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Abstract. This paper proposes a new optimization
based framework for feature selection and parameters
determination of support vector machine, called
WOA-SVM and it is applied on band selection in
hyperspectral images and feature selection in 2D
images. The proposed approach WOA-SVM is based
on Whale Optimization Algorithm (WOA), which is
a meta-heuristic inspired from the social behaviors
of humpback whale and never been benchmarked
in the context of feature selection nor parameters
determination. A new fitness function is designed.
WOA-SVM is tested with three hyperspectral images
widely used for band selection and classification. Note
that one of the problems in hyperspectral image
classification research is the identification of informative
bands (band selection). In addition, we demonstrate the
efficiency of the proposed approach on Mammographic
Image dataset (MIAS). The experimental results prove
that the proposed approach is high performance and
very competitive approach. The WOA-SVM approach
is useful for parameter determination and feature/band
selection in SVM.

Keywords. Support vector machine, whale optimization
algorithm, cancer diagnosis, parameters determination,
feature selection.

1 Introduction

Recently, feature selection has been a primordial
step for classification in many domains (images

classification, DNA microarray for cancer diag-
nosis, hyperspectral images classification, etc.).
It aims to select the informative and relevant
features from a dataset by removing the redundant
and irrelevant features [3, 2]. In 2D images
classification, feature selection represents the step
after the feature extraction and is used to select
the optimal subset of features to improve the
classification accuracy rate [27, 23].

In the last years, hyperspectral image classifica-
tion has been an important research field in various
applications. The main aim of hyperspectral image
classification is to classify each pixel into a specific
label. We recall that the hyperspectral image
consists of hundreds of spectral bands and each
pixel of the image is acquired in light intensity and
a large number of spectral bands. Unfortunately,
hyperspectral image classification is a very difficult
task. The difficulty resides in the fact that we
have a reduced number of labeled pixels versus a
large number of bands, which cause the Hughes
phenomenon.

Hughes phenomenon is a major problem in
hyperspectral images classification. This problem
is known as the curse of dimensionality caused by
the highly correlated and irrelevant bands.

Band selection is a primordial step in hy-
perspectral image classification. It attempts
to select the relevant band by removing the
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highly correlated and the irrelevant bands without
affecting the accuracy of the classification. In
other terms, the goal is to select the optimal
subset of bands that represents the informative
subset and allows achieving a high classification
accuracy rate [9, 11].  Several works have
been done in the context of the hyperspectral
image classification and band selection. In
[15], the authors proposed a new band selection
approach based on gray wolf optimizer, which is a
new optimization approach. The experimentation
is conducted on three hyperspectral images,
Salinas, Indian Pines and Pavia University. A
new objective function is designed based on
accuracy and Hausdorff distance. Y. Yuan
et al. [32] proposed an approach for band
selection by using an evolutionary strategy to
handle the high computational burden associated
with groupwise-selection-based method. S. A.
Medjahed et al. [17] proposed an approach
for band selection based on Jeffries-Matusita
distance and a post classification step called CEC
(Classification Errors Correction).

This approach was tested on five images,
Salinas, Indian Pines, Pavia University, Kennedy
Space Center and Botswana. K. Sun et al. [29]
developed a method namely Minimum Noise Band
Selection used for band selection and based on
the determination of the quality of each band by
using a high SNR and low correlation. In [25]
a split-and-merge strategy is proposed for band
selection. The aim of this approach is based on
two steps. The first one is to split the adjacent
bands, and the second one is to merge the highly
correlated bands. In [28], the authors developed an
approach by using firefly algorithm and optimized
extreme learning machine. The goal is to minimize
the complexity of the extreme learning machine
network using the firefly algorithm.

One of the most robust methods used for hy-
perspectral image classification and band selection
is Support Vector Machine (SVM). Recently, SVM
has proven its performance in the classification
of hyperspcetral image because its learning ability
and generalization capacity by using a few samples
of data.

Support vector machine (SVM) is a popular
kernel-based learning method and it is widely
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used for supervised classification [18]. The basic
idea of SVM is to find the optimal hypreplane
that separates the data by maximizing the margin
between two classes. Therefore, the accuracy rate
and the quality of classification model generated
by the SVM depend largely of certain parameters
such as the regularization parameter and kernel
parameters. In C-SVM, the parameter C controls
the trade-off between errors of the SVM on training
data and margin maximization [8]. This parameter
must be perfectly adjusted to obtain a satisfactory
classification results. A large value of C, we
favorite a high penalty for nonseparable points and
we may store many support vectors and overfit. A
small value of C, produced an underfitting [4]. In
addition, the choice of the kernel function and its
parameter affect the classification results. If we
use the Gaussian kernel, the parameter ¢ must be
set appropriately because a large value leads to
overfitting and a small value results in under-fitting.
In summary, to classify the dataset using SVM,
we must first determine the penalty parameter C,
choose a kernel function and set the parameters of
the kernel parameter [12].

Another crucial problem when using SVM s
how to select the relevant or optimal input subset
of features. The quality and the number of
features influence directly the classification model
and the accuracy rate. The selection of relevant
features in the input data plays an important
role in the classification. @~ We note that not
all the features are informative, some features
are irrelevant and redundant, which reduce the
accuracy rate. It exists many optimal feature
subset and it is possible to achieve the same
classification accuracy rate using different feature
subset because if two features are correlated a
feature can be replaced by other.

In this paper, we propose a novel approach for
feature/band selection and parameter determina-
tion of support vector machine together. This
approach is applied in the context of hyperspectral
band selection and 2D images feature selection.
The aim is to select the smallest subset of
bands/features and to adjust perfectly the SVM
parameter and the kernel function parameter.

The proposed approach is called WOA-SVM and
it is based on Whale Optimization Algorithm (WOA)
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which is a new meta-heuristic inspired from the
social behavior of humpback whale and recently
developed. A binary version of WOA algorithm is
also proposed to deal the problem of band/feature
selection and a new objective function is designed.
To evaluate the performance of the proposed
approach, we have considered three hyperspectral
images widely used in the literature i.e. Salinsa,
Indian Pines and Pavia University. To demonstrate
that the proposed approach can be applied to
several type of dataset and not only hyperspectral
images, we propose also, to test the proposed
approach on the Mammographic Image Analysis
Society (MIAS) dataset, and, a complete process
based on image feature extraction is proposed.

The rest of paper is structured as follows: In
Section 2, an overview of SVM is drawn. Section
3 describes the proposed approach. Section 4
details and discusses the experimental results
generated by our approach. Finally, in section 4,
the conclusion is drawn with some perspectives.

2 Overview of Support Vector
Machines

Support vector machine (SVM) is a classification
technique that will construct a separating hyper-
plane in the attribute space which maximizes the
margin between the instances of different classes.
Introduced by Vladimir N. Vapnik in 1995 [1, 26],
SVM it becomes rather popular since. The models
of SVM are closely related to Neural Networks.
SVM works well in practice and can be applied to
a wide variety of domains such as: bioinformatics,
pattern recognition, etc.

The goal of SVM is to find the optimal hyperplane
which separates clusters of vector in such a way
that cases with one category of the target variable
are on one side of the plane and cases with the
other category are on the other size of the plane
[30]. The vectors near the hyperplane are called
the support vectors.

Find the optimal hyperplane is equivalent
to reformulate the classification problem to an
optimization problem.

We consider a problem of binary classification.
We have an input space X C R? where d ¢

N, an output space ¥ = {-1,+1}, and training
set, D where:

D ={(z1,11),..., (N, yn)} € (X xY), (1)

with hyperplane:

The equation (2) represents the decision rule
that, given an input element = € X, if f(z) > 0
belongs to —1 class; else, x belongs to +1 class.

The classifictaion problem consists in determin-
ing the hyperplane (2). The modeling of this
hyperplane is managed by w and b parameters.
These important w and b parameters are learned
by the algorithm from the tranining set data.

Each observation z; is assigned to the class
corresponding to the sign of f(x) :

(w,z)y +b>+1
(wyz) +b< -1

pour y; = +1,
pour y; = —1. (3)

Which can be combined into:

yi((w,z;) +b) — 1 > 0 Vi. 4)

The optimal separation hyperplane represents
the best choice to divide the input element of
X into the output classes Y. Since the optimal
separation hyperplane maximize the HLQTH margin
and it is equivalent to minimize 1 ||w| 2. Finding
this optimal hyperplane is equivalent to solving the
following optimization problem:

min,, p 2wl 2,
s. c. yi({(w, z;) +b) > 1, (5)
ie{l,..,N}

The problem (5) is the primal form of quadratic
optimization problem which is difficult to solve
when the dataset is very large. Therefore, it is
very interesting to transform it to a dually form by
introducing the Lagrange multiplier and using the
Karush—Kuhn-Tucker condition (we compute the
derivatives respect with b and w variables):
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min, YL i+ Do Yiyjouag (@i, )
s. c. Zfil ;1 =0,
vie{l,..,N}, a; > 0.
(6)
By solving the equation (6) we determine the
Lagrange multipliers «f and the optimal hyperplane
is given by:

N

w* =Yy, @)
i=1

b= 75 <w*axr+zs>a

H(x) = sign({w*, ) + b*). (8)

where z, and xz, are any support vector from
each class satisfying :

ar, 0 >0, Yy = -1y, = 1. (9)

Finally, by using Wolfe Dual Form and Kuhn
Tucker conditions, the equation (8) can be
written as:

N
H(z) = sign(z alys(z-xs) +b).

i=1

Solving the optimization problem requires the
use of optimization quadratic algorithms such
as: Sequential Minimal Optimization (SMO), Trust
Region, Interior Point, Active-Set, etc. In this study,
the SMO method is used [6, 22, 31].

Generally, the data are not linearly separable
(the case of presence of error points inside the
two classes to be classified), in order to extend
the SVM methodology to handle data that is not
fully linear separable, the quadratic optimization
problem must be relaxed by introducing positive
slack variables to allow for misclassified points:

N
% ”w” 24+ 021:1 &

minw,b,{
s. c. yi({w,z;) +b) > 1-¢,, 1
ie{l,..,N}.
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The slack variables represent the error distance
of the wrong points from the optimal separating
hyperplane : £ = (£4,&,, ..., &), Where V; £, > 0.

The parameter C' controls the trade-off between
the slack variable penalty and the size of the
margin. By using the Lagrange multipliers, this
optimization formulation can be transformed into
the following dual problem:

ming  — Y, @i+ 3 3, viiiay (T a5)
N
s. c. D oimq iy =0,
Vie{1,.,N}, 0<a; <C.
(1)
In the dual problem, the parameter C'is an upper
bound for ;.

In the cases where the data cannot be classified
explicitly in the current dimensional space, the
basic idea of the SVM is to map input data
into a convenient space where they can be
separated with an opportune hyperplane by using
the kernel function:

K: R"xR" —R (12)

(zi,zj) = (P(@i), ©(z;)) .

With kernel function, the quadratic program can
be written again this way:

. N
min, i+ i 2i g Yiyieio K (g, x5)
N
s. c. Yoy =0
Vi € {1, ...7N}7 (67 Z 0.
(13)

Kernel functions are a very powerful tool to solve
classification problem. Several researches have
been devoted to constructing a kernel more exotic
and adapted to a special problem by respecting the
Mercer’s theorem. The most frequently used such
functions are:

Linear K($i,$j) = (1’7 . Ij)
Polynomial K (z;,z;) = [(z; - z;) + 1]¢ where
deN,d#0

—llzi—z;®
202

Gaussian K(z;,z;) =
radial basis function (RBF).

, also called
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3 Proposed Approach WOA-SVM

3.1 Problem Formulation

In this study, the parameter determination of
SVM and the feature selection is designed as a
combinatorial optimization problem. The problem
is modeled as follows.

Let F = {Fy,...,F,} a set of features. Let X =
{X1, ..., X,,} a binary vector with:

_ [ 1if F;is selected,

Xi = { 0 otherwise. (14)

For SVM and kernel function parameters, we
determine the upper and lower bound:

C € [le,ue),

7 € [y, uy].
The decision variable has the following form:

X = [X1, ..., X, [C,7]-

The basic idea is to find the optimal subset
of features and the optimal parameter C' and ~
that provided a high classification accuracy rate.
Therefore, the objective function is to maximize
the accuracy rate in classifying the testing data by
using SVM. This is equivalent to an optimization
problem [10]. We propose to use the Whale
Optimization Algorithm to solve this optimization
problem.

3.2 Whale Optimization Algorithm

Whale optimization algorithm (WOA) is a new
meta-heuristic optimization algorithm developed by
Ali Mirjili [19]. It is mimicking the hunting behaviour
of humpback whales. WOA is slightly similar
to Gray Wolf Optimizer recently developed by
Seyedali Mirjalili [20] and used for feature selection
[16]. The difference resides in the simulation
hunting behavior and the use of bubble-net
attacking of humpback whales.

The process of humpback whales hunting
represents the optimization process and is divided
into three phases:

3.2.1 Encircling Prey

Humpback whales detect the position of the prey
and encircle them. In the optimization process,
the prey is the optimal solution and it is not known
a priori, WOA algorithm assumes that the current
best candidate solution the target prey or is close
to the optimum [19]. The position of search agents
are updated according to the position of the best
search agent. The encircling behaviors is given
as follows:

D= ]8.?@)-?@) : (15)
X(t+1) =X (1)~ 4.1, (16)

where t is the current iteration, A and 8 are
coefficient vectors, X* is the position vector of

the best solution [19]. The vectors Z and 8 are
computed as follows:

A—0d.7 -7, (17)

T =27, (18)

where @ is linearly decresed from 2 to 0 over the
iterations and 7 is a random vector in 0 and 1.

3.2.2 Bubble-net Attacking

This phase represents the exploitation phase and
it consists of two approaches: the first one is the
shrinking encircling mechanism and is reached by
decreasing the value of @, and also, X decreased.
So, ‘Z‘ < 1, the new position of search agent is

defined between the original position on the agent
and the position of the current best agent [19].

The second approach is the spiral updating
position and it is based on the computing of the
distance between humpback whale and at (X,Y)
and prely located (X*,Y*) [19]. To imitate the
helix-shaped mouvement of humpback whale, we
must use the following equation (19):

X(t+1) = D cos(2nl) + XF(1),  (19)
where 17 = ‘)ﬁ(t)—?(t)’ indicates the

distance between the ith whale to the prey. b is a
constant for defining the shape of logarithmic spiral
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and [ is random number between —1 and 1. The
mathematical model of updating spiral position is
as follows:

}?(t+ 1) :{ g(t)fX-B . if p < 0.5, (20)

D’ .ebl. cos(2ml) + X ™ (t) ifp > 0.5,

where p is random variable between 0 and 1.

As seen, the equation (20) simulates the shrink-
ing circle around the prey and the spiral-shaped
path. We assume that there is a probability of 50%
to choose between the shrinking encircling or the
spiral model to update the position of the whales
during the optimization [19].

3.2.3 Search for Prey

This phase is the exploration phase, in other
terms, in the approach to search the prey
(optimum). Humpback whale search randomly the
prey according to the position of randomly chosen
search agent instead to the best search agent

found so far [19]. We use ’Z‘ > 1 to force

search agent to move far away from a reference
whale. This mechanism emphasize exploration
and allow to WOA to perform global search [19].
The mathematical model is as follows:

B:(?.m—ﬂ, @1)

X(t+1) = Xyana — 4.D. 22)

where X..,q is random position vector (a
random whale). A random search agent is
chosen when |A] > 1, while the best solution
is selected when |A| < 1 for updating the
position of the search agents. WOA can be
considered a global optimizer because it includes
exploration/exploitation ability [19].

The general schema of WOA algorihm can be
described as follows [19]:
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Algorithm 1 Whale Optimization Algorithm

1: Initialization
2: Initialize randomly the search agents position
X(i,7) (i =1,...,number of search agent, j =
1,...,dimension)
: Compute the fitness of each search agent
: X* is the best solution
: Main Loop
for t = 1 to max number of iteration do
for each search agent i do
Update a, A,C,l and p
if p < 0.5 then
if ’X‘ < 1then
Update the position of the current
search agent using equation (16)
12: else

o e N gk

—_ -

13: if |A| > 1 then

14: Select a random search agent
—
Xrand

15: Update the position of the current
search agent using equation (22)

16: end if

17: end if

18: else

19: if p > 0.5then

20: Update the position of the current

search agent using equation (19)

21: end if

22: end if

23:  end for

24:  Check if any search agent goes beyond the
search space and amend it

25:  Compute the fitness of each search agent
Update

26: Update X* if there is a better solution

27: end for

28: Return X*

3.3 WOA-SVM Algorithm

The proposed approach WOA-SVM allows de-
termining the optimal SVM parameter and the
relevant subset of features, which provide a high
classification accuracy rate. We slightly modified
the WOA algorithm to combine it with SVM and to
take into consideration the problem of parameter
determination and feature selection. This is why,
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a binary version of WOA is proposed to use it for
feature selection. The whale position is a defined
as binary vector and the problem is to select or
no not a feature [13]. If X; = 1, the feature is
selected and used for classification, else, if X; = 0,
the feature is removed. To take account a binary
variable for feature selection, we propse to use the
sigmoid function as follows:

1

S(X;) = T on(CX) (23)

WOA-SVM algorithm for feature selection and
parameter determination is described in the
following algorithm: (SEE LAST PAGE).

Lines 1 — 8 represents the initialization of
parameters algorithm. Lines 3 — 5, we split
the dataset into three subsets: training set (71),
testing set (7») and the validation set (75) and in
each iteration, we generate randomly a training
set (T7) and testing set (73) from (77) and (7%).
This strategy allows to the algorithm to avoid the
problem of over fitting. The objective function is
the classification error rate computed by using the
SVM classifier. Line 9 is the main loop and it is
determined by the maximum number of iteration.
Line 10 — 29 is the second main used to update
the position of each search (whale) according to
the different situations. Lines 31 and 32 generate
randomly training and testing set. Lines 33 — 34
remove the features that have X’(i,j) = 0. These
features will not be used to build the classification
model. Lines 36—37 compute the objective function
and update the better solution X*. finally, line 39
return the best solution X*.

3.4 Objective Function

Generally, the fitness or objective function is
the error rate or the classification accuracy rate.
In [16], the authors proposed a five objective
functions based on the measure of discrimination
of each features and the classification accuracy
rate. The authors have used the Jeffries-Matusita
distance and Hausdorff distance to measure the
class separability of selected features. In [7], the
authors have used the F-score and the accuracy

Algorithm 2 WOA-SVM Algorithm

1: Initialize randomly the search agents position X (3,5) (i =
1,...,number of search agent, j =1,...,dimension)

2: Initialize SVM parameter C' and Gaussian kernel parameter
g

3: Split dataset to training set T4, testing set 7> and validation
set T3

4: Generate randomly Training set T, from T; and Test set T},
from Tn , ,

5: Train SVM classifier over T and evaluate its over T,

6: Compute the objective function of each search agent

7: X* is the best solution

8: for t = 1 to max number of iteration do

9:  for i = 110 max number of search agent i do

10: Update a, A,C,l and p

11: if p < 0.5 then

12: it | 4| < 1then

13: Update X (4, 7) position of the search agent and
[C,~] using equation (16)

14: Update X’ (i, 5) using (23)

15: else

16: if |[A| > 1 then

17: Select a random search agent X,..4

18: Update X (i, 7) position of the search agent

and [C, v] using equation (22)

19: Update X’ (i, 5) using (23)

20: end if

21: end if

22: else

23: if p > 0.5 then

24: Update X (4, 7) position of the search agent and
[C,~] using equation (19)

25: Update X' (i, 5) using (23)

26: end if

27: end if

28:  end for

29:  Check if any search agent goes beyond the search
space and amend it

30:  Generate randomly Training set T1' from T and Test set
TQI from Ty

31: T, « T, — {features with X'(i,j) = 0}

32: TQI <—T2/ — {features with X'(¢,7) = 0}

33:  Train SVM classifier over Tll and evaluate its over T2/

34:  Compute the objective function of each search agent

35:  Update X* and and [C, 7] if there is a better solution

36: end for

37: Return X* and and [C, 7]

rate to design the fithess function. In [13],
the authors have proposed an objective function
based on the balance error rate and F-score. In
[5], a fitness function composed of two terms is
proposed. The first one is the accuracy and the
second is the cost of selected of features. In this
study, we propose to use two objective functions.
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3.4.1 First Objective Function

The first objective function .J; is the classification
accuracy rate. The value of J; is between 0 and
1. In this case, we select the subset of features
and determine the parameters that provide the high
classification accuracy rate. The objective function
can be given as follows [16]:

IN|

Z assess(x;)

accuracy = MT, (24)

1if classify(x;) = ¢
assess(x;) = { fo othefigse)

where, N represents the instance set, z; is
the instance to be classified, assess(z;) is the
classification function. It sets to 1 if the class is the
true label of x; (classify(x;) = ¢) and 0 otherwise.

3.4.2 Second Objective Function

The second objective function .J; is composed of
two important terms. The first term of the objective
function is the weight vector w of the SVM given as
follows:

w=> ayu, (25)
l

A(X) =D X xwp, (26)

where y,; is the label of the instance z;, «; is the
Lagrange multipliers, X is a binary vector. If X; =0
then the feature F; is not selected, else, X; = 1
then the feature F; is selected, wg, weight of the
selected feature F;.

The summation in equation (25) is taken over
the training set. The weight vector wg, represents
a measure of the ranking of the feature F; and
their influence on the margin of separation of
the labels, in other terms, their influence on the
separated hyperplane.

The second term of the objective function
measures the ability of each feature to regroup
the classes. We assure that a feature is a
good feature if it regroups perfectly their instance
around its gravity center. Therefore, we propose
to compute for each class, the distance between
their instances and its gravity center. The features
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Fig. 1. The proposed measure to compute the ability of
feature to regroup the instances of each class

that minimize this distance are selected. Figure
1 illustrates this idea. The second term of the
objective function is given as follows:

For binary problems, the proposed d(cq,c2)
distance for two classes c¢; and ¢y, is given
as follows:

d(c ) =Y e, — |+ |pe, — 22|, (27)
l m

where, u. . is the gravity center (average) of
class ¢, and class c, ;" instance with y; = ¢,
x¢2 instance with y,,, = ca,

For multiclass problems, we defined the
proposed distance as follows:

1 p—1 p
dp, = mz Z d(ci, ¢j), (28)

i=1 j=it+1
f(X) =" X; x dp, (29)

where dp, is the distance between the gravity
center and each instance of each class of the
feature F;, X is a binary vector. If X; = 0 then
the feature F; is not selected, else, X; = 1 then the
feature F; is selected.

The final fitness function is s the weighted sum
of the both terms f; and fs:

J2(X) =01 % fo(X) + 02 x (fo(X)™',  (30)
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where 6; and 6, are weights of f; and f
respectively. We can balance between the
functions and give more importance to f; or fs.

4 Experimental Results

4.1 Datasets

In order to analyze the performance of the
proposed approach WOA-SVM, we conduct two
experimentations.  The first experimentaion is
conducted under three hyperspectral images very
used in the literature: Salinas, Indian Pines and
Pavia University.

4.1.1 Salinas Image

The first hyperspectral image used in this
experimentation is knows as the Salinas image,
which is acquired by AVIRIS (Airborne Visible
InfraRed Imaging Spectrometer) over the Salinas
Valley, Southern California, USA. This image is
512 x 217 pixels and composed of 224 bands in
the spectral range 0.4 um to 2.5 um. It contains 16
ground truth classes: Broccoli-green-weeds-1,
Broccoli-green-weeds-2, Fallow,
Fallow-rough-plow, Fallow-smooth,  Stubble,
Celery, Grapes-untrained, Soil-vinyard-develop,
Corn-senesced-green-weeds,
Lettuce-romaine-4wk, Lettuce-romaine-5wk,
Lettuce-romaine-6wk, Lettuce-romaine-7wk,
Vineyard-untrained and Vineyard-vertical-trellis.

4.1.2 Indian Pines Image

The second hyperspectral image is called Indian
Pines, which is taken over the agricultural area
of Northwestern of Indiana, USA. This image
is 145 x 145 and composed of 220 bands in
the spectral range 0.5 um to 2.5 pum. It was
acquired by AVIRIS and it contains 16 ground
truth classes: Alfalfa, Corn-notill, Corn-mintill,
Corn, Grass-pasture, Grass-trees, Grass-pasture-
mowed, Hay-windrowed, Oats, Soybean-notill,
Soybean-mintill, Soybean-clean, Wheat, Woods,
Buildings-Grass-Trees-Drives, and Stone-Steel-
Towers.

(b)

Fig. 2. Salinas hyperspectral image. (a) Color compose.
(b) Ground truth

4.1.3 Pavia University Image

The third hyperspectral image used in this study
is the Pavia University image taken over the urban
area of Pavia University. This image is 610 x 340
pixels and it was collected by ROSIS. It composed
of 103 bands in the spectral range from 0.4um to
0.86 wm. The ground truth differentiates 9 classes:
Asphalt, Meadows, Gravel, Trees, Painted Metal
Sheets, Bare Soil, Bitumen, Self-Blocking Bricks,
and Shadows.

The second experimentation is conducted under
mammographic image dataset. We use MIAS
dataset (Mammography Image Analysis Society)
which is widely known dataset. MIAS dataset
contains 322 images classed into three categories:
normal, benign and malign. The category normal
is a set of mammogram image without breast
cancer. The benign and malign is a collection
of abnormal mammogram images. MIAS dataset
contains 208 normal images, 63 benign images
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Fig. 3. Indian Pine hyperspectral image. (a) Color
image. (b) Ground truth

Fig. 4. Pavia University hyperspectral image. (a) Color
Image. (b) Ground truth.

and 51 malign images. The size of each image is
1024 x 1024 pixels.

To extract the region of interest (ROI) in the
image, MIAS dataset provides the coordinates X, Y
and the radius in pixels of each abnormal images.
Figure 5 shows some MIAS mammogram images.

4.2 Parameters Setting

For each classifier system, the number of samples
used for training and testing phases must be
determined. For the first experimentation over the
hyperspectral images, we split the pixels into two
subsets, 10% of the pixels are used for the training
phase and the remaining 90% of pixels are used for
test phase.
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Fig. 5. Some mammogram images taken from
MIAS dataset

In the second experimentation, , we propose to
split the dataset into three subsets: training set,
testing set and validation set. 50% of samples are
used for training, 20% of samples are used for the
test and the remaining 30% of samples are used
for validation.

The parameters of WOA-SVM are adjusted as
follows: the number of search agent is 20. The
algorithm stops when the number of iterations fixed
to 500 is achieved.

The search interval of SVM parameter C' and
Gaussian kernel parameter o are:

C € [1,500],

~ € [0.01,50].

These parameters have demonstrated their
performance and were chosen by experimentation
for the both datasets.

4.3 Application in Hyperspectral Images

In this section, we analyze the results obtained
by the proposed approach WOA-SVM in term
of classification average accuracy rate (AA),
classification overall accuracy rate (OA), individual
class accuracy rate and the number of selected
bands. Table 1 describes the classification average
accuracy rate, classification overall accuracy rate
and the number of selected bands obtained by
WOA-SVM.
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Table 1. The results obtained by the WOA-SVM approach
Hyperspectral image Salinas Indian Pines Pavia University
Objective function J1 Jo J1 Jo Ji
AA 95,96 96,22 72,41 71,87 87,77 87,16
OA 91,35 91,85 72,60 74,61 89,24 88,72
Number of selected bands 148 112 120 98 51 43

Table 2. Classification accuracy rate obtained by WOA-SVM over Salinas scene and compared with previous works

Class Feature Selection Approaches This Study
mRmR cmim Relief GA PSSO GSA BBA J1 Jo

Brocoli_green_weeds_1 93,97 98,69 91,98 98,26 99,17 99,75 98,67 98,32 99,42 99,50
Brocoli_green_weeds_2 95,84 99,56 61,86 99,60 99,55 99,77 99,41 99,60 99,73 99,96
Fallow 85,39 98,73 94,18 98,04 99,40 99,57 98,73 99,30 99,16 99,41
Fallow_rough_plow 99,73 99,73 89,25 99,73 99,40 99,28 99,40 99,73 99,40 99,16
Fallow_smooth 9491 96,13 97,34 95,01 98,50 98,13 98,31 96,45 97,70 98,94
Stubble 99,27 99,81 98,39 99,94 99,91 99,87 99,95 99,94 99,96 99,92
Celery 95,98 99,44 61,03 99,37 99,72 99,67 99,58 99,37 99,67 99,77
Grapes_untrained 76,54 82,54 77,23 79,34 81,70 81,42 79,58 83,25 80,08 82,02
Soil_vinyard_develop 97,76 97,92 98,57 99,38 99,48 99,57 99,62 99,27 99,81 99,65
Corn_green_weeds 75,60 91,80 78,42 91,61 96,49 9557 95,17 91,69 95,63 94,97
Lettuce_romaine_4wk 60,94 93,33 92,05 92,05 99,84 98,43 98,90 94,04 98,28 99,06
Lettuce_romaine_5wk 86,64 99,74 92,54 98,83 99,56 99,91 100 99,87 100 99,91
Lettuce_romaine_6wk 96,45 98,23 96,45 97,82 98,72 99,45 98,54 97,82 99,64 98,91
Lettuce_romaine_7wk 92,41 9439 92,64 93,57 97,97 96,41 97,97 94,16 96,42 97,04
Vinyard_untrained 57,33 60,00 47,52 57,88 70,90 72,85 67,75 63,54 71,29 71,68
Vinyard_vertical_trellis 76,42 98,27 82,16 97,86 99,07 99,63 98,15 98,06 99,17 99,63
AA 86,57 94,27 84,48 93,64 96,21 96,20 95,61 94,65 95,96 96,22
OA 83,79 89,55 79,28 88,57 91,70 91,86 90,67 90,35 91,35 91,86

Table 1 contains the AA, OA the number
of selected bands obtained by the proposed
approach WOA-SVM for each hyperspectral image
and under the both objective function J; and .Js.
The first row of table 1 represents the name of
the hyperspectral images. The columns 2, 3 and 4
are the AA, OA and the number of selected bands
obtained by the objective function J; and Js.

The results described in table 1 show the efficacy
of the proposed approach. As observed in table
1, the outcome of WOA-SVM under the three
hyperspectral images was quite appropriate, we
record 95.96% and 96,22% of average accuracy
in Salinas scene for the both objective functions
J1 and J, respectively. For Indian Pines scene,

the results are very satisfying, as best accuracy
of 72,41% and 71,87% as average accuracy. The
performance of Pavia University scene shows
that the proposed approach attaining 87, 77% and
87,16% for J, and J, respectively as maximum
average accuracy rate. The analysis of the results
obtained by WOA-SVM in terms of number of
selected bands is better and we remark and
advantage of the results using J, compared to .J;.

To demonstrate the performance of the proposed
approach WOA-SVM, we compare our approach
to several feature selection approaches defined in
the literature.

Tables 2, 3 and 4 compare the AA, OA and
individual class accuracy rate between WOA-SVM
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Ji
Jo

Salinas  Indian Pines Pavia University
Fig. 6. The classification maps obtained by our

approach for the five objective functions and applied to
Pavia University, Indian Pines and Salinas hyperspectral
data sets
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Fig. 7. Framework of the proposed process

and other approaches for each hyperspectral
image. The results is reported from [15], [17], [14].

Tables 2, 3 and 4 shows the comparison of the
AA, OA and individual class accuracy obtained by
WOA-SVM and some previous works. The AA,
OA and individual class accuracy rate for Salinas
scene, Indian Pines scene and Pavia University
scene respectively. The first column of tables
represents the name of classes and the last two
rows represent the AA and OA. The second column
represents the band selection approaches used
for comparison and it contains seven sub columns
each one represents a band selection approach.
The third column represents the results obtained
by using all the bands under two classifiers:
k-nearest neighbor and SVM. The last column
represents the results obtained by our study for the
both objective function J; and Js.
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For the comparison, we use seven
filter approaches: mRMR  (Max-Relevance
Min-Redundancy), CMIM (Conditional Mutual Info
Maximisation), and Relief. Also, we compare the
proposed approach to four wrapper approaches:
PSO (Particle Swarm Optimization [?]), BGSA
(Binary Gravitational Search Algorithm [24]), BBA
(Binary Bat Algorithm [21]) and GA (Genetic
Algorithm [5]). In addition, we propose to compare
our approach to K-nearest neighbor and Support
Vector machines classifiers by using all the
features (without bands selection).

As shows in tables 2, 3 and 4, the results
obtained by WOA-SVM using the objective function
J1 and J, perform significantly better than the other
approach with a slight advantage to J, in Salinas
and Indian Pines hyperspectral images. All the
wrapper approaches have provided good results
compared to filter approaches; this is because
wrapper approaches make a repetitive call to
a classifier system. Wrapper approaches use
accuracy rate as an objective function and attempt
to optimize this last contrary to filter approaches,
which are independent to the classifier system.

By analyzing the experimental results, we
conclude that WOA-SVM performs well and
provides satisfying results compared to several
feature selection approach.

The visual results (classification maps) is
illustrated in figure 6.

Figure 6 show the classification map generated
by the proposed approach WOA-SVM for the both
objective function.

4.4 Application in Mammography Image
Dataset

In this section, we analyze the performance of the
proposed approach WOA-SVM in MIAS dataset.
Figure 7 illustrates the proposed process to classify
mammogram image.

The process of mammogram image classifi-
cation contains two important steps: feature
extraction and feature selection. Feature extraction
step consists to extract the feature of each image.
In this study, we propose to combine four types
of features obtained by four feature extraction
methods:



ISSN 2007-9737

WOA-SVM: Whale Optimization Algorithm and Support Vector Machine for Hyperspectral ... 1535

Table 3. Classification accuracy rate obtained by WOA-SVM over Indian Pines scene and compared with previous works

Class Feature Selection Approaches This Study
mRmR  cmim Relief GA PSO GSA BBA knn J1 Ja

Alfalfa 0,00 16,22 0,00 0,00 60,71 50,57 60,71 84,44 2163 60,70 60,71
Corn-on till 31,67 55,12 5442 5293 60,91 69,89 61,61 36,79 52,60 56,83 62,54
Corn-min till 18,37 4789 2410 28,16 64,65 69,67 56,42 40,67 51,21 59,44 60,04
Corn 1,58 40,53 8,42 14,74 46,15 46,85 46,15 72,31 31,06 43,36 42,66
Grass/pasture 70,28 83,46 57,11 82,17 88,62 88,96 89,31 80,40 85,28 87,59 85,86
Grass/tree 66,95 93,15 86,46 9435 93,15 9589 94,97 7893 96,91 93,61 96,12
Grass/pasture-mowed 4,35 86,96 0,00 17,39 70,23 88,23 52,94 95,38 78,27 88,24 88,24
Hay-windrowed 51,44 96,08 99,22 96,87 9860 9790 9547 76,11 98,96 94,08 98,26
Oats 0,00 6,25 0,00 0,00 50,00 50,00 50,00 100 0 58,33 33,33
Soybeans-no till 1324 66,84 4165 5938 70,68 7893 66,95 53,80 70,83 71,75 72,77
Soybeans-min till 62,07 75,51 67,92 7413 77,66 82,41 7549 39,73 77,75 73,93 76,65
Soybeans-clean till 11,58 45,47 12,63 32,00 59,26 58,98 58,42 49,12 4443 52,53 53,65
Wheat 66,46 92,07 91,46 94,51 90,74 91,86 9512 91,42 96,35 91,87 93,50
Woods 92,98 94,76 90,51 92,98 91,17 4238 9235 81,31 94,97 90,38 91,83
Bldg-grass-tree-drives 10,68 11,33 7,44 11,65 48,70 46,55 48,70 47,05 18,13 44,83 42,67
Stone-steel towers 18,67 6533 2533 73,33 92,85 89,28 87,50 94,11 81,34 91,07 91,07
AA 32,52 61,06 41,68 51,54 72,75 71,77 70,76 70,10 62,49 72,41 71,87
OA 46,59 69,48 57,67 64,86 7455 7403 73,89 56,42 71,01 72,60 74,61

Table 4. Classification accuracy rate obtained by WOA-SVM over Pavia University scene and

previous works

compared with

Class Feature Selection Approaches This Study
mRmR  cmim Relief GA PSO GSA BBA Ji Jo
Asphalt 83,39 79,89 83,52 82,28 89,21 90,44 89,77 84,93 86,53 89,52 89,67
Meadows 95,82 93,17 94,18 96,91 90,98 91,64 92,62 70,79 97,93 95,48 95,08
Gravel 53,21 53,93 47,38 43,75 72,85 77,38 73,01 67,16 70,00 74,60 73,65
Trees 77,20 60,03 53,47 79,73 88,52 87,87 85,42 97,77 83,12 89,83 89,40
Painted Metal Sheets = 99,54 98,88 89,78 99,16 99,75 94,25 96,75 99,46 99,08 99,75 99,26
Bare Soil 48,78 26,47 62,72 5825 7045 70,70 71,00 92,83 58,83 71,90 70,21
Bitumen 81,11 78,67 75,75 75,47 80,59 84,96 83,20 90,42 85,62 85,46 84,21
Self-Bloking Bricks 85,71 81,74 79,97 83,47 81,70 80,02 80,35 92,78 87,58 83,39 82,99
Shadows 100 75,33 100 100 98,01 99,82 97,82 98,11 99,87 100 100
AA 80,53 71,98 76,31 79,89 85,78 86,12 85,77 88,25 85,40 87,77 87,16
OA 83,82 77,29 81,81 84,57 87,38 87,97 87,28 81,01 97,85 89,24 88,72

— Features from F} to Fggo are obtained by

Pyramid Histogram of Oriented Gradients,

— Features from Fys1 to Fgggs are obtained

by Fourier,

— Features from Fggg

by Gabor,

— Features from Fi56

by DCT.

to Fys5 are obtained

to Frs9 are obtained
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The total number of features is 759 and not all
the features can be used for the classification.

The second step of the process is to select
from 759 features the most informative and relevant
features to provide a high classification accuracy
rate and a good classification model. We use
the proposed approach WOA-SVM to select the
optimal subset of features. Table 5 and table 6
table the results obtained by WOA-SVM compared
to other feature selection approaches.

From Table 5 and table 6, we clearly observed
that WOA-SVM achieved a high accuracy rate.
The maximum of accuracy obtained under the
validation test is 100%, the mean accuracy rate is
98.82% obtained by the objective function .J; and
98.71% by Jo. A small advantage is observed for
Jo with a minimum of accuracy 96.61% compared to
the minimum of accuracy provided by J> (94.91%).

The experimental results demonstrated the
superiority of WOA-SVM with regards to other ap-
proaches.

This paper can be summarized with the
following points:

1. The proposed approach is called WOA-SVM
and is based on a recent meta heuristic
called Whale Optimization Algorithm which
mimicking the hunting behavious of hump-
back whales.

2. The problem of feature/band selection and
parameters determination of SVM and kernel
function is designed as a combinatorial
optimization problem.

3. A binary version of WOA is developed to deal
the problem of feature selection.

4. A new fitness function is designed and it
is composed of two important terms: the
first term is based on the weight vector w
generated by SVM which as the ranking
criterion. This criterion represents the ability
of a feature to affect the margin of separation
(optimal hyperplane). The second term
computes the ability of a feature to regroup the
instances of the same class.
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5. The experimental results showed that the
proposed approach WOA-SVM is not time-
consuming and provided a high classification
accuracy rate compared to other feature
selection approaches.

5 Conclusion

In this paper, we propose a novel approach for
feature/band selection and parameter determina-
tion of support vector machine applied in the
context of band selection in hyperspectral image
classification and feature selection in 2D image.
The proposed approach is called WOA-SVM and
it used the whale optimization algorithm which is
a recent meta heuristic inspired from the social
behaviors of humpback whale. A new objective
function based on the SVM weight vector and a
new measure has been developed. The paper
presents two contributions: the first one is the
tuning of SVM parameter C' and the Gaussian
kernel parameter 0. The second is to select
the relevant and informative features/bands which
provide the high classification accuracy rate. The
proposed approach was applied on three widely
used hyperspectral images: Salinas, Indian Pines,
and Pavia University. In addition, we propose
to conduct a second experimentation under MIAS
dataset which is a set of mammogram images.
The experimental results show that WOA-SVM
produced satisfactory results and was adequate
to determine the optimal parameters of SVM.
The stability of WOA algorithm was verified. We
executed the algorithm 100 times and computed
the classification accuracy rate.  The results
indicate that the proposed approach is very stable.

WOA-SVM was compared with several filter
and wrapper approaches, and two classifier using
all the features. The classification accuray
rate obtained by WOA-SVM indicated that this
approach performs significantly advantageously
with regards to other. These results provide
encouragement to analysis WOA-SVM in other
application such as the gene selection in DNA
microarray dataset for cancer diagnosis.
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Table 5. Classification accuracy rate and computational time obtained by WOA-SVM using two objective function.

Accuracy rate (%) : WOA-SVM Time
fitness J1
fitness Jao

Best Mean Worst Best Mean
Worst
MIAS 100 98.82 94.91 100 98.71
96.61 2.81
Table 6. Comparison of classification accuracy Sciences, Vol. 652, pp. 119753. DOI:

rate obtained by BGWO and other approaches for

MIAS dataset.

https://doi.org/10.1016/j.ins.2023.119753.

3. Dong, J., Li, X,, Zhao, Y., Ji, J., Li, S., Chen,
- H. (2024). An improved binary dandelion al-
MIAS : Database - Accuracy (%) gorithm using sine cosine operator and restart
Filter Approaches strategy for feature selection. Expert Systems
MIM 67.52 with Applications, Vol. 239, pp. 122390. DOI:
mRMR 92.37 https://doi.org/10.1016/j.eswa.2023.122390.
MIFS 76.27
JMI 98.83 4. Ethem, A. (2004). Introduction to machine
CMIM 76.27 learning. Second Edition.
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Wrapper Approaches feature selection and parameters optimization
PSO 100 for support vector machines. Expert Systems
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