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Abstract. Remote sensing has become a very
interesting tool in various applications because its ability
to capture detailed spectral information with a wide
range of wavelengths. However, the large dimensionality
of hyperspectral image and the inherent complexity
provides many challenges for image classification and
the accuracy rate. One of the critical preprocessing step
in wealth of data hyperspectral image classification is
the spectral band selection which play a very important
role to reduce the dimensionality and by consequences
reduce the Huge phenomena. In this paper, we
propose a new spectral band selection approach
based on a new metaheuristic called Coronavirus
Disease Optimization Algorithm (COVIDOA). A binary
version of this metaheuristic is proposed with a new
objective function based on accuracy rate and distance
measure. The proposed approach will be tested on
three hyperspectral images widely used in the literature
and demonstrating its efficacy in improving classification
accuracy rate.

Keywords. Band selection, coronavirus disease,
optimization algorithm, classification, hyperspectral
image.

1 Introduction

In earth observation and remote sensing, hyper-
spectral imaging has become a vital tool in various
applications. It offers a wealth of data provided
by the detailed spectral information. These

data can be exploited for many applications such
as agriculture, environmental monitoring, mineral
exploration, military, etc. Unfortunately, the large
dimensionality and the complexity of hyperspectral
image presents a big challenge for classification
and feature extraction [9].

Spectral band selection is the important step
in the hyperspectral image classification and
analysis. It aims to improve the efficiency and
accuracy of classification algorithms by selecting
only the most informative bands, enhancing
signal-to-noise rations and reducing computational
complexity.

In general, spectral band selection (feature
selection) methods are categorized in three
categories: Filter, Wrapper and Embedded [11,
14]. Filter approaches are a type of feature
selection that evaluates the relevance of each
feature independently of the classifier (machine
learning model). They use statistical methods to
calculate the rank of individual features. Wrapper
approaches are a feature selection approach that
use the classifier to evaluate the subset of features
[1, 4]. Embedded approaches incorporate feature
selection into the process of training of a machine
learning model.

To address the problem of spectral band
selection, researchers have used the power of
metaheuristic optimization techniques. In the
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context of hyperspectral image classification, the
metaheuristic spectral band selection methods can
help to efficiently select the optimal subset of
bands by searching through the vast spectrum of
possible band combinations and identify the subset
spectral band that best serve the classification
[10, 7].

Numerous researches have been done in the
context of band selection. In [15], the authors
proposed an unsupervised band selection for
medical images analysis based on the data
gravitation and weak correlation. In [12], Yujuan
Sun et al., propose a new band selection based on
hyperspectral piling Ficher graphs (HSPFiGs) by
constructing a band selection optimization method.
Reza Aghaee et al. [2], propose a fusion based
approach using metaheuristic band selection. In
[13], a graph regularized spatial-spectral subspace
slusteringt method is proposed for band selection.
It adopts superpixel segmentation to preserve the
spatial information. Medjahed et al. [8] used the
Salp Swarm Algorithm with Threshold accepting
for band selection and a new objective functions
are tested.

In this paper, a new approach for spectral band
selection in hyperspectral image classification is
proposed. This approach is based on a new
objective function composed of two terms: the
first one is the classification accuracy rate and the
second term is the distance measure. The aim
of this work is to select the optimal spectral band
which improves the classification accuracy rate and
reduce the dimensionality of the problem.

The proposed approach is called SBS-BCDOA
(Spectral Band Selection - Binary Coronavirus
Disease Optimization Algorithm) and it is based on
Coronavirus Disease Optimization Algorithm which
is a new meta-heuristic inspired on the movement
and search of the corona-virus among different
societies. A binary version of Coronavirus Disease
Optimization Algorithm is proposed.

To assess the effectiveness of the proposed
approach, we consider three commonly utilized
hyperspectral images widely used in the literature
i.e. Salinas, Pavia University and Indian Pines.

The rest of paper is organized as follows:
In the next section, we present the proposed
approach SBS-BCDOA. Following this, we present

the results of our study and discuss them. Lastly,
we conclude our study by summarizing this work
and presenting some perspectives.

2 Proposed Approach SBS-BCOVIDOA

2.1 Problem Formulation

The aims of this work is to address the problem
of spectral band selection in hyperspectral image
classification. The problem of band selection
can be modeled as a combinatorial optimization
problem. Let assume B = {b1, . . . , bn} a set of
spectral band and X = {x1, . . . ,xn} is a binary
vertoc. The problem is designed as follows:

xi =

{
1 if bi is selected,
0 if bi is not selected. (1)

The fundamental concept of band selection is
to identify the most favorable band subset that
improve significantly the classification accuracy
rate. The basic idea of this study, is to
propose a binary version of Coronavirus Disease
optimization algorithm and adapt it to the
combinatorial optimization problem which is a
binary optimization.

2.2 Coronavirus Disease Optimization
Algorithm

In the CVSO algorithm, an initial population is
randomly created and this population is divided into
groups called “typical societies”. The best member
of each society serves as a proxy for the individual
spreading the coronavirus in that society. The rest
of the population is referred to as the citizen of the
society and it includes individuals who can learn
from their social interactions and have ability to
move between societies. The initial population (Np)
is divided into Nv society and each society has
Np/Nv members. The best one is called V (Virus)
and the rest is called H (Human) [5]. The CVSO
algorithm is composed of three steps :
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2.2.1 First Step

The first step is referred to as the spread phase
which contains four events that take place within
each society. These events are: Spread of
the virus, virusization of individuals, strengthening
of people, the death and birth of new virusize
individuals. The best member in society is the virus
or the individual infected by the virus. For the nth

individual in the ith society, we have the following
equation:

Hnew
n = Vi + ξ × (Vi −Hold

n ), (2)

where, ξ provides random number between [0, 1]
equal to the dimesion number of the problem (in
our study is the number of initial spectral band).

From the equation 2, we notice that the virus
try to infect the individual. A small value means
that the individual is stronger and effective in the
optimization (case of minimization). The strength
of the individual represents the objective function
in the optimization problem which is the Cost(H).
In the other side, if the power of the nth individual
from the ith society is in safe place (safe distance),
he/she will be less affected by the virus V i, and the
equation of social learning will be as follows [5]:

Hnew
n = Hold

n + ξ × (Vi −Hold
n ). (3)

The safe distance is designed in the fact that if
the individual is strong to compete with the virus
agent, the function of the individual (Cost(Hn))
should not be much greater than the value of virus
agent (Cost(Vi)) and equal to 1 +

∣∣R1Iter
∣∣. The

safe margin is defined as follows [5]:

if Cost(Hn) < (1 +
∣∣R1iter

∣∣)× Cost(Vi) then
Hnew

n = Hold
n + ξ × (Vi −Hold

n )
else

Hnew
n = Vi + ξ × (Vi −Hold

n )
end,

(4)
where, Hnew

n is the new position of the nth
individual. R1 is a random value using normal
distribution. This individual can find a new position,

die and a new individual will be created. This can
be described as follows [5]:

if Cost(Hnew
n ) < Cost(Hold

n ) then
Hn = Hnew

n

else if ξ < Kd
Hn = Hmin + ξ × (Xmax −Xmin)

else
Hn = Hold

n

end,

(5)

where kd is the probability of individual death
and the birth of a new individual with random
position [5].

2.2.2 Second Step

The second step is the evolution phase. The
viruses can become stronger over time. This
evolution can be defined as follows [5]:

V new,k
i = Vi +

ξ

Iter
× (R2) (6)

where Vi is the ith virus. This equation 6
represents the evolution of the virus to be stronger.
R2 is a random value using normal distribution.
The algorithm can be improved by avoiding the
local optimal as follows [5]:

for k = 1 : Ne

V new,k
i = Vi +

ξ
Iter × (R2)

if Cost(V new,k
i ) < Cost(Vi)

Vi = V new,k
i

end
end,

(7)

where Ne is the number of evolutionary cycle which
can be defined by the user.

2.2.3 Third Step

The third step is the travel phase which allows to
the individuals of each society to randomly migrate
to another society and spread the virus. As the
real world, people can travel and spread the virus.
In CVSO algorithm, in each iteration, we select
randomly individuals (H) from each society which
is a SubSociety and each society can randomly
accept the individuals [5].
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A random individuals can migrate from the mth

society to ith society, and a random number of
individuals can migrate from the ith society to the
nth society. This migration is illustrated on the
following equation [5]:

Nt(i) = round((ξ × (1− ξ))×Nh(I)), (8)

where Nt is the number of immigrants and Nh is
the number of individuals in that society.

The algorithm stops when the user performs the
desired iteration number or when the global optimal
is the solution [5].

The pseudocode of the algorithm is described in
Algorithm 1 [5].

2.3 Binary Coronavirus Disease optimization
algorithm

A binary version of Coronavirus Disease optimiza-
tion algorithm is proposed for band selection. The
optimal solution is a binary vector with the following
condtion, if x = 1 the band is selected and it will
be part of the machine learning model otherwise
x = 0 the band is not selected. To take account the
binary version, we propose to use the Hyperbolic
Tangent function that maps continuous values.

You can then map the values to 0 or 1 based on
whether they are greater or less than 0:{

H(xi) = 1 if tanh(xi) > 0,
H(xi) = 0 if tanh(xi) ≤ 0 .

(9)

2.4 Objective Function

In wrapper method and in most cases, the objective
function is typically defined in terms of either
the error rate or the classification accuracy rate.
We propose an objective function with two terms,
the first term is the classification accuracy rate
and the second term is the capability of feature
discrimination.

Algorithm 1 Coronavirus Disease Optimization
Algorithm [5]

1: initialization
2: for i = 1 : NP do
3: Hi = Xmin + ξ × (Xmax −Xmin)
4: end for
5: H = sort(H);
6: for i = 1 : NV do
7: Vi = Hi

8: end for
9: for i = 1 : NV do

10: Society(i) = [Vi,H(l : Nh(i))]
11: H = H((Nh(i) + 1) : Np)
12: end for
13: Process of the algorithm and check fitness
14: for i = 1 : NV do
15: for n = 1 : Nh(i) do
16: if Cost(Hn) < (1 +

∣∣R1Iter
∣∣)× Cost(Vi) then

17: Hnew
n = Hold

n + ξ × (Vi −Hold
n )

18: else
19: Hnew

n = Vi + ξ × (Vi −Hold
n )

20: end if
21: if Cost(Hnew

n ) < Cost(Hold
n ) then

22: Hn = Hn
new

23: else if ξ < Kd then
24: Hn = Xmin + ξ × (Xmax −Xmin)
25: else
26: Hn = Hold

n

27: end if
28: end for
29: end for
30: Changing the virus agent position
31: for i = 1 : Nv do
32: if BestCost(H) < Cost(Vi) then
33: Vi = Best(H)
34: end if
35: end for
36: Evaluating the fitness
37: for i = 1 : Nv do
38: for k = I : Ne do
39: V new,k

i = Vi +
ξ

Iter
× (R2)

40: if Cost(V new,k
i ) < Cost(Vi) then

41: Vi = V new,k
i

42: end if
43: end for
44: end for
45: Carry out the migration phase on the citizens of the

societies
46: Nt(i) = round((ξ × (1−R2))×Nh(i))
47: SubSociety(i) = Human((Nh(i)−Nt(i) + 1) : Nh(i))
48: for i = 1 : Nv do
49: Nh(i) = Nh(i)−Nt(i)
50: Society(i) = Society(i)− SubSociety(i)
51: end for
52: for i = 1 : NV do
53: Nh(i) = Nh(i) +Nt(j)
54: j = 1 : Nv − {i}
55: Society(t) = Society(i) + SubSociety(j)
56: end for
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2.4.1 First Term

The first term of the objective function is the
classification accuracy rate. The goal is to
maximize the rate of the accuracy. The proposed
idea is to use three classifiers: Support Vector
Machine (SVM), Random Forest (RF) and Naı̈ve
Bayes (NB). We will compute the average of
classification accuracy rate produced by the three
classifiers to avoid having a subset of features
which are totally dependent of a specific classifier:

f1(X,B) =
carSV M (X,B) + carRF (X,B) + carNB(X,B)

3
(10)

where,
carSVM (X,B), is the classification accuracy rate

provided by SVM.
carRF (X,B), is the classification accuracy rate

provided by RF.
carNB(X,B), is the classification accuracy rate

provided by NB.

2.4.2 Second Term

The second term of the objective function is
the score of spectral band discrimination. The
basic idea is to calculate the power of feature
discrimination using Jeffries-Matusita distance.
The Jeffries-Matusita (JM) distance is a statistical
measure used to quantify the separability of
features in supervised classification. It measures
the dissimilarity between two classes in feature
distribution [6].

The Jeffries-Matusita distance between two
classes is defined as follows:

Let’s i and j two classes, the Jeffries-Matusita
distance between the class i and class j for a
feature is described as follows:

JMi,j =
√

2(1− eBi,j ), (11)

where, Bi,j is the Bhattacharyya distance [3]
defined as follows:

Bi,j =
1

8
(mi −mj)

T

(∑
i +
∑

j

2

)
(mi −mj)+

1

2
ln


∣∣∣(∑i +

∑
j

)
/2
∣∣∣∣∣∑

i

∣∣ 12 +
∣∣∣∑j

∣∣∣ 12


where, m is the class mean vectors and
∑

is the
class covariance. The goal is to find the subset
of features that maximize the JM distance, this
function can be formulated as follows:

Disb =

c∑
i=1

c∑
j=1

p(ωi)p(ωj)JMi,j , (12)

where Disb is the JM distance for the spectral
band b.

p(ω) is the class prior probabilities and c is the
number of classes.

The term of the objective function related to
Jeffries-Matusita distance is given by the equation:

f2(X,B) =
1

N

n∑
i=1

xi ×Disbi. (13)

The final form of the objective function is defined
as follows:

f(X,B) = α× f1(X,B) + β × f2(X,B). (14)

The final goal is to maximize the objective
function f(X,B).

3 Experimental Results

3.1 Dataset

To assess the effectiveness of the proposed
approach SBS-BCOVIDOA, we carried out the
experimentation under three commonly referenced
hyperspectral images in the literature: Salinas,
Indian Pines, and Pavia University.
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3.1.1 Salinas Image

The Salinas image is an hyperspectral image
which was taken by the AVIRIS (Airborne Visible
InfraRed Imaging Spectrometer) above the Salinas
Valley, Southern California, USA. The size of this
image is 512×217 pixels contains 224 bands with a
spectral range from 0.4 µm to 2.5 µm. There are 16
ground truth classes: Broccoli-green-weeds-1,
Broccoli-green-weeds-2, Fallow,
Fallow-rough-plow, Fallow-smooth, Stubble,
Celery, Grapes-untrained, Soil-vinyard-develop,
Corn-senesced-green-weeds,
Lettuce-romaine-4wk, Lettuce-romaine-5wk,
Lettuce-romaine-6wk, Lettuce-romaine-7wk,
Vineyard-untrained and Vineyard-vertical-trellis
[9, 8].

(a) (b)

Fig. 1. Salinas hyperspectral image. (a) Color compose.
(b) Ground truth.

3.1.2 Indian Pines Image

Indian Pines, which is the second hyperspectral
image used in this experimentation. It wa captured
over the agricultural region of Northwestern of
Indiana,USA. The size of thi image is 145 ×
145 pixels and it contains 220 bands in the
spectral range 0.5 µm to 2.5 µm. It was

captured by AVIRIS and it contains 16 ground
truth classes: Alfalfa, Corn-notill, Corn-mintill,
Corn, Grass-pasture, Grass-trees, Grass-pasture-
mowed, Hay-windrowed, Oats, Soybean-notill,
Soybean-mintill, Soybean-clean, Wheat, Woods,
Buildings-Grass-Trees-Drives, and Stone-Steel-
Towers [9, 8].

(a) (b)

Fig. 2. Indian Pine hyperspectral image. (a) Color
image. (b) Ground truth.

3.1.3 Pavia University Image

Pavia University hyperspectral image was captured
over the urban area of Pavia University. The size
of this image image is 610 × 340 pixels and it was
collected by ROSIS. It contains 103 bands in the
spectral range from 0.4µm to 0.86 µm. The ground
truth differentiates 9 classes: Asphalt, Meadows,
Gravel, Trees, Painted Metal Sheets, Bare Soil,
Bitumen, Self-Blocking Bricks, and Shadows [9, 8].

3.2 Parameters Setting

The parameters setting of the proposed approach
are as follows.

For the classifiers we used SVM with Gaussian
kernel (α = 0.5). For the optimization method, the
number of iteration is set to 200 with population set
to 50. For the objective function, α and β are set to
0.5. These values are taken by experimentation.

As each classifier, we proposed to use 40% of
the pixels in the training phase, 30% of the pixed
in the validation phase and the remaining 30% are
considered for the testing phase.
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(a) (b)

Fig. 3. Pavia University hyperspectral image. (a) Color
Image. (b) Ground truth.

3.3 Results and Discussion

In this section, we present the result obtained
by the proposed approach in term of individual
class accuracy, average accuracy (AA) and overall
accuracy (OA). Note that in the context of images
classification, OA and AA are an evaluation metrics
of the classification used to summarizing the
performance of a classifier. OA produces an
overall measure of the classification accuracy
rate without considering class imbalances and AA
considers the individual accuracies for each class
and produces a more balanced assessment.

Table 1 describes the numerical results obtained
by the proposed approach and applied on Pavia
University, Salinas and Indian Pines hyperspectral
images.

The analysis of the results obtained for the Pavia
University hyperspectral image, demonstrates
promising results. The proposed approach
achieved a high coverall accuracy of 90.95%.
this measure provides a high-level overview of
the classifier’s performance across all classes.
The robust OA underscores the effectiveness
of our methodology in capturing the underlying
patterns within the hyperspectral data. Moreover,
the AA highlights the reliability of the proposed
approach by achieving a notable AA 88.82%. The

Table 1. Classification accuracy rate obtained by
WOA-SVM over Salinas scene and compared with
previous works.

Class Proposed Approach SBS-BCDOA
Pavia University Indian Pines Salinas

#1 89.04 7.14 99.00
#2 98.28 62.54 99.91
#3 76.90 57.22 98.90
#4 87.81 44.05 99.64
#5 99.25 82.06 97.94
#6 73.69 95.66 99.95
#7 86.84 76.47 99.39
#8 87.55 97.90 82.78
#9 100.00 25.00 99.73
#10 - 63.18 94.25
#11 - 76.44 96.56
#12 - 33.70 99.39
#13 - 96.74 97.45
#14 - 95.91 94.23
#15 - 24.13 61.06
#16 - 80.35 98.61
AA 88.82 63.66 94.92
OA 90.95 71.55 90.28

achieved AA of 88.82% indicates that our approach
generalizes well across different classes, ensuring
consistent and accurate predictions even in the
presence of varying class sizes.

For Indian Pines hyperspectral image, the
proposed approach yielding an OA of 71.55% which
underscores the effectiveness of this approach in
capturing the spectral intricacies. The proposed
approach indicated an average accuracy of 63.66%
across the individual classes. While AA considers
the impact of class imbalances, the achieved value
of 63.66% suggests that our approach maintains
a good balance in performance across different
classes, effectively generalizing to various spectral
signatures present in the Indian Pines dataset.

The third experimentation was done over the
Salinas hyperspectral image. The approach
provided an overall accuracy of 90.28% which
emphasized the effectiveness of our proposed
approach. Furthermore, the AA revealing
a good average accuracy of 94.92% across
individual classes.

Figures 4, 5 and 6 illustrate the visual results
which are the classification map obtained by the
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Fig. 4. Classification map obtained by the proposed
approach for Pavia University

Fig. 5. Classification map obtained by the proposed
approach for Indian Pines

Fig. 6. Classification map obtained by the proposed
approach for Salinas

proposed approach. The visual representation
of the classification results is a classification
map which produces an intuitive understanding
of how well our proposed approach performs in

distinguishing different classes. The analysis of
the classification maps demonstrates that the pro-
posed approach captures the spatial distribution of
various classes. The classification maps reveal
a clear spatial separation between the classes
which indicates that our approach effectively
distinguishes between different land cover types.
The class assignments are clearly visible and
distinguishable on the map, demonstrating the
accuracy with which our approach allocates pixels
to their respective land cover classes.

4 Conclusion

In this paper, we proposed a new spectral band
selection approach based on a new meta-heuristic
called Coronavirus Disease Optimization Algorithm
which a binary version is proposed and adapted
to the problem of band selection. Additionally, we
propose a new objective function based on two
important terms: The first term is the average
classification rate obtained by SVM, RF and NB.
The second term is the Jeffries-Matusita distance
which is used to compute the capability of a band
to separate the classes. The proposed approach
is tested under three hyperspectral images widely
used in the literature: Pavia University, Indian
Pines and Salinas. The performance evaluation
of our approach, applied to Indian Pines, Salinas,
and Pavia University, reveals consistently high
Average Accuracy (AA) and Overall Accuracy
(OA). These metrics underscore the robustness
and generalization capabilities of our classifier,
showcasing its potential applicability in real-world
scenarios. Visual interpretation of the classification
maps further reinforces the reliability of our
results. The well-distinguished regions and clear
spatial separation between classes affirm the
model’s proficiency in capturing intricate spectral
patterns, while comparisons with ground truth
data validate the accuracy of our classifications.
While the proposed approach has demonstrated
significant success in term of AA and OA, we
propose as future perspective to test the proposed
approach in tuning hyperparameters or improve the
classification of DNA microarray.
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