.2] 1,00 L L L H VL �
� H VL 0,00 [0,0.2] 1,00 M M M VH VL �
� H L 0,00 [0.4,0.6] 10,00 M L VH L M �
� M VL 0,10 [0,0.2] 2,00 L VL VL M H �
� H L 0,10 [0,0.05] 10,00 M M VH L M �
� VH L 0,00 [0.8,1.0] 10,00 M M VH L H �
� VL L 1,50 [0.8,1.0] 10,00 VL L VL L VH 
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DMs to have different levels of knowledge and 
domains of the criteria.The organization for the rest 
of the document is presented as follows: Section 2 
shows background about ELECTRE III and 
linguistic and heterogeneous information. Then, 
section 3 gives the linguistic ELECTRE III, and 
section 4 provides an illustrative example. Finally, 
section 5 points out the conclusions. 

2 Background 

This section briefly describes the ELECTRE III 
method and the use of linguistic and 
heterogeneous information in MCDA. 

2.1 The ELECTRE III Method 

The ELECTRE III method is a decision support 
technique under the category of outranking 
methods designed to solve problems involving 
multiple criteria [13, 14]. It is a multicriteria ranking 
method that is relatively simple in conception and 
application compared to other MCDA methods. It 
can be applied to situations where a finite set of 
alternatives must be prioritized, considering 
multiple, often contradictory, criteria (e.g. [15, 16]). 

ELECTRE III needs a decision matrix with 
criteria evaluations for each alternative and 
preference information in the form of weights and 
thresholds. The model accounts for uncertainty in 
the assessments when defining the thresholds. 

This method consists of two distinct stages. 
Initially, (i) it aggregates the input data to create a 

fuzzy outranking relation on the pairs 
of alternatives. 

Subsequently, (ii) it exploits the fuzzy 
outranking relation to generate a partial preorder of 
alternatives [14]. Let us have the 
following notations: � = ���, ��, … , ��� is defined as the set of 
potential decision alternatives. � = ���, ��, … , ��� is defined as a coherent 
family of criteria.  � = ���, ��, … , ��� is defined as the set of 
weights that reflects the DM’s preferences over the 
set �. Let us assume that ∑ �� = 1�� � . �!"��# is the evaluation of the criterion �! for 

alternative ��. 
The ELECTRE III method uses the fundamental 

principle of threshold values; an indifferent $ 
threshold is determined as: 

��%�!  '�� () *+,-,+,. /0 �!1 ⟷ �"��# > �'�!1 + $. 

And 

��5�!  '�� () (6.(--,+,6/ /0 �!1 ⟷ 7�"��# − �'�!17 ≤ $. 

The inclusion of the indifference threshold 
addresses the consideration of a DM’s sentiment 
toward practical comparisons of the alternatives. 
However, a marker still exists when a DM’s 
preference transitions from a state of indifference 
to a state of strict preference. Regarding 
conceptual understanding, it is beneficial to 
introduce a buffer region between indifference and 
strict preference. 

Table 3. Fused information supplied by the DM 

  �� �� �� �� �� �� �� �	 �
 ��� �
� (L,0) (L,0) (VH,0) (VL,0.44) (VL,0.4) (L,0) (L,0) (L,0) (H,0) (VL,0) �
� (H,0) (VL,0) (VH,0) (VL,0.44) (VL,0.4) (M,0) (M,0) (M,0) (VH,0) (VL,0) �
� (H,0) (L,0) (VH,0) (M,0) (VH,0) (M,0) (L,0) (VH,0) (L,0) (M,0) �
� (M,0) (VL,0) (VH,-0.04)  (VL,0.44) (L,-0.2) (L,0) (VL,0) (VL,0) (M,0) (H,0) �
� (H,0) (L,0) (VH,-0.04)  (VL,0.17) (VH,0) (M,0) (M,0) (VH,0) (L,0) (M,0) �
� (VH,0) (L,0) (VH,0) (VH,-0.44) (VH,0) (M,0) (M,0) (VH,0) (L,0) (H,0) �
� (VL,0) (L,0) (H,0.4) (VH,-0.44) (VH,0) (VL,0) (L,0) (VL,0) (L,0) (VH,0) 
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This intermediary region represents a state 
where the DM hesitates over indifference and 
preference, known as a weak preference. Like the 
preference relations indifference (5# and strict 
preference (%), this zone of hesitation is modeled 
by introducing a preference threshold, denoted as *. Therefore, we adopt an indifference-preference 
model, incorporating a binary relation : for weak 
preference measurement: 

��%�!  '��  () )/+(;/<= *+,-,++,. /0 �!1  ⟷ �"��# − �'�!1 > * 

��:�!  '��  () �,�><= *+,-,++,. /0 �!1  ⟷ $ < �"��# − �'�!1≤ * ��5�!  '��  () (6.(--,+,6/ /0 �!; �6. �!  /0 ��1      ⟷ 7�"��# − �'�!17 ≤ $ 

(1) 

The selection of thresholds significantly impacts 
the determination of specific binary relations. In 
[14, 17], detailed information is provided on how to 
compute thresholds in ELECTRE III, including their 
nature, meaning, and form. 

We must acknowledge that we have solely 
examined the basic scenario where the thresholds $ and * are constant values rather than functions 

dependent on the criteria’s values. The ELECTRE 
method can be presented in a more straightforward 
way by using constant thresholds. However, 
employing variable thresholds in situations where 
criteria with higher values could result in more 
substantial indifference and preference thresholds 
might be advantageous. 

ELECTRE III uses these thresholds in the 
aggregation procedure to create the outranking 
relation A. Based on the DM’ preference model, we 
can justify that “�� is at least as good as �! “denoted 

as ��A�!. Subsequently, each pair of alternatives is 

evaluated to verify the validity of ��A�! from which 

one of the following states can happen: 

i) ��A�! and ¬"�!A��#; ii) ¬"��A�!# and �!A��; 
iii) ��A�! and �!A��; and iv) ¬"��A�!# and ¬"�!A��#. 

States iii and iv agree with the indifference and 
incomparability preference relations denoted as 5 
and C respectively. 

There are two principles that ELECTRE III 
incorporates to validate ��A�!, the concordance 

and the non-discordance principles. The former 
holds that most criteria, considering their 

Table 4. Indifference $ preference * and veto D values 

Criterion EFGHIJK , LIJM  IN EFGHOJK , LOJM  ON EFGHPJK , LPJM  PN ��  '5QR , 01$ "5TR , 0#* "5UR , 0#D ��  '5QR , 01$ "5TR , 0#* "5UR , 0#D �V  '5QR , 01$ "5TR , 0#*  �W '5QR , 01$ "5TR , 0#*  �Q  '5QR , 01$ "5TR , 0#*  �T '5QR , 01$ "5TR , 0#*  �U '5QR , 01$ "5TR , 0#*  �X  '5QR , 01$ "5TR , 0#*  �Y '5QR , 01$ "5TR , 0#*  ��Z  '5QR , 01$ "5TR , 0#*  

 

Fig. 3. Linguistic comparison scale [R 
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respective significance, support the assertion ��A�!; meanwhile, the second principle holds that 

a minority of the criteria are against ��A�!. These 

two principles are executed as follows: suppose 
criteria are to maximize; first, we examine the 
outranking relation established for each criterion 
where ��A\�! denotes “�� is at least as good as �!” 

on criterion >: > = 1,2, … , 6.  
Let $  and * be an indifference and preference 

thresholds, in this scenario, criterion > is in 

concordance with ��A�! iif �\"��# ≥ �\'�!1 − $\ 

(e.g., ��A\�!). Conversely, criterion > is in 

discordance with ��A\�! iif �\'�!1 ≥ �\"��# + *\ 

(e.g. �!%\��). Hence, using the concordance and 

discordance rules, the claim ��A\�! can 

be assessed. 
The initial stage involves creating a 

concordance assessment, represented by the 
concordance index `'�� , �!1 for each '�� , �!1 ∈ � ×�. Suppose that �\ represents the weight for the > − /ℎ criterion, the concordance index (Eq. 2) can 
be expressed as follows: 

`'�� , �!1 = �d ∑ �\;\'�� , �!1�\ � , (2) 

where: 

� = e �\
�

\ � . (3) 

And: ;\'�� , �!1
=

⎩⎪
⎨
⎪⎧ 0, (- �\"��# + *\ ≤ �\'�!1,*\ + �\"��# − �\'�!1*\ − $\ ,(- �\'�!1 − *\ ≤ �\"��# < �\'�!1 − $\,1, (- �\"��# + $\ ≥ �\'�!1,

 
(4) 

where k = 1,2,…,n. 
The second stage involves creating the 

discordance index, which integrates the veto D 
threshold. With this threshold, it is possible to reject 
completely ��A�! if, for any given criterion veto 

threshold, D\, �\'�!1 > �\"��# + D\. The 

calculation of the discordance index .\'�� , �!1 (Eq. 

5) for each criterion > is performed as follows: 

.\'�� , �!1
=

⎩⎪⎪
⎨
⎪⎪⎧

0, (- �\"��# + *\ ≥ �\'�!1,�\'�!1 − �\'�!1 − *\D\ − *\ , (- �\'�!1 − D\ < �\"��# < �\'�!1 − *\1, (- �\"��# + D\ ≤ �\'�!1,
, (5) 

where k=1,2 ,…, n. 

Finally, both measures, concordance, and 
discordance, must be fused to make a metric that 
reflects the power of the affirmation ��[�!. This 

metric is known as the credibility index k'�� , �!1'0 ≤ k'�� , �!1 ≤ 11 and is stated in (Eq. 

6) as: 

k'�� , �!1 =
⎩⎪⎪
⎨⎪
⎪⎧ `'�� , �!1, (- l'�� , �!1 = ∅`'�� , �!1 ×

n 1 − .\'�� , �!11 − `'�� , �!1 ,
 (- l'�� , �!1 ≠ ∅,\∈p'qr,qs1

 (6) 

where l'�� , �!1 contains the criteria such that .\'�� , �!1 > `'�� , �!1. 

Equation 6 operates under the idea that if the 
magnitude of the concordance exceeds that of the 
discordance, there is no need to alter the 
concordance value. However, if this condition is 
not met, we must question the assertion ��[�! and 

adjust the value of `'�� , �!1 accordingly. 

In the scenario where the discordance value is 
1.0 for any '�� , �!1 ∈ � × � on any criterion >, there 

is no assurance that ��[�!, hence the outranking 

degree is k'�� , �!1 = 0.0.  

Based on Eq. 6, we can create a fuzzy 
outranking relation Atu stated on � × �  where any '�� , �!1 ∈ � × � has a value k'�� , �!1, '0 ≤k'�� , �!1 ≤ 11 indicating the power of ��A�!.Once 

the model is complete, the subsequent phase in 
the approach involves exploiting the outranking 
model Atu to generate a ranking of alternatives. 
ELECTRE III employs the distillation algorithm [17] 
to exploit the outranking model Atu to produce 
a ranking. 

However, due to space limitations, we will not 
elaborate on the details of this procedure here. 
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Instead, in the following subsections, we introduce 
basic concepts of computers with words. 

2.2 Linguistic Information and Management of 
Heterogeneous Information in MCDA 

This section provides an overview of approaches 
to handling the three types of information in the 
heterogeneous framework. It introduces the 2-
tuple linguistic representation model, which is 
appropriate for our problem because it enhances 
the interpretability of the MCDA process, which are 
the main required features of our proposal. 

2.2.1 The Heterogeneous Framework 

Here, the evaluation framework calculates a 
global evaluation that condenses the gathered 
information and gives helpful decision-
making results. 

The DM can naturally declare his preferences 
in different information domains and obtain a 
heterogeneous structure [18]. The following 
expression domains are used in the linguistic 
extension of the ELECTRE III method: 

– Numerical values (v): �!"��# = D�! ∈[�, x], �, x ∈ℜ Represents assessments 
related to quantitative criteria. 

– Interval values (z): �!"��# = z"[�, x]# =[��! , x�!] ∈ [�, x],  �6. ��! ≤ x�!. When 

exact numbers are unavailable, decision-
makers use imprecise quantitative criteria. 

– Linguistic values ([): �!"��# = )�! ∈[,  [ = �)Z, . . . , ){�, being ℎ + 1 the 
number of elements of the linguistic term set 
(LTS) [. 

Assessing qualitative criteria is familiar to them. 
The linguistic approach is appropriate for 
representing data through linguistic variables. 
[19, 20]. 

2.2.2 The 2-tuple Linguistic Representation 
Model 

Handling heterogeneous information can be done 
using processes based on computing with words 
[20]. The models most frequently used for the 
treatment of heterogeneous information are: 

i. The semantic model utilizes linguistic terms as 
labels to represent fuzzy numbers, while the 
computations are performed directly on the 
fuzzy numbers. 

ii. The symbolic model that utilizes an order index 
of the linguistic terms to perform direct 
calculations on the labels. 

Table 5. Concordance indices on the criterion �� 

 �
� �
� �
� �
� �
� �
� �
U ,(� "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[W| , 0# "[X| , 0# �
� "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# �
� "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# �
� "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# �
� "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# �
� "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# �
� "[X| , 0# "[W| , 0# "[W| , 0# "[X| , 0# "[W| , 0# "[W| , 0# "[X| , 0# 

Table 6. Comprehensive linguistic concordance matrix  `̅',(� , ,(!1 `̅',(� , ,(!1 �
� �
� �
� �
� �
� �
� �
� �
� "[X| , 0# "[X| , 0# "[U| , 0.584# "[U| , 0.84# "[U| , 0.584# "[Q| , 0.8048# "[U| , 0.2448# �
� "[X| , 0# "[X| , 0# "[U| , 0.744# "[U| , 0.84# "[U| , 0.744# "[U| , 0.4048# "[U| , 0.2448# �
� "[X| , 0# "[U| , 0.68# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# �
� "[X| , 0# "[X| , 0# "[U| , 0.488# "[X| , 0# "[U| , 0.488# "[U| , 0.3088# "[U| , 0.6288# �
� "[X| , 0# "[U| , 0.68# "[X| , 0# "[X| , 0# "[X| , 0# "[U| , 0.7776# "[U| , 0.7776# �
� "[X| , 0# "[U| , 0.68# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# �
� "[X| , 0# "[T| , 0.24# "[T| , 0.24# "[X| , 0# "[T| , 0.24# "[W| , 0.8# "[X| , 0# 
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This research uses the symbolic model to 
calculate the linguistic evaluations in the 
ELECTRE III method, using the 2-tuple linguistic 
representation model developed by [11]. In the rest 
of this section, we present the basics of the 2-tuple 
linguistic representation model. 

Definition 2.1. [4]. Let S = �sZ, . . . , s�� be a 
linguistic term set. The symbolic translation of a 
linguistic term s� ∈ S = �sZ, . . . , s�� is a numerical 
value α assessed in [−0.5,0.5# that supports the 
“difference of information” between an amount of 
information β ∈ [0, h] and the closest value in �0, . . . , h� that specifies the index of the closest 
linguistic term in S"s�# being  [0, h] the interval of 
granularity of S. 

Based on this meaning, a linguistic 
representation model must be built that denotes 
linguistic information using a 2-tuple ")� , ��#, )� ∈ [  
means the linguistic label of information and �� ∈[−0.5,0.5# is a numerical value stating the 
translation starting from the original result � with 
the index nearest to the label, (, in the linguistic 
term set [")�#, i.e., the symbolic translation. 
Moreover, this model states transformation 
functions between the numerical values and the 
linguistic 2-tuple. 

Definition 2.2. [4]. Let [ = �)Z, . . . , ){� a 
linguistic term set and � ∈ [0, ℎ] a value supporting 
the result of a symbolic aggregation operation, 

then the 2-tuple that states the equivalent 
information to � is calculated with the 
following function:  Δ�: [0, h] → S × "−0.5, .0.5#, (7) 

��"�# = ")� , �#, �(/ℎ        � )� ( = +0�6."�#,� = � − ( � ∈ [−0.5,0,5#, (8) 

where round (·) is the typical round operation, [� 
has the closest index label to �, and � is the value 
of the symbolic translation. 

Let [ = �)Z, . . . , ){� be a linguistic term set and ")� , ��# be a linguistic 2-tuple. From (7) and (8), a ���� function can be defined, so that, from a 2-

tuple ")� , ��#, ���� returns its equivalent numerical 
value � ∈ [0, ℎ] in the interval of granularity of [ 
as follows: ����: [ × −0,5,0.5# → [0, ℎ], (9) 

����")� , �# = ( + � = �. (10) 

Note that to transform a linguistic term into a 
linguistic 2-tuple, append a value 0 as symbolic 
translation: )� ∈ [ ⇒ ")� , 0#. 

Example 1. Let us suppose a symbolic 
aggregation operator, ϕ(.) whose input are different 
labels assessed in S = {nothing; very low; low; 
medium; high; very high; perfect}, obtaining the 
following results: 

Table 7. Linguistic discordance matrix on a criterion �� 

 �
� �
� �
� �
� �
� �
� �
� �
� "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# �
� "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# �
� "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# �
� "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# �
� "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# �
� "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# �
� "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# "[Z| , 0# 

Table 8. Linguistic credibility matrix in the linguistic extension of the ELECTRE III `̅',(� , ,(!1 �
� �
� �
� �
� �
� �
� �
� �
� "[X| , 0# "[X| , 0# "[U| , 0.584# "[U| , 0.84# "[U| , 0.584# "[Q| , 0.8048# "[U| , 0.2448# �
� "[X| , 0# "[X| , 0# "[U| , 0.744# "[U| , 0.84# "[U| , 0.744# "[U| , 0.4048# "[U| , 0.2448# �
� "[X| , 0# "[U| , 0.68# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# �
� "[X| , 0# "[X| , 0# "[U| , 0.488# "[X| , 0# "[U| , 0.488# "[U| , 0.3088# "[U| , 0.6288# �
� "[X| , 0# "[U| , 0.68# "[X| , 0# "[X| , 0# "[X| , 0# "[U| , 0.7776# "[U| , 0.7776# �
� "[X| , 0# "[U| , 0.68# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# "[X| , 0# �
� "[X| , 0# "[T| , 0.24# "[T| , 0.24# "[X| , 0# "[T| , 0.24# "[W| , 0.8# "[X| , 0# 
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ϕ (medium; medium; medium; very high) = 3:21 
= β1 

ϕ (low; medium; very low; high) = 2:76 = β2 

Being β1=3:21 and β2=2:76, then the 2-tuple 
linguistic values (Definition 2.2) of these symbolic 
results, which do not match with any linguistic term 
in S, are: 

∆S(3:21) = (s3;0:21) = (medium, 0.21). 

The symbolic translation (definition 2.1) α is 
0.21. 

∆S(1:75) = (s3;- 0:24) = (medium,-0.24). The 
symbolic translation α is -0.24. 

2.2.3 Aggregation of 2-tuples 

This process involves obtaining a single value 
representing a set of values of the same type; 
therefore, adding a series of linguistic 2-tuples 
must be a linguistic 2-tuple. 

In the literature, we can find various 2-tuple 
aggregation operators (e.g., [4]) based on the 
classical aggregation operators, such as the 
arithmetic mean and weighted mean operators. 

Definition 2.3. Let � = �")�, ��#, . . . , ")� , ��#� be 
a set of 2-tuples; the extended Arithmetic Mean ��∗ using the linguistic 2-tuples is computed as:  ��∗'")�, ��#, … , ")�, ��#1, 

= � �e 16�
� � ���")� , ��#� , 

= � �16 e ��
�

� � �. 
(11) 

Definition 2.4. Let  �")�, ��# … ")� , ��#� be a set 
of linguistic 2-tuples, and � = ���, . . . , ��� the set 
of its associated weights. Then, the 2-tuple 
weighted mean, �_��∗, is computed as: 

�t�∗'"��, �#, … . , ")�, ��#1, 
= ∆ ¢∑ � ��  ∆�� ")� , ��#��∑ � �� �� £ , 

= ∆ ¢∑ � �� �� . ��∑ � �� �� £. 
(12) 

2.2.4 Comparison of 2-tuples 

The 2-tuple information is compared using the 
lexicographic order. Let ")\ , ��# and ")¤ , ��# be 
two 2-tuples represented by two assessments: 

– If > < 5 then ")\ , ��# is smaller than ")¤ , ��# 

– If > = 5 then: 

1. If �� = ��, then ")\ , ��# and ")¤ , ��# 
represent the same value. 

2. If  �� < ��, then ")\ , ��# is smaller than ")¤ , ��#. 

3. If  �� > ��, then ")\ , ��# is bigger than ")¤ , ��#. 

2.2.5 Negation Operator of a 2-tuple 

The negation operator over 2-tuples is 
expressed as: v,�")� , �# = ∆�"ℎ − ∆���")� , �##, (13) 

where ℎ + 1 is the number of elements in [ =�)Z, . . . , ){� , )� ∈ [. 

2.3 The Linguistic Fusion Approach for 
Heterogeneous Information based on the 
2-tuple Fuzzy Linguistic Model  

The approach used in this section to fuse 
heterogeneous information based on the 2-tuple 
linguistic model considers various transformation 
functions that go from numerical, interval, and 
linguistic information sources toward a common 
linguistic format [21]. 

1 Choosing the basic linguistic term set (BLTS) S¥¦§� = �sZ, s�, . . . , s��: The BLTS must have the 
maximum granularity to maintain the uncertainty 
degree associated with the DM and the capacity 
of discrimination to express the preference 
values [9]. 

2 Transformation of the heterogeneous 
information into fuzzy sets in a linguistic domain: 

Table 9. Crisp outranking relation �

¨�
© �
� �
� �
� �
� 0 0 0 �
� 0 0 0 �
� 1 0 0 �
� 1 1 0 �
� 1 0 0 �
� 1 0 0 �
� 1 0 0 
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Each input value � is transformed into a fuzzy 
set on [ª«¬�, ­"[ª«¬�# by means of one of the 
following transformation functions: For � ∈ [�, x], 
the numerical transformation function ®̄ �°±²³: [�, x] → ­"[ª«¬�# is expressed as: ®̄ �°±²³  "�# =  ∑� Z{ "[�/µ�#, (14) 

where µ� = ¶�r"�# ∈ [0,1] is the membership 

degree of x to )�  ∈  [ª«¬�: 

¶�r"�# =
⎩⎪⎪
⎨⎪
⎪⎧0   (- � ∉ [�**0+/ ¶�r"�#� − ��x� − ��  (- �� ≤ � ≤ x�,1   (- x� ≤ � ≤ .�,;� − �;� − .�  (- .� ≤ � ≤ ;� .

 (15) 

For � ∈ z"[�, x]#, the interval transformation 
function ®̧ �°±²³ : z"[�, x]# → ­"[ª«¬�# is 

expressed as: 

®̧ �°±²³  "�# = e"[�/µ�#,{
� Z  (16) 

where: µ� = ¹��º ¹(6� ¶¸"=#, ¶�s "=#�, (17) 

( ∈ �0, . . . , ℎ�, (18) 

¶¸"=# = »0   (- = < �,1   (- � ≤ = ≤ x0   (- = > x. , (19) 

For � = )! ∈ [ with , [ =  �[Z, … . , [{� the 

linguistic transformation function ®��°±²³ : [ →­"[ª«¬�# is expressed as: 

®��°±²³  "[�# =  ∑� Z{ "[�/µ�#, (19) 

where: 

µ� = ¹��º ¹(6� ¶�s"=#, ¶�r"=#�,    ( ∈ �0, . . . , ℎ�. (20) 

This information fusion process [13] is 
illustrated in Figure 1. 

2.4 Transformation of Fuzzy Sets into 
Linguistic 2-tuple Values 

Here, the fuzzy sets are converted into linguistic 
2-tuples over the BLTS through the function ¼: ­"[ª«¬�# → [ × [−0.5,0.5#, which is stated as 
follows: 

¼"µZ, µ�, . . . , µ{# = Δ� ½∑ (µ�{� Z∑ µ�{� Z ¾ = "), �# = )̄∈ [Àª«¬�, (21) 

where [ = �[Z, [�, … . , [{� is the set of linguistic 
terms, and  [̅ = [ × [−0.5,0.5# is the linked 2-tuple 
term set. The function Δ� is defined in section 2.2.2. 
After the transformations of heterogeneous 
information into 2-tuple linguistic values in the 
BLTS have been carried out, we can use the 2-
tuple linguistic computation model [7] to compute 
linguistic results in  [Àª«¬�. This step uses 2-tuple 
linguistic aggregation operators [20, 22]. Based on 
the results presented in this section, we present a 
linguistic extension of the ELECTRE III method in 
the following section. 

3 The Linguistic ELECTRE III Method 

This section presents our proposal for the linguistic 
extension of the ELECTRE III model; to this end, a 
procedure is defined to model the partial and global 
concordance indices, the discordance indices by 
criterion, the thresholds of the criteria, and the 
credibility index linguistically so that they can 
accept 2-tuple linguistic values. 

Consequently, the linguistic ELECTRE III 
method provides a more realistic operability of the 
qualitative criteria when solving multicriteria 
ranking problems. 

Within this procedure, a linguistic difference 
function allows for the calculation of the linguistic 
difference for each pair of alternatives for each 

Table 10. Power, weakness, and qualification scores ,(�A,(! �
� �
� �
� �
� �
� �
� �
� 

p
D

0

(s
tc

,α
c
)(0 )

- 

power 

0 0 3 2 2 4 2 

(0)( , )t cc
s

Df
α

- 

weakness 

5 1 0 4 1 0 2 

(0)

0

( , )t cc
s

Dq
α

 - 

qualification 

-5 -1 3 -2 1 4 0 
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decision criterion. The linguistic output provided by 
the linguistic difference function serves as the 
linguistic input of the linguistic concordance and 
discordance indices for each criterion. 

The output of the concordance and discordance 
indices are expressed in the same linguistic scale 
to preserve interpretability. Figure 2 schematically 
presents the process for modeling the linguistic 
outranking index in three phases. 

3.1 Fusion of Heterogeneous Information 

In a multicriteria ranking problem with a 
heterogeneous information environment, 
alternatives are evaluated using diverse 
expression domains based on the uncertainty and 
criteria type, as well as each DM's experience. 

3.1.1 Transformation into Fuzzy Sets 

The expression domains (numerical, interval, and 
linguistic) used in the heterogeneous framework 
are presented in this part of the first phase. The 
fusion approach handles these three types of 
information. 

Previously, a unification domain [ª«¬� is defined 
as allowing the transforming of heterogeneous 
information by fuzzy sets into [ª«¬�, using the 
respective transformation functions of Eqs. 14, 16, 
and 19. 

3.1.2 Transformation into 2-tuples 
Linguistic Values 

Then, the process transforms the fuzzy sets into 2-
tuple linguistic values in [ª«¬� using Eq. (21). 
Hence, the fused evaluation for each criterion �\  concerning each alternative ��, is represented in 
a 2-tuple linguistic value �̄\"��# = ")� , ��# ∈ [ª«¬�. 

3.2 The Linguistic Difference Function ÁÂ 

This function is introduced to facilitate the 
computation of the linguistic concordance and 
discordance indices because the input values of 
the indices and thresholds must be linguistic 
values for a correct interpretation. 

To compare two linguistic values, we need a 
comparison scale that can measure the linguistic 
difference between them. The scale's granularity 
will depend on the decision maker's knowledge, 
who needs to interpret the difference between the 
two alternatives using a bipolar scale [23]. This 
type of scale is convenient because it has a neutral 
point, which separates the positive differences 
from the negative ones [5]. 

In short, this function's linguistic output is the 
input of the linguistic concordance and 
discordance indices. The linguistic difference 
function is expressed in the linguistic scale, and the 
threshold parameters are stated accordingly. 
Consequently, a proper linguistic difference 
function between linguistic preference values is 
necessary for developing an extension of 
ELECTRE III dealing with fuzzy 
linguistic information. 

Definition 3.1. Let [ª«¬� = �)Z, . . . ,  ){� and [R =�<ZR , . . . ,  <{ÄR� be the set of linguistic terms for 

preference values and the set of linguistic terms to 
express the linguistic difference value between two 
terms in [ª«¬�, respectively. Let ")� ,  ��# and ")! ,  �!# be two 2-tuple linguistic values stated in [ª«¬�. The linguistic difference value between ")� ,  ��# and ")! ,  �!# expressed in [ÀR is 

calculated by: Å�: [Àª«¬� × [Àª«¬�  →  [ÀR , (22) 

Å� F")� , ��#, ')! , �!1M
= ∆�Æ �½E∆³°±²³Ç� '�s , s1�∆³°±²³Ç� "�r, r#NÈ{¾�.{ . ℎÉ�. (23) 

The proposed linguistic difference function 
satisfies the following properties: 

– The difference between the same value of [ª«¬� is the neutral point value of [R: 

Å�'")� , ��#, ")� , ��#1 = 6,�/+�< *0(6/�[Ê� = <{Ä/�Ê . (24) 

Table 11. Crisp outranking relation for Iteration 1 in 
Distillation 2 �

¨�
© �
� �
� �
� �
� �
� �
� �
� 0 0 0 0 0 0 �
� 0 0 0 0 0 0 �
� 1 0 0 1 0 1 �
� 1 1 0 0 0 0 �
� 1 0 0 1 0 0 �
� 1 0 0 1 0 0 
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– The difference between the minimum 
(maximum) and maximum (minimum) values 
of [ª«¬� must be the maximum (minimum) 
value of [R: 

Å�'")Z, 0#, "){, 0#1 = ¹���[Ê� = <{ÄËÊ , Å�'"){, 0#, ")Z, 0#1 = ¹(6�[Ê� = <ZÊ . (25) 

The proof of these properties is trivial. We 
propose the following syntax for [R: [Ê = �<ZÊ: Ì�/+,¹,<=_Í0�,+"ÌÍ#, <�Ê: ��;ℎ«0�,+"�Í#, <�Ê: Í0�,+"Í#, <VÊ: [<(�ℎ/<=_Í0�,+"[Í#, <WÊ: 5.,6/(;�<"5#, <QÊ: [<(�ℎ/<=Î�Ï{ÐÑ"�Î#,  <TÊ: Ò(�ℎ,+"Ò#,  <UÊ: ��;ℎ_Ò(�ℎ,+"�Ò#, <XÊ: Ì�/+,¹,<=_Ò(�ℎ,+"ÌÒ#�. 

(26)  

Example 2. In this example, we perform the 
linguistic difference of the 2-tuple linguistic values  "Í, −0.2# and "Ò, −0,3# using the linguistic 
difference function (Definition 3.1). The set of 
linguistic terms for preference values is defined 
as follows: [ª«¬�= �)Z: z,+=_<0�"zÍ#, )�: Í0�"Í#, )�: �,.(�¹"�#,  )V: Ò(�ℎ"Ò#, )Wz,+=_ℎ(�ℎ"zÒ#�. (27) 

With the linguistic terms [R to describe the 
difference function defined above: 

Å�'"Í, −0.2#, "Ò, −0.3#1 = ∆�Æ F'"�.U�Z.X#ÈW1"�#."W# . 8M = ∆�Æ"5.9# = "<QÊ , 0.9# = "[Ò, 0.9#. (28) 

3.3 Linguistic Concordance and Discordance 
Indices 

The linguistic concordance and discordance 
indices defined in this section have 2-tuple 
linguistic values as input and output. 

3.3.1 The Linguistic Concordance Index 

The linguistic concordance value of "�� , �!# ∈ � × � 

for a criterion > is calculated by making use of a 
linguistic concordance index À̀\"�� , �!# through the 

linguistic difference function. The input value of the > − /ℎ concordance index is a linguistic difference 
value of: 

"�� , �!# ∈ � × � Å� F�̅\"��#, �̅\'�!1M  ∈ [̅Ê, (29) 

where �\: � → [ª«¬� is the > − /ℎ criteria function. 
The output value of the linguistic concordance 
function, i.e., the concordance value, is likewise 
represented by a value in a linguistic concordance 
scale [À|. [| = �)Z| , . . . , ){Ô| � represents a linguistic term 

set. The granularity of [| is chosen following the 
DM’s knowledge to make clear the concordance 
value of "�� , �!# ∈ � × �. 

Here, ")Z| , 0# represents no concordance and "){Ô| , 0# strict concordance. 

The concordance index  À̀\"�� , �!# varies from ")Z| , 0# to "){Ô| , 0#. If  À̀\"�� , �!# is equal to ")Z| , 0#, 

then �� is worse than �!. 

The indifference and preference thresholds F<ÕÖ× , �Ø×MØ and F<ÕÙ× , �Ú×MÚ respectively, both in [ÀR, 

are used to construct a concordance index À̀\"�� , �!# for each criterion > , defined by: 

Definition 3.2. The linguistic concordance 

index concerning a criterion �\, À̀\"�� , �!#, that 

symbolizes the linguistic concordance value stated 

in 2-tuple linguistic values in [| = �)Z| , . . . , ){Ô| � of 

the linguistic difference value between �!  over ��, 
regarding criterion >, ÅÛ�'�� , �!1\ = Å� F�̅\"��#, �̅\'�!1M  ∈ [̅Ê   is specified as: 

À̀\"�� , �!#: � × � → [À| , (30) 

Table 12. Power, weakness, and qualification scores for 
Iteration 1 in Distillation 2 �
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`\̅'�� , �!1  
=

⎩⎪
⎪⎪
⎨
⎪⎪⎪
⎧ "[Z|, 0#,                       (-             ÅÛ�'��, �!1\ >  F<ÕÙ× , �Ú×MÚ

∆�Ù Ü∆�Æ�� F<ÕÙ× , �Ú× MÚ − ÝÄÞ − ß∆�Æ�� FÅÛ�'�� , �!∆�Æ�� F<ÕÙ× , �Ú× MÚ − ÝÄÞ  F  ∆�Æ��F¤àÖ× , Ö×M
 (- F<ÕÖ× , �Ø× MØ <  ÅÛ�'�� , �!1\ ≤  F<ÕÙF[{Ù| , 0M ,                       (-              ÅÛ�'�� , �!1\ ≤  F<ÕÖ× , �Ø×M 

(31) 

With > = 1, … , 6. 

The concordance index `\̅'�� , �!1 is a linguistic 

index measuring whether “�� is at least as good as �!” on criterion >. 

3.3.2 The Linguistic Discordance Index 

For each criterion �\ a linguistic discordance index  .À\"�� , �!# can be defined. This index measures 

how much  �\ is more or less discordant with the 
affirmation “�� outranks �!.” This index considers a 

linguistic veto threshold F<Õá× , �â×Mâ to calculate 

linguistic concordance. 

It should be mentioned that any outranking of ��   by �!  by specified by the concordance index can 

be overruled if there is any criterion �\ for which 
the alternative �! outperforms the alternative ��  by 

at least a veto threshold, even if all the other criteria 
favor the outranking of �� "ÅÛ�'�� , �!1\  ≥ F<Õá× , �â×M). 

So, if �� is better than �! normally, there may be 

some criteria (possibly one) where ��  is worse than �!. The index .À\"�� , �!# displays this condition for 

that criterion. .À\"�� , �!# varies from ")Z| , 0# to "){Ô| , 0#. ")Z| , 0# represents no discordance and "){Ô| , 0# represents strict discordance. The 

linguistic discordance index is calculated 
according to the following definition: 

Definition 3.3. The linguistic discordance index .À\"�� , �!#, for a criterion �\, that represents the 

linguistic discordance value expressed in 2-tuple 

linguistic values in [| = �)Z|, . . . , ){Ô| � of the 

linguistic difference value between �! over ��, 
regarding criterion >, ÅÀ�"�� , �!#\ =Å�"�̄\"��#, �̄\"�!## ∈ [ÀR is stated as: 

.À\"��, �!#: � × � → [À| , (32) 

 

.̅\'�� , �!1

=
⎩⎪
⎪⎪
⎨
⎪⎪⎪
⎧"[Z| , 0#,                       (-             ÅÛ�'�� , �!1\ ≤  F<ÕÙ× , �Ú×MÚ                               

∆�Ù Ü∆�Æ�� FÅÛ�'�� , �!1\M − ÝÄÞ� ã∆�Æ�� F<ÕÙ× , �Ú×MÚ − ÝÄÞä
∆�Æ�� F<Õá× , �â× Mâ − ÝÄÞ − F∆�Æ��F¤àÙ× , Ù×MÙ�ÝÄÞM . ℎÚå ,

 (- F<ÕÙ× , �Ú×MÚ <  ÅÛ�'�� , �!1\ <  F<Õá× , �â×Mâ  
F[{Ù| , 0M ,                       (-              ÅÛ�'�� , �!1\ ≥  F<Õá× , �â×Mâ                              

(33) 

with > = 1, … , 6. 

3.4 The Linguistic Outranking Relation in the 
Linguistic ELECTRE III 

The linguistic outranking relation Atū defined for 
each "�� , �!# ∈ � × � as a linguistic credibility index, k̄"�� , �!#, state broadly in what linguistic measure 

“�� outranks �!” employing both the linguistic 

concordance index À̀ "�� , �!# and the linguistic 

discordance indices  .À\"�� , �!# for each criterion �\. 

The linguistic credibility index is the 
comprehensive linguistic concordance index 
reduced by the linguistic discordance indices. In 
the nonappearance of such linguistic discordance 
criteria, k̄"�� , �!# = À̀"�� , �!#. 

This linguistic credibility value is decreased in 
the occurrence of one or more linguistic discordant 
criteria �\ when .À\"�� , �!# > À̀"�� , �!#. In 

correspondence with the veto effect k̄"�� , �!# =")Z| , 0# if exists a linguistic discordance index such 
that .À\"�� , �!# = "){Ô| , 0#, does not matter what the 

weight of the criterion �\ is. The linguistic 
credibility index k̄"�� , �!# is defined as follows: 

Table 13. Crisp outranking relation for Iteration 1 in 
Distillation 3 �

¨�
© �
� �
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� 0 0 0 0 0 �
� 0 0 0 0 0 �
� 1 1 0 0 0 �
� 1 0 1 0 0 �
� 1 0 1 0 0 
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k̄"�� , �!#
=

⎩⎪⎪
⎨
⎪⎪⎧

À̀"�� , �!#, (- lÀ "�� , �!# = æΔ�Ô"Δ�Ô��" À̀"�� , �!## •
n ��Ô��'){Ô| , 01 − ��Ô�� F.À\'��, �!1M��Ô��'){Ô| , 01 − ��Ô�� F À̀'�� , �!1M #

(- lÀ "�� , �!# ≠ æ,\∈pÀ "qr,qs#
 

(34) 

where: 

lÀ "�� , �!# = è�\ ∈ �7.À\"�� , �!# > À̀"�� , �!#é. (35) 

The formula for determining the linguistic value 
of k̄"�� , �!# over the linguistic interval "")Z| , 0#, "){Ô| , 0## is non-compensatory, i.e., an 

alternative’s notable poor performances in some 
criteria cannot be compensated for even with very 
high performance in other criteria. The aggregated 
performance exposes this fact. This completes the 
first phase of the linguistic ELECTRE III method. 

3.5 The Ranking Algorithm in the Linguistic 
Extension of ELECTRE III 

The second phase of the linguistic ELECTRE 
method is to exploit the linguistic outranking 
relation  Atū to get a partial preorder of the 
alternatives. This final partial preorder is obtained 
because of the “intersection” of two complete 
preorders resulting from the descending and 
ascending distillations [24]. 

In the descending distillation, the procedure 
ranks the alternatives from the best to the worst; 
on the contrary, in the ascending distillation, the 
process ranks the alternatives from the worst to 
the best. 

In the following, we modify the distillation 
procedure of ELECTRE III. In the linguistic 
ELECTRE III distillation procedure, we state a set 
of linguistic credibility cutting levels ")ÕÆ , �Ê#"Ñ# in [| = �)Z| , . . . , ){Ô| �. Given a linguistic cutoff level 

symbolized by ")ÕÆ , �Ê#"Ñ#, both distillations relate to 

the following linguistic crisp outranking relation: 

��At"�àÆ , Æ#"ê#�! (36) 

⇔ ìk̄"�� , �!# ≥ ")ÕÆ , �Ê#"Ñ#k̄"�� , �!# > ��Ô'��Ô��"k̄"�! , ��## + í" k̄"�� , �!##1, 
where  í" µÀ# =  "î³ÔÇ�"ïÀ ##{Ô + � is a linguistic 

distillation threshold and � and � are two distillation 
coefficients. ")ÕÆ , �Ê#"Ñ# is also a linguistic 

preference parameter, which fixes the minimum 
degree of credibility considered obligatory by the 
DM to support the statement “�� outranks �!”. From 

the linguistic crisp outranking relation, for each 
alternative ��, its ")ÕÆ , �Ê#"Ñ#-qualification is: 

$t"�àÆ , Æ#"ê#"��# = *t"�àÆ , Æ#"ê#"��# −-t"�àÆ , Æ#"ê#"��#, 
(37) 

where *t"�àÆ , Æ#"ê#"��# = ð��! ∈ �: ��At"�àÆ , Æ#"ê#�!ñð is 

the ")ÕÆ , �Ê#"Ñ#-power of ��; it is the number of 

alternatives that are outranked by ��, and -t"�àÆ , Æ#"ê#"��# = ð��! ∈ �: �!At"�àÆ , Æ#"ê#���ð is the ")ÕÆ , �Ê#"Ñ#-weakness of ��; it is the number of 

alternatives outranking ��. 
In the rest of this section, we explain the 

descending and ascending distillation algorithms in 
detail as follows: Let ")ÕÆ , �Ê#"�# be the first fixed 

linguistic cutoff level and $t"�àÆ , Æ#"�#"��# be the 

qualification of alternative ��. Then, choose in � the 
best ones resulting a subset of alternatives from � 
that has the maximum qualification (descending 

selection, Åòò⃗ �) or the worst alternatives resulting 
thus a subset of alternatives from �, which has the 

minimum qualification (ascending selection, Å⃖òò�): 

Table 14. Power, weakness, and qualification scores for 
Iteration 1 in Distillation 3 �
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Åòò⃗ � = õ�� ∈ �|$t'�àÆ , Æ1"�#"��# = $⃗t= maxú∈t $t'�àÆ , Æ1"�#"�# û, (38) 

Å⃖òò� = ì�� ∈ � ü$t"�àÆ , Æ#"�#"��# = $⃖t
= min $t"�àÆ , Æ#"�#"�#ú∈t �. (39) 

Consequently, at the end of the > steps of the first 
distillation, the first subset of � is obtained, 
representing the first (last) class of one of the two 

final preorders. Let `⃗� = Åòò⃗ \ symbolize the first 

class of the descending selection, and `⃖� = Å⃖òò\ 
indicate the last class of the ascending selection. 

Let �⃗� = �\`⃗�, or �⃖� = �\`⃖� represent the 
remaining subset of the alternatives from A to rank 

after the first distillation. In �⃗� and �⃖� The 
alternatives’ qualification is computed again for 
choosing one or various alternatives. This process 
is reiterated until all the alternatives are ranked. 

The distillation process is condensed in the 
following way: 

1. Set 6 = 0, put or �⃗Z = � (descending), or �⃖Z =� (ascending). 
2. Set: ")ÕÆ , �Ê#"Z# = ¹��qr,qs∈t⃗�qr�qs

k̄"��, �!# 0+ ")ÕÆ , �Ê#"Z# =
¹��qr,qs∈t⃖�qr�qs

k̄"�� , �!#. 

3. Put > = 0, ÅZ = �⃗� (descending) or ÅZ =�⃖� (ascending). 
4. Choose the maximum value from the linguistic 

credibility scores that are less than ")ÕÆ , �Ê#"\# −í"")ÕÆ , �Ê#"\##. 
5. ")ÕÆ , �Ê#"\È�# = ¹��èū"qr,qs#È�""�àÆ , Æ#"×##�"�àÆ , Æ#"×#éqr,qs∈�×

k̄"��, �!#. 

6. 5- ∀�� , �! ∈ Å\ ,  k̄"�� , �!# + í"")ÕÆ , �Ê#"\## >")ÕÆ , �Ê#"\#,  *�/  ")ÕÆ , �Ê#"\È�# = ")Z, 0#. 

7. Calculate the ")ÕÆ , �Ê#"\È�#-qualifications 

($t"�àÆ , Æ#"×#"��#)∀�� ∈ Å\ . 

8. Obtain the maximum or minimum ")ÕÆ , �Ê#"\È�#-
qualification score: $⃗�× = max $�×"�àÆ , Æ#"×#"�#ú∈�×  

(descending) or $⃖�× =min $�×"�àÆ , Æ#"×#"�#ú∈�×  (ascending). 

9. Construct Åòò⃗ \È� = 	�� ∈ Å\ 
$�×"�àÆ , Æ#"×��#"��# = $⃗�×� 
(descending) or Å⃖òò\È� = 	�� ∈ Å\ 
$�×"�àÆ , Æ#"×��#"��# =$⃖�×� (ascending). 

10. If 7Åòò⃗ \È�7 = 1  0+  7Å⃖òò\È�7 =1  0+  ")ÕÆ , �Ê#"\È�# = ")Z, 0# you proceed to 

step (9). 

11. else, do > = > + 1, Å\ = Åòò⃗ \ (descending) or Å\ = Å⃖òò\ (ascending) and go to step (4). 

12. `⃗�È� = Åòò⃗ \È�is the set of alternatives carried 
through the "6 + 1# − /ℎ downward distillation, 
termed the "6 + 1# − /ℎ distillate of the 

downward procedure. `⃖�È� = Å⃖òò\È� is the set of 
alternatives taken through the "6 + 1# − /ℎ 
upward distillation, termed the "6 + 1# − /ℎ 
distillate of the upward procedure. 

13. Put �⃗�È� = �⃗�\`⃗�È� (descending) or �⃖�È� =�⃖�\`⃖�È� (ascending). 

14. If �⃗�È� ≠ æ,  0+ �⃖�È� ≠ æ then 6 = 6 + 1, 
and proceed to Step (2). 

15. Otherwise, end of the distillation. 

During the same distillations, when advancing 
from step > to step > + 1, the linguistic cutoff level ")ÕÆ , �Ê#"\# is replaced by ")ÕÆ , �Ê#"\È�# <")ÕÆ , �Ê#"\# as follows (Å\ is the remaining set of 

alternatives to rank): 

")ÕÆ , �Ê#"\È�#= ¹��èū"qr,qs#È�""�àÆ , Æ#"×##�"�àÆ , Æ#"×#éqr,qs∈�×,
k̄"�� , �!# 

(40) 

where í" ")ÕÆ , �Ê#"\## = Δ�Ô E "
³ÔÇ�""�àÆ , Æ#"×###{Ô + �N. 
The analyst can fix one value for the distillation 

coefficients � and � before the computations. The 
standard values recommended in the literature are � = −0.15 and � = 0.30. 

We obtain two complete preorders at the end of 
the distillation procedure. In each preorder, the 
alternatives are regrouped in a partition of 

Table 15. Crisp outranking relation for Iteration 2 in 
distillation 3 �
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equivalence classes, forming a ranking from the 
best to the worst alternatives. 

Each class includes at least one alternative. A 
partial preorder of the alternatives is constructed 
utilizing the intersection of both preorders, which 
specifies the comparisons between alternatives 
and emphasizes the possible incomparabilities 
as follows: 

– Alternative �� is preferred to the alternative �! 

if �� belongs to a class not worse than 
alternative �!  in both preorders and a better 

class for at least one of the two preorders. 

– Alternative �� is indifferent to alternative �! if �� 
and �! belong to the same class in the 

two preorders. 

– Alternatives �� and �! are incomparable if �� 
belongs to a class better than �! in one 

preorder and worse in the other or vice versa. 

To illustrate the proposed method, we present 
in the following section a step-by-step example of 
the linguistic ELECTRE III method for ranking a set 
of alternatives. 

4 An Illustrative Example 

We will use a case study from [25] to demonstrate 
the proposed approach. This case study is an 
Environmental Impact Significance Assessment 
problem in which heterogenous data (qualitative 
and quantitative judgments) obtained from a DM 
are used to determine the environmental impacts 
that a set of projects or industrial activities can 
have on a petrol station's usual operations. 

This case study aims to evaluate seven 
ecological effects that can occur between the 

interactions of four industrial activities and four 
environmental factors in a petrol station. The 
evaluation seeks to rank the identified impacts 
from the most to the least significant. Each step of 
the linguistic extension of the ELECTRE III method 
is explained below. 

Step 1. Formulation of the multicriteria ranking 
problem. Given a set of activities from a petrol 
station A = {��: The operation of petrol pumps, ��: 
the operation of the car wash, �V: the transport of 
fuel and materials, and �W: the filling of fuel tanks} 
and four possible environmental factors  F =  {-�: 
Daily sound comfort, -�: hydrocarbons in the air, -V: 
public health and civic safety, and -W: energy 
infrastructures} a set of seven possible 
environmental impacts that are triggered from the 
interaction between � and ­, was identified EI = 
{(��, -�#, "��, -V#, "��, -�#, "��, -W#, "�V, -�#, "�V, -W#, "�W, -�# }. 

For convenience, we define EI = �,(�, ,(�, ,(V, ,(W, ,(Q, ,(T, ,(U�. For the assessment of 
the elements in EI, a DM, which has specific 
knowledge is public health, expressed his 
preferences on EI using diverse expression 
domains: Numerical(N), Interval-valued(I), or 
Linguistic (L) over a set of 10 criteria defined in 
Table 1. Note that the preference direction for all 
criteria is to maximize. 

The DM uses a linguistic domain with five 
linguistic terms denoted by [Q to express his/her 
preferences. Each linguistic term set is 
symmetrically and uniformly distributed, and its 
syntax is defined in the following form: 

[Q=  �[Z ∶ z,+=Í0�"zÍ#,  [� : Í0�"Í#,  [� : �,.(�¹[V ∶ Ò(�ℎ"Ò#, [W ∶ z,+=Ò(�ℎ"zÒ#. (41) 

Step 2. Collecting the heterogeneous 
information: The DM assessed each criterion for 
each impact in EI using a heterogeneous 
framework. The expression domain used for each 
criterion was according to its nature; for criteria ��,  ��, �T, �U, �X, �Y, and ��Z were used the 
linguistic terms in [Q; for criteria �V and �Q were 
used a scale based on real numbers; meanwhile, 
for criterion �W was used an interval scale. The 
assessment made by the DM is presented in 
Table 2. 

Step 3. Fusion of the heterogeneous 
information: The chosen linguistic domain to fuse 

Table 16. Power, weakness, and qualification scores for 
Iteration 2 in distillation 3 �
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the information is [Q. The integrated information 
given by the DM is shown in Table 3. 

Step 4. Computing linguistic difference values 
between unified assessments: The linguistic 
difference value between a pair of 2-tuple linguistic 
values is stated in the linguistic comparison scale [R presented in Figure 3. Linguistic difference 
values are calculated by Eq. (23). 

Step 5. Computing linguistic concordance values: 
Linguistic concordance index concerning a 
criterion �\, `\',(� , ,(!1. 

Calculations to get individual linguistic 
concordance values. Initially, the linguistic 
preference scale [| is chosen. After that, for each 
criterion �\, its linguistic concordance function is 
performed (Eq. (31)) and its indifference and 
preference threshold parameters are defined in 2-
tuple linguistic values in [R. 

Each linguistic concordance value for each 
alternative ,(�, with regards to alternative ,(!, over 

a criterion �\, is calculated using the linguistic 
outranking function (Eq. 31). 

The calculation of the linguistic outranking 
value for each criterion is given in a linguistic 
preference scale [| = �[Z| , … , [\|� with nine 
linguistic terms. The inter-criteria parameters of  �\ , > = 1,2, … ,10 are presented in Table 4, which 
are described in [R. 

Example 3. Calculation of  `�̅",(�, ,(T#. According to the descriptive example, 
the computations of the linguistic concordance 
indices (Definition 3.2) can be made in the 
following form: From Table 3, �̅�",(�# =  "Í, 0# and �̅�",(T# =  "zÒ, 0#, then: 

Å�",(�, ,(T#� =  Å�'�̅�",(�#, �̅�",(T#1� =  Å�'"Í, 0#, "zÒ, 0#1� 
= ∆�� �F ∆�°±²³ �� "zÒ, 0# − ∆�°±²³ �� "Í, 0#M + 82�8 × 8� 

= ∆�� ½"4 − 1# + 82�8 × 8¾ =  ∆��"5.5# =  "5QR , 0.5#. 
(42) 

Based on Eq. (31), since: 

'5QR , 01$ ≤ Å�",(�, ,(T#� =  '5QR , 0.51  ≥ "5TR , 0#*. (43) 

Then from interpolation, we calculate: 

`�̅",(�, ,(T# = Ü"5TR , 0#* − X� − E'5QR , 0.51 − X�N
"5TR , 0#* − X� − E"5QR , 0#$ − X�N å

× 8 = "5WR , 0#. (44) 

In this way, it is possible to get the linguistic 
concordance indices `\̅',(� , ,(!1  on a criterion �\ 

for all pairs of alternatives ',(� , ,(!1, and, finally, 

display the linguistic concordance matrices for 
each criterion. 

For example, on the criterion �� the linguistic 
concordance matrix is expressed in Table 5. The 
comprehensive linguistic concordance index `̅',(� , ,(!1. 

The comprehensive linguistic concordance 
index `̅',(� , ,(!1 is computed using the 

weight vector: � =  "0.36, 0.24, 0.08, 0.04, 0.04, 0.04, 0.04, 0.04, 0.08, 0.04# 
for the family of criteria. The value of `̅",(�, ,(T# 

is computed as follows: 

`̅",(�, ,(T# =  ∆�Ô F0.36"∆�Ô��'`�̅",(�, ,(T#1+  0.24"∆�Ô��'`�̅",(�, ,(T#1+  0.08"∆�Ô��'`V̅",(�, ,(T#1+  0.04"∆�Ô��'`W̅",(�, ,(T#1+  0.04"∆�Ô��'`Q̅",(�, ,(T#1+  0.04"∆�Ô��'`T̅",(�, ,(T#1+  0.04"∆�Ô��'`U̅",(�, ,(T#1+  0.04"∆�Ô��'`X̅",(�, ,(T#1+  0.08"∆�Ô��'`Y̅",(�, ,(T#1+  0.04"∆�Ô��'`�̅Z",(�, ,(T#1M =  "[Q| , 0.8048#. 

(45) 

Proceeding in the same way, for all pairs of 
environmental impacts ',(� , ,(!1 representing the 

illustrative example, the comprehensive linguistic 
concordance matrix is obtained (Table 6). 

Step 6. Computing linguistic discordance 
values d��'ei� , ei�1. The linguistic veto thresholds 

have been defined on criteria �� and ��. These 
criteria can give a linguistic discordance index that 
is not null. 

Example 4. Calculation of .̅�",(�, ,(T#. The 
computations of the linguistic discordance indices 
(Definition3.3) can be made as follows: from Table 
3 �̅�",(�# =  "Í, 0# and �̅�",(T# =  "zÒ, 0#, from 
example 2 Å� ",(� , ,(T#� =  "5QR , 0.5#. 
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Since Å� ",(�, ,(T#� =  "5QR , 0.5#  ≤  "5TR , 0#|  then 
from Eq. 42  .̅�",(�, ,(T# = "[Z|, 0#. 

In the same way, with this computation process, 
it is possible to obtain the linguistic discordance 
indices .̅\',(� , ,(!1 on the criterion �\ for all pairs of 

environmental impacts  ',(� , ,(!1  and display the 

linguistic discordance matrices for each criterion 
where it is defined a linguistic veto threshold. For 
instance, on the criterion ��, the computed 
discordance matrix is defined in Table 7. 

Step 7. Computing the linguistic outranking 
relation. Based on the comprehensive linguistic 
concordance matrix and the partial linguistic 
discordance matrices, the value of k�",(�, ,(T#  is 
computed as follows: 

Since lÛ",(�, ,(T# = 0 and ∀>, .̅\",(�, ,(T# <`̅",(�, ,(T#, then, from Eq. (21), k�",(�, ,(T# = `̅",(�, ,(T# =  "[Q|, 0.8048#. 

For all pairs of alternatives representing the 
illustrative example, the linguistic credibility matrix 
or linguistic outranking matrix is obtained (see 
Table 8). 

Step 8. Ranking of alternatives from the 
linguistic outranking relation O�� . The ranking 
algorithm can be applied according to the linguistic 
credibility matrix obtained by the linguistic 
ELECTRE III (Table 6). 

For illustration purposes, we describe the 
procedure followed to perform the first four 
descending distillations as follows: 

Let: Ì5Zòòòòòò⃗ = Ì5 = �,(�, ,(�, ,(V, ,(W, ,(Q, ,(T, ,(U�, í'µ̅1 
= ∆�Ù �� F∆�Ù��'µ̅1MℎÚ + � �. (46) 

With � = −0.15, � = 0.30. 

Distillation 1. 
Step 1: Let 6 = 0, Ì5Zòòòòòò⃗ = �,(�, ,(�, ,(V, ,(W, ,(Q, ,(T, ,(U�, > =0, then '[ÕÆ , �Ê1"Z# = maxq,�∈ ���òòòòòò⃗q��

k� "�, x# = "[X| , 0#, and  ÅZ = Ì5Zòòòòòò⃗  ,  

hence '[ÕÆ , �Ê1"�# = max
	u"q,�#È�F'�àÆ , Æ1"�#M�'�àÆ , Æ1"�#�q,�∈��

k� "�, x# =
"[U| , 0.84#. Given this linguistic cutoff, we can create 
a linguistic crisp outranking relation using Eq. (36). 
Table 9 shows the resulting crisp outranking 
relation. From the crisp outranking relation, we 
calculate the '[ÕÆ , �Ê1"�#

-qualifications 

�$t'�àÆ , Æ1"�#"�#�∀� ∈ ÅZ  Table 10 shows the calculated 

power, weakness, and qualification. 
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r r , Åòò⃗ � = �,(T�. Because 7Åòò⃗ �7 =

1 then  `⃗� = Åòò⃗ � = �,(� and the first distillation is 
completed. For the subsequent distillation, put  Ì5òòòò⃗ � = Ì5òòòò⃗ Z\`⃗� = �,(�, ,(�, ,(V, ,(W, ,(Q, ,(T, ,(U�\�,(T� =�,(�, ,(�, ,(V, ,(W, ,(Q, ,(U� and do do 6 = 6 + 1 = 1. 

Distillation 2. 

Step 1: Let > = 0, ÅZ = Ì5�òòòòòò⃗ = �,(�, ,(�, ,(V, ,(W, ,(Q, ,(U�, then '[ÕÆ , �Ê1"Z# = maxq,�∈ ���òòòòòò⃗q��
k� "�, x# = "[X| , 0#, and  '[ÕÆ , �Ê1"�# =

max
	u"q,�#È�F'�àÆ , Æ1"�#M�'�àÆ, Æ1"�#�q,�∈��

k� "�, x# = "[U| , 0.84#. 
From this linguistic cutoff, we create the 

linguistic crisp outranking relation shown in Table 
11. Then we calculate the '[ÕÆ , �Ê1"�#

-qualifications 

�$t'�àÆ , Æ1"�#"�#�∀� ∈ ÅZ . Table 12 shows the calculated 

power, weakness, and qualification for ÅZ in step 

Table 17. Crisp outranking relation for iteration 1 in 
distillation 4 �

¨�
© �
� �
� �
� �
� �
� 0 0 0 0 �
� 0 0 0 0 �
� 1 1 0 0 �
� 1 0 1 0 

Table 18. Power, weakness, and qualification scores for 
Iteration 1 in distillation 4 ,(�A,(! �
� �
� �
� �
� 

p
D

0

(s
tc

,α
c
)(0 )

- power 
0 0 2 2 

(0)( , )t cc
s

Df
α

- weakness 

2 1 1 0 

(0)

0

( , )t cc
s

Dq
α

 - qualification 

-2 -1 1 2 

 

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1655–1677
doi: 10.13053/CyS-28-3-5166

Juan Carlos Leyva-López, Jesús Jaime Solano-Noriega, Jorge Anselmo Rodríguez-Castro, et al.1672

ISSN 2007-9737



 

 

one of distillation 2. The maximum (s
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(k+1)

-

qualification score is $⃗�× = maxú∈�× $�×'�àÆ , Æ1"×#"�# = 3, then

{ }
( 1)( , )

1 ( )
k

t cc

k k

s

k k D D
D a D q a q

α +

+ = ∈ =
r r , Åòò⃗ � = �,(V�.  

Because 7Åòò⃗ �7 = 1 then  `⃗� = Åòò⃗ � = �,(V� and the 

first distillation is completed. For the subsequent 

distillation, put Ì5òòòò⃗ � = Ì5òòòò⃗ �\`⃗� =�,(�, ,(�, ,(V, ,(W, ,(Q, ,(U�\�,(V� =�,(�, ,(�, ,(W, ,(Q, ,(U� and do do 6 = 6 + 1 = 2. 

Distillation 3. 

Iteration 1: Let > = 0, ÅZ = Ì5�òòòòòò⃗ = �,(�, ,(�, ,(W, ,(Q, ,(U�, 
then '[ÕÆ , �Ê1"Z# = maxq,�∈ ��Þòòòòòò⃗q��

k� "�, x# = "[X| , 0#, and '[ÕÆ , �Ê1"�# =
max

	u"q,�#È�F'�àÆ , Æ1"�#M�'�àÆ, Æ1"�#�q,�∈��
k� "�, x# = "[U| , 0.84#. 

From this linguistic cutoff, we create the 
linguistic crisp outranking relation shown in Table 
13. Then we calculate the '[ÕÆ , �Ê1"�#

-qualifications 

�$t'�àÆ , Æ1"�#"�#�∀� ∈ ÅZ. Table 14 shows the calculated 

power, weakness, and qualification for ÅZ in 
Iteration one of distillation 3. The maximum

(s
t
c

,α
c
)

(k+1)

-qualification score is $⃗�× =
maxú∈�× $�×'�àÆ , Æ1"×#"�# = 2, then { }

( 1)( , )

1 ( )
k

t cc

k k

s

k k D D
D a D q a q

α +

+ = ∈ =
r r , 

Åòò⃗ � = �,(Q, ,(U�. Because 7Åòò⃗ �7 > 1 we proceed with 
another iteration in distillation three. 

Iteration 2: Let > = 1, and '[ÕÆ , �Ê1"�# =max
	u"q,�#È�F'�àÆ , Æ1"�#M�'�àÆ, Æ1"�#�q,�∈��

k� "�, x# = "[T| , 0.24#.  
From this linguistic cutoff, we create the 

linguistic crisp outranking relation shown in Table 
15. Then we calculate the '[ÕÆ , �Ê1"�#

-qualifications 

�$t'�àÆ , Æ1"�#"�#�∀� ∈ Å�. Table 16 shows the calculated 

power, weakness, and qualification for Åòò⃗ � in 
Iteration 2 of distillation 3. 

The maximum (s
t
c

,α
c
)

(k+1)

-qualification score is 

$⃗�× = maxú∈�× $�×'�àÆ , Æ1"×#"�# = 1, then: 

{ }
( 1)( , )

1 ( )
k

t cc

k k

s

k k D D
D a D q a q

α +

+ = ∈ =
r r , (47) 

Åòò⃗ � = �,(Q�. 
Because 7Åòò⃗ �7 = 1 then  `⃗V = Åòò⃗ � = �,(Q� and the 

third distillation is completed. For the subsequent 

distillation, put  Ì5òòòò⃗ V = Ì5òòòò⃗ �\`⃗V =�,(�, ,(�, ,(W, ,(Q, ,(U�\�,(Q� = �,(�, ,(�, ,(W, ,(U� and 
do 6 = 6 + 1 = 3. 

Distillation 4 

Iteration 1: Let > = 0, ÅZ = Ì5Vòòòòòò⃗ = �,(�, ,(�, ,(W, ,(U�, then '[ÕÆ , �Ê1"Z# = maxq,�∈ ���òòòòòò⃗q��
k� "�, x# = "[X| , 0#, and '[ÕÆ , �Ê1"�# =

max
	u"q,�#È�F'�àÆ , Æ1"�#M�'�àÆ, Æ1"�#�q,�∈��

k� "�, x# = "[U| , 0.84#. From this 

linguistic cutoff, we create the linguistic crisp 
outranking relation shown in Table 17. Then, we 
calculate the '[ÕÆ , �Ê1"�#

-qualifications 

�$t'�àÆ , Æ1"�#"�#�∀� ∈ ÅZ  . Table 18 shows the calculated 

power, weakness, and qualification for Åòò⃗ Z in 
Iteration one of distillation 4. The maximum

(s
t
c

,α
c
)

(k+1)

-qualification score is $⃗�× =
maxú∈�× $�×'�àÆ , Æ1"×#"�# = 1, then { }

( 1)( , )

1 ( )
k

t cc

k k

s

k k D D
D a D q a q

α +

+ = ∈ =
r r , Åòò⃗ � = �,(U�. Because 7Åòò⃗ �7 = 1 then  `⃗W = Åòò⃗ � = �,(U� and 

the third distillation is completed. For the 
subsequent distillation, put  Ì5òòòò⃗ W = Ì5òòòò⃗ V\`⃗W =�,(�, ,(�, ,(W, ,(U�\�,(U� = �,(�, ,(�, ,(W� and do do 6 = 6 + 1 =4. 

The remaining steps for the next descending 
distillations and the ascending distillation steps are 
processed in the same way. After completing the 
descending and ascending distillations, we got two 
complete preorders whose intersection creates the 
final ranking of the alternatives. 

Figure 4 depicts the two preorders (descending 
and ascending distillations) calculated with the 
distillation procedure. In the descending preorder 
(Fig 4. a), there is an equivalence class in the first 
rank with the environmental impacts ,(�, ,(�, ,(W, ,(U, followed by EI ,(Q in the second 
rank, and at the last rank, there is an equivalence 
class with the environmental impacts ,(V and ,(T. 
Meanwhile, the ascending distillation (Fig 4. b) is 
more granulated with ,(� in the first rank, followed 
by ,(W ≻ ,(U ≻ ,(Q ≻ ,(�, and at the last rank are ,(V 
and ,(T. 
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Figure 4. c depicts the final preorder resulting from 
the intersection of the two preorders.  

The final partial preorder follows a decreasing 
order of preferences, meaning that environmental 
impacts at the top are more significant than those 
at the bottom. 

Hence, the final rank suggests that the ,(� is the 
most significant environmental impact that is the 
interaction between action �� and factor -�; in the 
second position is ,(W, that is the interaction 
between action �� and factor -W; in the third position 
is ,(U that is the interaction between action �W and 
factor -�; in the fourth position are ,(� and ,(Q that 
are the interactions between �� and factor -V, and �V and factor -� respectively; it should be noted that 
although ,(� and ,(Q are in the same ranking, they 
are incomparable. Thus, more analysis should be 
made for these two actions; finally, in the last rank, 

there is an equivalence class with ,(V and ,(T that 
suggests that both are indifferent to each other. 

5 Conclusions 

This paper aimed to develop a linguistic extension 
of the ELECTRE III method that allows solving 
instances of the multicriteria ranking problem with 
input data defined in heterogeneous contexts. 

The new proposal fuses the heterogeneous 
information into 2-tuple linguistic values, allowing 
the DM to provide their preferences using diverse 
expression domains, such as numerical domain, 
interval-valued domain, and linguistic domain, 
according to the nature and uncertainty of the 
decision criteria, and their level of knowledge 
and experience. 

   

a) Preorder resulting from a 

descending distillation 

b) Preorder resulting from 

an ascending distillation 

c) Final partial preorder 

Fig. 4. Graphical representation of the preorders 
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Consequently, the new method is appropriate 
to integrate quantitative and qualitative criteria and 
uncertain information into the elements of the 
multicriteria model. In the modeling process of the 
ELECTRE III linguistic method, concordance, 
discordance, and credibility indices are proposed 
to consider linguistic inputs and outputs. Also, a 
linguistic difference function is stated to compute 
the linguistic difference between a pair of 2-tuple 
linguistic values. The output of the linguistic 
difference function is the input of the linguistic 
concordance and discordance indices. 

Therefore, the linguistic extension of the 
ELECTRE III method offers good quality 
interpretability and understanding throughout the 
decision-making process in instances of the 
multicriteria ranking problem where there is 
heterogeneous data, as demonstrated in the 
illustrative example presented in this document. 

The proposed methodology is applicable to 
real-life situations that involve decision-making 
with multiple conflicting criteria. This methodology 
can be used for various purposes such as project 
selection, supplier selection, job candidate 
evaluation, product design, environmental policy, 
and more. 

When making decisions in contexts that involve 
diverse perspectives or input data from various 
sources, applying the linguistic ELECTRE III 
method can significantly impact decision-making in 
business, government, or social environments. For 
example, it can enhance the consideration of 
decision-maker preferences, improve 
transparency and accountability, facilitate cross-
sector collaboration, and enable adaptation to 
dynamic environments. 

The linguistic ELECTRE III can help 
organizations and policymakers navigate complex 
situations, manage uncertainty, and make more 
informed and equitable decisions in various 
business, government, and social environments. It 
provides a systematic and structured approach to 
decision-making in diverse contexts. 

Soon, we plan to develop a linguistic extension 
of the ELECTRE III method for a collaborative 
group of DMs, and a hierarchical linguistic 
extension of the ELECTRE III method. Also, it is 
contemplated to carry out more real-world 
applications of the multicriteria ranking problem 
using our proposal. 
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