
A Linear Genetic Programming Approach
for the Internet Shopping Optimization Problem

with Multiple Item Units (ISHOP-U)

Jazmin Del-Angel, Alejandro Santiago, Salvador Ibarra-Martı́nez,
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Abstract. Evolutionary computation (EC) is a
broad field of artificial intelligence where evolutionary
processes inspire algorithms, such as artificial immune
systems, inspired by the evolution of acquired immune
systems. The predominant approach in EC is
Evolutionary Algorithms (EAs), inspired by the evolution
of Darwin’s natural species. A different approach
is Evolutionary Programming (EP), which, instead of
evolving individuals representing the problem decision
variables (chromosomes), evolves programs, which
code instructions, and executing those instructions
generates a solution. Genetic Programming (GP) is an
approach analogous to Genetic Algorithms (GAs), but
it differs in that it works over programming instructions
instead of decision variables. Although GP is an exciting
approach, it is more complicated to implement due to
the necessity of managing tree data structures. Linear
Genetic Programming (LGP) is more straightforward
than traditional GP, without the need for tree data
structures. This chapter shows a proof of concept
to implement LGP to evolve programs for the Internet
Shopping Optimization Problem with multiple item Units
(ISHOP-U), an NP-Hard optimization problem. Readers
can easily implement the proposed approach and
produce Linear Genetic Programming algorithms for
other problems.

Keywords. ISHOP-U, evolutionary programming, linear
genetic programming.

1 Introduction

Genetic Algorithms are the more expansive
Evolutionary Algorithm (EA) approach, generally
used for search and parameter optimization
problems based on sexual reproduction and the
principle of survival of the fittest. To solve a
problem, we start from an initial set of individuals,
called a population, generated randomly. Each of
these individuals represents a possible solution to
the problem.

These individuals will evolve through
environmental selection and adapt their
characteristics according to a fitness function,
improving it after generations. The population
evolves towards similar characteristics to achieve
a particular goal or objective function. EAs have
proved to be effective in addressing real-world
complex optimization problems (e.g., [23, 24]).

The Artificial Immune Systems [7, 28, 30, 8,
27, 31, 11, 9, 1, 12, 19] is an example of an
Evolutionary Computation algorithm not inspired by
genetics evolution, inspired by the adaptation of
biological immune systems [18]. The EA analogy
is that individuals represent decision variables.

Another subfield of Evolutionary Computation
is Evolutionary Programming [10] (EP), where the
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Algorithm 1 Genetic algorithms
standard framework

while ¬ Stop condition do
Parent← Selection(Pop)
offSpring ← Crossover(Parent)
Mutation(offSpring)
Pop← Pop ∪ offSpring
EnviromentalSelection(Pop)

end while

Algorithm 2 Matrix S translation to
program instructions

Program← an empty list of instructions
for i = 1 to m do

for j = 1 to n do
if Si,j > 0 then

Program ← add the instruction si,j
equals to Si,j matrix value

end if
end for

end for
return Program

term programs replace individuals, and a program
means a set of instructions to be executed, as in a
computer program. In other words, EAs explicitly
evolve the problem decision variables, while EP
evolves operations that would implicitly conduct to
the decision variables.

A subfield inside EP is Genetic Programming [4,
22, 13, 14, 15, 16] (GP). GP shares the
sexual reproduction inspiration with the Genetic
Algorithms (GAs). Therefore, the evolutionary
operators of selection [3], crossover [26, 25,
20, 2], and mutation [29] also exist in GP,
although a distinctive characteristic of GP is that
chromosomes are of variable length. In addition,
GP has the clone operator.

A clone operator is necessary because the
environmental selection (survival of the fitness) is
regularly different than in GAs, as the flowchart
in Figure 1 shows, not allowing overlap in
the generations between offspring and parents.
Since GP inspiration is to evolve instructions
and not decision variables, we found the above
to be the authentic difference between the GA
and GP approaches and not their frameworks.

Although Genetic Programming [17] entails greater
implementation complexity due to the management
of tree data structures. Using tree data structures
in GP requires tree traversal techniques to evaluate
the programs, and the trees produced could be
unbalanced, adding complexity.

Linear Genetic Programming [5] (LGP) offers
a simpler alternative to traditional GP, dispensing
with tree data structures; LGP evaluates programs
sequentially. LGP uses variable-length linear
data structures as the linked list to represent the
programs, executing instructions sequentially in the
list order, closing the gap between GP and the
regular computer programming languages.

The assembly language has served as the
metaphor for LGP; programs have registers
(variables), read-only registers (constants), and
instructions consist of operators (e.g., +,−,×,÷)
and operands, e.g., r3 = r1 × c2 where the
destination register r3 stores the result of the
multiplication of the register r1 with the constant
register c2.

We consider the GA framework well endorsed
by artificial intelligence researchers and tested;
we don’t see a restriction not to use it directly
with GP programs, as in Algorithm 1, instead of
the non-overlapping between parents and offspring
approach from the orthodox GP framework in
Figure 1. Therefore, this work follows the GA
framework instead of the orthodox GP flowchart.
Generally speaking, in the words of John R. Koza:
“The best computer program that appeared in any
generation, the best-so-far solution, is designated
as the result of genetic programming” [13].

This chapter presents a proof of concept
for implementing LGP and developing programs
that address the Internet Shopping Optimization
Problem with Multiple Item Units [21] (ISHOP-U),
an NP-Hard optimization problem. The
proposed approach uses the GA framework for
GP. It maps LGP instructions to the classical
decision’s variables representation in the GAs
and the decision’s variables to LGP instructions.
The remainder of the chapter sections are as
follows: Section 2 our Linear Genetic Programming
proposal for the ISHOP-U.
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Fig. 1. Genetic programming orthodox flowchart

Section 3 is the experimental setup.
Finally, Section 4 discusses and concludes
the experimentation results.

2 Linear Genetic Programming for
the ISHOP-U

This section describes our Linear Genetic
Programming (LGP) proposal for the Internet
Shopping Optimization Problem with multiple item
Units (ISHOP-U). As the first attempt to apply
LGP to the ISHOP-U, our approach is as simple
as possible. Recalling the ISHOP-U formulation
in [21] for a problem instance of m stores and
n products, a candidate solution for the problem
is a matrix S of size m × n; we consider their
components si,j as variable registers in the LGP.

As constant registers, we consider the
components ai,j of the product availability matrix
A of size m × n. The variable registers are all
conditioned to be si,j < ai,j , and the only operator
implemented is assignation (=), e.g., si,j = 5, for a
purchase of 5 units of the product j in the store i.
The description of the implementation guidelines
and evolutionary operators appears below.

2.1 Population Initialization

The first population of programs has a random
initial length (number of instructions) between
[0,m × n]. Every instruction is filled with an
assignation to random register si,j with a random
integer between [0, ai,j ], e.g., s1,2 = 5 if and only
if a1,2 ≥ 5.
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Table 1. Parameter setting for the LGP implementation

LGP
Population size: 100

MaxEvaluations: 25, 000

Selection: Binary Tournament
Recombination: pr = 1.0

Mutation: pm = 0.05

Fig. 2. Graph for the experimental results for the GA and
LGP over the considered 15 instances

2.2 Crossover

Given two programs represented as linear vectors
x⃗ and y⃗. The crossover operator copies in a
single third vector z⃗ the individual instructions from
x⃗ and y⃗. Later, the two new programs (child)
inherit the instructions from z⃗. Every z⃗ instruction
goes exclusively to the first or second child, with a
uniform probability.

2.3 Mutation

The mutation operator uses a probability of
mutation pm to change every program instruction.
Once an instruction is decided to be changed, their
register si,j is reassigned to a random integer value
between [0, ai,j ].

2.4 Repair

This LGP proposal for the ISHOP-U uses the
same repair method for unfeasible solutions as the
Genetic Algorithm from [21].

The above is possible by executing the program
instructions to load the matrix S as an intermediate
representation and then repairing S. Once
repaired, S is translated to program instructions
using the following Algorithm 2.

Algorithm 2 has the advantage of producing
a compact program representation in O(m · n)
complexity. Unnecessary instructions do not
appear in the program, i.e., where si,j =
0 or duplicated register assignations. Slight
modifying Algorithm 2 can produce instructions
from decision variables with the same complexity.
Figure 3 graphically shows the crossover, mutation,
and repair process when performing over the
decision variables.

2.5 Environmental Selection

The environmental selection is equivalent to the
one found in traditional Genetic Algorithms (GAs).
The current population and the offspring join to
form a single population. Later, according to
the fitness value of programs, only the N best
programs survive to the next generation, where N
is equal to the population size.

3 Experimental Configuration

This section gives the details to reproduce this
chapter’s experimentation. To evaluate our
proposed Linear Genetic Programming (LGP)
algorithm, we use the benchmark instances in [21]
of 10 products with 25 stores (five small size
instances), 25 products with 50 stores (five
medium size instances), and 50 products with 100
stores (five large size instances).

Instances are available at https://github.com/
AASantiago/ISHOP-U-Instances, and LGP source
code is available at https://github.com/AASantiago/
LGP-ISHOP-U/. This chapter LGP implementation
uses the parameter settings from Table 1, a
population size of 100, 25,000 as a maximum
number of objective function evaluations, Binary
Tournament as selection, 100% of crossover
probability pr and a mutation probability pm of
5%. We reproduce the Genetic Algorithm (GA)
described in [21], with their respective parameter
settings for comparison purposes.

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1687–1693
doi: 10.13053/CyS-28-3-5165

Jazmin Del-Angel, Alejandro Santiago, Salvador Ibarra-Martínez, et al.1690

ISSN 2007-9737



Fig. 3. Graphical representation of the evolutionary operators

Table 2. Experimental results for the GA and LGP over
the considered 15 instances

Problem GA LGP

UniformS1 447.20.0E0 863.33.1E1

UniformS2 447.20.0E0 1023.06.5E1

UniformS3 524.27.8E − 1 1103.68.5E1

UniformS4 462.90.0E0 928.47.0E1

UniformS5 489.60.0E0 955.18.2E1

UniformM1 3429.37.9E1 6080.41.7E2

UniformM2 4721.11.2E2 7644.13.1E2

UniformM3 5301.31.1E2 8717.91.9E2

UniformM4 5068.51.1E2 8299.32.5E2

UniformM5 5509.31.8E2 9197.71.7E2

UniformL1 26161.25.8E2 34419.51.2E3

UniformL2 21999.14.3E2 29470.25.1E2

UniformL3 21361.13.8E2 28811.25.4E2

UniformL4 23991.84.7E2 32061.21.0E3

UniformL5 24036.84.0E2 31671.48.1E2

Due to the stochastic nature of the algorithms,
we perform 30 independent runs over every
considered ISHOP-U instance. To validate the
statistical significance difference between the GA
and LGP, we perform the Wilcoxon signed rank
test [6], with an α = 0.05 for a 95% of significance.

4 Results

This section outlines and discusses the numerical
experimental results from the 30 independent
executions of both algorithms in comparison GA
and the LGP.

The experimentation numerical results are in
Table 2 in terms of the achieved median value
and interquartile range (IQR), with the format
MEDIANIQR and IQR in scientific notation. The
median results are graphically show in Figure 2.

The instance name nomenclature starts with
the distribution of the prices in the instances
Uniform, followed by the instance size, S small,
M Medium, L large, followed by their identification
number; for example, UniformS1 is the instance
number one of small size with a uniform distribution
in their prices.

According to the results computed by the
Wilcoxon signed rank test, a p-value≤ 0.05 is found
in every considered instance, finding differences
with a statistical significance of 95% between the
GA and the LGP. The above difference favors the
GA with a better achieved median value in all the
instances, in the demerit of the LGP.

Given the computed numerical results, the
Genetic Algorithm (GA) in [21] outperforms this
chapter’s Linear Genetic Programming proposal
with statistical significance in the fifteen instances
with uniform distribution prices in [21].

However, the purpose of this chapter is to
prove that the concept of using Linear Genetic
Programming (LGP) is feasible for the Internet
Shopping Optimization Problem with multiple item
Units purpose achieved. We highlight that LGP
uses the same repair method as the GA, which
is possible through an intermediate representation
(the original problem decision variables) for
later return to the instructions representation
once feasible.
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Our approach reutilizes evolutionary algorithm
operators in evolutionary programming and can be
applied to other problems straightforwardly. For
future research, we want to design and implement
new crossover and mutation operators, using the
proposed mapping approach between decision
variables and instructions for LGP to improve
the results.
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