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*
, Blanca Verónica Zúñiga-Núñez
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Abstract. Water resource management is an
important issue that involves several factors such as
economics, social, politician, among others, for its
adequate administration. Water can be classified
according to its usage purposes since it is used
for human consumption, industrial usage, agriculture,
etc. Thus, correct strategies to manage this vital
liquid are essential for its effective use. This
paper studies water management from a mathematical
optimization approach by considering factors and
constraints that may suit real-world conditions. The
proposed mathematical model is based on the classical
transportation problem, which is well-known in the
literature. We perform an empirical evaluation of the
proposed model using off-the-shelf optimization software
over a set of proposed instances, and the results show
the feasibility of the proposal. Finally, we discuss the
faced challenges in the research and possible future
research directions that may help the management of
water resources from a computational approach.

Keywords. Water stress, water management
optimization, transportation problem,
mathematical optimization.

1 Introduction

Water, a vital element for the sustenance of living
organisms, faces relentless exploitation due to the
current demands and circumstances of humanity.
The imperative needs of various economic sectors
drive the excessive use of this indispensable
resource. According to [19], global water
consumption has been on the rise at approximately
1% annually over the past four decades, and this

trend is anticipated to continue until 2050. Despite
the inherent renewability of water, its consumption
extends beyond human needs, encompassing
commercial, industrial, agricultural, livestock, and
energy production activities, causing the depletion
of water sources, surpassing natural renewal by
the hydrological cycle and causing water stress [4].

Efficient water resource management faces
numerous limitations and uncertainties, making
decision-making very challenging. For example,
water is extracted from different sources such as
basins, rivers, lakes, etc., and its processing varies
depending on the sector in which it is going to
be used, so in the end, you have different types
of water. That is, the water used for human
consumption has different characteristics than that
used for irrigation or industry. Furthermore, the
volume of water to be used must be adapted
based on the different demands linked to each
specific sector (i.e., agricultural, industrial, etc.),
population density, geographical conditions, and
climate change [17, 27], not to mention that all
these aspects require a lot of bureaucracy, which
further complicates the management of water
resources.

The study of the problem of water management
using computational tools has been going
on for years, for example, the estimation of
hydrogeological parameters [8, 10] to establish
environmental policies, studies on saltwater
intrusion into coastal aquifers by using evolutionary
algorithms [1, 3], pollution management in
hydrographic basins [25], and optimal water
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allocation for crops and irrigation [16], are topics
of interest in the computational world. In addition,
alternative methodologies involving the modeling
of water management issues using a spectrum
of tools have arisen. For instance, in [11] was
developed a dynamic model leveraging the
expertise of various domain experts, facilitating
the selection of optimal water management
activities to mitigate water shortages. In [20] was
introduced a hydrological and system dynamics
model specifically designed to analyze five distinct
scenarios about industrial, agricultural, and
domestic water use. [28] contributed to the field
by enhancing the Water Resources Ecological
Footprint, with a particular emphasis on regional
distinctions.

In a different vein, in [30] was introduced
a stochastic multi-criteria decision-making
framework for Water Resource Management,
explicitly considering the challenges posed by
uncertainty. In [29] was presented a synthesis of
key concepts and categories related to urban
drought, elucidating strategies to enhance
public awareness, promote flexibility, optimize
water management efficiency, ensure reliable
and integrated urban water supply, invest in
scientific research and strengthen international
cooperation. In [24], was addressed Water
Resource Management, specifically targeting
irrigation systems through the application of
algorithms to calculate limits. In the domain
of agricultural water management, in [21] was
proposed a generalized spatial fuzzy strategic
planning approach, incorporating multi-criteria
decision-making.

A strong trend is the optimal design of
water distribution systems, whether to improve
distribution strategies, pipe rehabilitation, water
quality, avoid leaks, optimize the operation
of pumps, and also the occurrence of water
contamination [14]. Also, parallel evolutionary
algorithms have been proposed for similar
approaches to optimizing the network design
for water distribution [2]. However, efforts have
focused on finding the best system design (at a
local level) that maximizes the robustness of the
network and at the same time is cost-effective,
but the problem of water management is not

addressed in a broad context, for example,
the challenge of balancing water consumption
to promote the replenishment of water resource
sources. Furthermore, if the restrictions mentioned
in the previous paragraph (i.e. different supply
and demand sources, different types of water,
and other restrictions) are added, the problem
becomes more difficult to solve. Motivated by the
lack of such studies in the literature, we address
the challenge of Water Resource Management,
where multiple types of source water resources
are involved. Besides, other constraints that may
suit real-life conditions are considered.

To propose a computational solution, it is
necessary to mathematically model the problem.
In the state of the art, different approaches could
be used to model the problem. However, given
that the problem in its simplest form consists
of taking water from supply points to demand
points, we consider that an approach based on
the transportation problem could be a good choice.
The Transportation Problem is traditionally linked
to the operations research literature [7], which
can be seen as the simplification of the objective
of minimizing the costs of the carrier that moves
certain cargo from one or more origins to their
corresponding destinations to satisfy demand.

In this work, we propose a mathematical
model as an extension of the transportation
problem, where a bipartite graph is established
that considers supply nodes, demand nodes, and
an associated cost of water transportation. The
aim is to minimize the cost of transportation,
but our approach does not end there, since
as mentioned above, different factors complicate
the efficient management of water resources;
these factors must be considered in our model
to propose solutions that are more in line
with reality. It is for these reasons that we
also incorporate different restrictions that prevent
excessive water use. This is of vital importance
since it would allow the natural renewal of
water resource sources. All these factors make
the problem computationally more interesting.
Detailed information on restrictions is set out in
Section 3.

To test the proposal, we designed and coded
a generator of feasible instances that were
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solved using the proposed mathematical model;
however, due to approached restrictions, there
are limits in the size of the instances that can
be generated in feasible computational time. It
is important to note that the objective of the
work is to show a mathematical model that allows
the management of water resources considering
restrictions attached to reality, so the application
of metaheuristic approaches is outside the scope
of this work. However, in Section 5, we establish
the necessary guidelines to address the problem
through metaheuristic optimization, which is why
we frame it as future work.

To the best of our knowledge, there is no
approach similar to the one proposed in the
literature, so the results reported in the present
work provide valuable knowledge to experts in
the field of computational sciences and water
resources management. Providing an approach
that helps make informed decisions based on data.

The rest of the paper is organized as
follows: Section 2 shows the background
about water resources and mathematical
optimization. Specifically linear programming
and the transportation problem. In Section 3, the
proposal is described in detail, which consists of a
Mixed Integer Quadratically Constrained Program
(MIQCP). This mathematical model takes as basis
the classical transportation problem. Besides, the
assumptions and limitations of this mathematical
model are discussed. Section 4 describes the
experimental design, the followed methodology,
and the faced challenges in generating the
instances. Section 5 performs an analysis of the
obtained results. Finally, Section 6 states the
conclusions and discusses the possible future
work directions of this work.

2 Background

2.1 Water Resources

Various types of water resources originate from
natural sources and serve human, agricultural,
or industrial purposes. [4] classify the water
resources into two main categories: surface water
and groundwater. Surface water includes water
flows that traverse the earth’s surface (such as

rivers). It encloses bodies of water gathered in
naturally occurring or human-made depressions,
like dams and lakes, as well as in periodically
or permanently flooded areas, such as swamps
and wetlands. Groundwater consists of rainwater
retained in impermeable soil. This resource holds
significance as it functions both as a versatile
natural water storage and a distribution network
for a country. The term physical water stress
refers to the ratio of water usage to available water,
and it is determined by a combination of various
factors [19]. The global rise in water scarcity is a
consequence of escalating physical water stress,
impacting regions worldwide. It’s worth noting
that the quality and availability of these water
resources vary based on factors like geographic
location, land use practices, climatic conditions,
population growth, infrastructure development,
over-extraction, and regulatory policies.

2.2 Water Management

As outlined in The 2030 Agenda for Sustainable
Development [15] presented by the United Nations,
there are 17 established Sustainable Development
Goals. The sixth goal, known as SDG 6, aims
to guarantee the accessibility and sustainable
supervision of water and sanitation, along with
the sustainable handling of water resources, water
quality, integrated water resources management,
water-related ecosystems, and the creation of
a conducive environment. The 2023 United
Nations World Water Development Report [19]
asserts that the demand for water in agriculture
is primarily influenced by irrigation, with variations
dependent on various determining factors. Another
crucial factor to consider is the per capita water
availability, which has been diminishing due to
the growth rates in population. Therefore,
efforts have been made to implement initiatives
aimed at developing alternatives that streamline
decision-making and enhance the prediction of
diverse factors. The goal is to optimize water
management with greater efficiency. Models
can help to represent the interactions between
these factors and their complex interactions.
As highlighted by [9], mathematical models
are primarily categorized into two main types:
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simulation-based or optimization-based models.
The last one can be further sub-categorized
into three distinct groups: conflict resolution
models, water resources planning models, and
models addressing water availability and demand
diagnosis. The last category helps to estimate
the water availability and compare it with the water
demand to find optimal strategies for meeting these
demands efficiently. Although these models can
provide important information, the final decisions
rest with the stakeholders.

2.3 Linear Programming (LP) and Mathematical
Optimization

LP [13] or lineal optimization is a mathematical
method for solving optimization problems where
the objective is to optimize a linear function under
constraints represented as linear equalities and
inequalities. The main objective is to find the best
combination of all the variables that satisfy all the
constraints for the problem to determine a way to
achieve the best outcome (for example, determine
the lowest cost). The following equations (1)-(5)
represent the standard form of a LP [26]:

min

c1x1 + c2x2 + · · ·+ cnxn (1)
subject to

a1,1x1 + a1,2x2 + · · ·+ a1,nxn ≤ b1, (2)
a2,1x1 + a2,2x2 + · · ·+ a2,nxn ≤ b2, (3)

...
am,1x1 + am,2x2 + · · ·+ am,nxn ≤ bm, (4)

x1,x2, · · · ,xn ≥ 0, (5)

where the bi’s, ci’s, and ai,j ’s are fixed real constant
numbers, and the xi’s are real numbers to be
determined which are called decision variables.
Generally, a classical LP satisfies the following
conditions: the variables of the problem must
be non-negative, the objective function should
express a linear combination of variables through a
linear function, and the constraint set must consist
of linear equations or inequalities.

The model should adapt to the problem
by considering all the specific variables and
constraints it must fulfill. LP has been widely used

in different problems such as the routing selection
problem [18], the transportation problem [22], and
the supply-chain problem [23].

In addition to LP, there are other practical
mathematical optimization approaches for
scenarios that cannot satisfy linearity. Mixed
Integer Programming (MIP) is a mathematical
optimization approach based on the general
principles of LP, but its decision variables consist
of both integer and real values. The classification
of MIP problems depends on the nature of the
objective function and constraints. The problem
is called a Mixed Integer Linear Program (MILP)
when the objective function and constraints
are linear. However, if the objective function
includes a quadratic term, it is called a Mixed
Integer Quadratic Problem (MIQP). In addition, a
model is said to be a Mixed Integer Quadratically
Constrained Program (MIQCP) [31] if it contains
constraints with quadratic terms, regardless of the
form of the objective function.

2.4 The Transportation Problem

The transportation problem stands as an essential
optimization problem widely investigated in the field
of operations research. Its main application lies in
the efficient distribution of goods from a predefined
set of source vertices to a designated set of
destination vertices, with the general objective of
minimizing the associated costs. As a fundamental
element in various economic, social, and market
scenarios, the Transportation Problem assumes a
critical role in optimizing logistics processes [7].

Formally, the Transportation Problem is stated
as follows.

Consider the set of supply vertices, denoted as
V = {v1, v2, · · · vn}, and a supply function S : V →
R+, where each vertex vi ∈ V is endowed with the
capacity to transport up to S (vi) units of goods.

Let U = {u1,u2, · · ·um} represent the
set of demand vertices corresponding to sites
necessitating the delivery of goods. The demand
function is defined as D : U → R+, specifying
that each vertex uj ∈ U requires the fulfillment of a
demand amounting to D (uj).
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The classical transportation problem can be
formally characterized through Expressions (6)-(9):

min
∑
vi∈V

∑
uj∈U

ci,jxi,j (6)

subject to∑
vi∈V

xi,j ≥ D(uj) ∀uj ∈ U , (7)

∑
uj∈U

xi,j ≤ S(vi) ∀vi ∈ V , (8)

xi,j ∈ R+ ∀vi ∈ V ,∀uj ∈ U . (9)

The equations presented make up a Linear
Programming (LP) formulation, where ci,j is the
associated cost of transporting one unit of goods
from source vertex vi to demand vertex uj , and
xi,j denotes the quantity of goods units transported
from vi to uj . Consequently, if xi,j goods units are
transported from vi to uj , the corresponding cost is
ci,jxi,j .

In this LP framework, (6) is the objective
function to minimize the total transportation cost
from source to demand vertices. The constraints
stated in (7), ensure the satisfaction of demand
for each uj , while the (8) constraints state that
the total goods shipped from the origin vertex
vi do not exceed the available quantity. Finally,
the expression (9) defines the decision variables.
It is important to note that this model assumes
viability, that is, total supply equals or exceeds total
demand, as established in the following equation:∑

uj∈U

D (uj) ≤
∑
vi∈V

S (vi) . (10)

It is well-known that the classical transportation
problem can be solved efficiently using LP
techniques [5, 6], but real-world scenarios often
require more complex constraints, which pose
challenges in solving these types of problems.

In the next section, we present a model based
on the transportation problem that abstracts
the problem of Water Resources Management.
However, it presents additional restrictions
that may arise in real-world scenarios, which
complicate the optimization problem and increase
computational demand.

3 Proposal

In this section, we propose a Mixed Integer
Quadratically Constrained Program (MIQCP)
specifically designed to address the Water
Resources Management problem. Rooted in
the fundamental principles of the transportation
problem, this model incorporates additional
constraints essential to address the complications
inherent to the problem studied. The integration
of these constraints enriches the model, which
resembles real-world conditions.

3.1 Proposed Mathematical Model

In the context of water resources management,
we propose to address the challenge of water
distribution by modeling a scenario in which water
is supplied from different water sources V =
{v1, v2, ..., vn} to different demand locations U =
{u1,u2, ...,un}, considering that each source and
demand location manages a different type of water
included in the set K = {k1, k2, · · · , kp}, where p
is the number of types of water, and ki the type
of water.

In addition, we establish a supply function S, a
demand function D, and a function T : V ∪U → K,
the latter guaranteeing that each source vertex
vi ∈ V can supply exclusively to the demand
vertices within the set {uj ∈ U : T (uj) = T (vi)}.
That is, a demand vertex that requires a specific
type of water ki, can only be satisfied by source
vertices that supply the same type of water.
Since in a real context, processed water for the
industry would not be sent to a place for human
consumption. This delineation of water types and
the associated constraints through the function T
introduces an added layer of complexity to the
classical transportation problem, catering to the
nuanced requirements of the problem considered
in this study.

In this scenario, the method of water
transportation is inconsequential; That is, we
ignore the specific mode of transportation
and instead introduce the term “carriers”,
which fulfill the function of transporting water
units from the source vertices to the demand
vertices, establishing a cost associated with said
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transportation, which can be different between
carriers. This cost is a crucial factor since it is a
function of all the aforementioned variables, and
quantifying and optimizing it becomes essential in
our study.

To elaborate, we define a set of carriers,
denoted as C = {1, 2, 3, . . . , |C|}, where each
carrier l ∈ C sets an associated cost cli,j to
the transport of a unit of water from a source
vertex vi ∈ V to the demand vertex uj ∈ U .
To achieve load balancing between carriers, each
operator l ∈ C is assigned a capacity L(l) ∈ N,
which represents the maximum number of source
vertices that it can drive. In line with our general
objective, based on this mathematical model we
seek to minimize the cost of transporting water
satisfying all demands.

Given the multitude of constraints and variables
involved, we provide a concise summary of the key
assumptions underlying the problem at hand for
clarity and precision:

1. All carriers can deal with any type of water, any
source vertex, and any demand vertex.

2. It is established that there is sufficient capacity
among carriers to operate at all origin vertices.
See the following equation:

∑
l∈C

L (l) ≥ |V | holds. (11)

3. It is vitally important to consider that for each
type of water, the total supply equals or exceeds
the demand. This is stated in the following
equation:

∑
uj∈U :T (uj)=kt

D (uj) ≤
∑

vi∈V :T (vi)=kt

S (vi) .

(12)

It holds ∀kt ∈ K. Equations (13)-(20) introduce
a mathematical model for the described problem:

min
∑
l∈C

∑
vi∈V

∑
uj∈U

cli,jx
l
i,j (13)

subject to∑
l∈C

∑
uj ∈ U :

T (vi) ̸= T (uj)

xl
i,j = 0 ∀vi ∈ V ,

(14)∑
vi∈V

∑
l∈C

yl,ix
l
i,j ≥ D(uj) ∀uj ∈ U ,

(15)∑
l∈C

∑
uj∈U

xl
i,j ≤ S(vi) ∀vi ∈ V ,

(16)∑
vi∈V

yl,i ≤ L(l) ∀l ∈ C,

(17)
xl
i,j ∈ R+ ∀(vi ∈ V ,uj ∈ U , l ∈ C),

(18)
yl,i ∈ {0, 1} ∀l ∈ C, ∀vi ∈ V ,

(19)

where xl
i,j is the amount of water units to be

shipped from vi to uj through carrier l, and:

yl,i =

{
1, if carrier l is assigned to vertex vi,
0, otherwise.

(20)

In this model, the objective function (13) seeks
to minimize transportation costs, encompassing
all carriers. Constraint (14) dictates that demand
vertices are exclusively supplied by source vertices
with matching water types. Ensuring the
satisfaction of water demands, constraint (15)
plays a crucial role.

To prevent excessive extraction and potential
stress on water bodies, constraint (16) curtail
the amount of water drawn from each source
vertex to within its available capacity. Pertinently,
these constraints hold significant implications in the
context of water supply.

Meanwhile, constraint (17) safeguards against
exceeding carrier capacities when attending to
source vertices. Finally, the decision variables
are defined and described through expressions
(18)–(20).
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3.2 Water Resources Optimization through
Mathematical Optimization

To show the feasibility of the proposal, we show
an example to clarify how the mathematical model
works.

3.2.1 Objective Function Evaluation

Next, the process of evaluating the objective
function is shown. That is, to find the values of the
decision variables that optimize the function and
simultaneously satisfy the constraints.

First, we establish the scenario to optimize.
Visually, this can be represented through a bipartite
graph where the set of supply nodes V , the set of
demand nodes U , the set of types of water K, and
the set of carriers C are established. It is important
to remember that each carrier l ∈ C establishes a
cost cli,j for transporting a unit of water from vi ∈ V
to uj ∈ U , and a capacity L(l) of supply nodes that
it can attend. Furthermore, each scenario must
satisfy (11) and (12), as well as the constraints
(14)–(20) imposed on the model, this allows the
problem to have a feasible solution. However,
this feature makes the optimization problem difficult
since a solution must be in the feasible space.
Fig. 1 shows an example for an instance with
|V | = 6 source vertices, |U | = 4 demand vertices,
|K| = 2 types of water, and |C| = 3 carriers.

Concerning the capacity of the carriers L(l), the
supply water units S(vi) and the demand water
units D(uj), these are established randomly but
complying with the restrictions (11), (12) and (14)
to find a scenario with feasible solutions. Finally,
transportation costs are also randomly assigned
to a range of positive numbers. The complete
instance of this scenario can be consulted in the
link provided in the Test Instances section.

To calculate the objective value using (13), the
transportation costs of the instance above are
used, which are summarized in Table 1, along with
the water units xl

i,j obtained by the mathematical
model to optimize the problem established in
Fig. 1, for each carrier l ∈ C and its associated
transportation costs cli,j . Using the values from
Table 1, the objective value obtained is 65.

Fig. 1. Example scenario: |V | = 6, |U | = 4, |K| = 2 and
|C| = 3

Table 1. Solution obtained by the model

Carriers Transportation cost Water units
l = 1 c13,2 = 1 x1

3,2 = 8
c13,4 = 3 x1

3,4 = 7
c15,3 = 3 x1

5,3 = 9

l = 3 c36,1 = 1 x3
6,1 = 9

Fig. 2 shows the optimal solution found using
the mathematical model. We can verify this
solution meets all established restrictions.

4 Experimental Design and Results

4.1 Test Instances

To assess the robustness of the proposed
model, we formulate 30 instances that satisfy the
constraints described in Section 3.1. Table 2
presents these instances along with their
respective parameters, where |V | and |U | are
the number of supply and demand vertices
respectively, |K| is the number of water types, and
|C| is the number of carriers. The design of these
instances is deliberate and features a gradual
escalation of difficulty, either by adding supply and
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Fig. 2. Solution for the example scenario: |V | = 6,
|U | = 4, |K| = 2, and |C| = 3

demand vertices, variations in water types, or an
increase in the number of carriers.

Instances 1–5 represent the simplest cases,
featuring 2 types of water and 2 carriers. The
number of supply nodes |S| is twice that of demand
nodes |D| in each instance. In contrast, Instances
6–10 mirror Instances 1–5, with the number of
demand nodes |D| being half that of supply nodes
|S|. This deliberate design allows us to evaluate the
model’s performance under varied scenarios with
unequal supply and demand nodes.

Instances 11–15 and 16–20 present a
considerable increase in problem difficulty. Here,
the number of water types grows by increments
of 5, ranging from 5 to 25. Simultaneously, the
number of carriers increases by 10 for each
instance, starting at 10 and concluding at 50.
Instances 11–15 and 16–20 are mirror instances,
enabling a comprehensive assessment of the
model’s adaptability to varied configurations.

In this study, the most challenging scenarios
are Instances 21–25 and 26–30, designed to push
the model’s limits. The complexity is heightened
by increasing the number of water types by
5, from 30 to 50. Additionally, the number
of carriers increases by 50, starting at 50 and
concluding at 250 for each instance. Instances

Table 2. Test instances configuration

Instance |V | |U | |K| |C|
1 1 2 2 2

2 2 4 2 2

3 3 6 2 2

4 4 8 2 2

5 5 10 2 2

6 2 1 2 2

7 4 2 2 2

8 6 3 2 2

9 8 4 2 2

10 10 5 2 2

11 15 30 5 10

12 20 40 10 20

13 30 60 15 30

14 40 80 20 40

15 50 100 25 50

16 30 15 5 10

17 40 20 10 20

18 60 30 15 30

19 80 40 20 40

20 100 50 25 50

21 150 350 30 50

22 200 300 35 100

23 250 250 40 150

24 300 200 45 200

25 350 150 50 250

26 350 150 30 50

27 300 200 35 100

28 250 250 40 150

29 200 300 45 200

30 150 350 50 250

21–25 and 26–30 are mirror instances, providing
a thorough exploration of the model’s capabilities
under difficult conditions.
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Finally, for these instances, water units for
both supply and demand vertices were randomly
assigned within the following ranges: S(vi) ∈
[1000, 5000], D(uj) ∈ [100, 500]. The capacity of
carriers was set randomly within the range L(l) ∈
[1, |V |]. Finally, transportation costs associated
with each carrier were randomly established within
the range cli,j ∈ [100, 1000]. The complete
instances can be consulted here1.

4.2 Parameter Configuration

The mathematical model was implemented in
the Python programming language by using the
off-the-shelf optimization software Gurobi v10. The
Gurobi software implements different mathematical
optimization algorithms, such as LP algorithms like
Simplex and Barrier, Branch-and-Bound for MIP
problems, among others [12].

All the experiments were run on a computer with
a Windows 11 OS, 40 GB of RAM, and an Intel
i7-10750H processor.

For the mathematical model, we tested three
different relaxations available in the Gurobi
software: Primal Simplex (PS), Dual Simplex (DS),
and Barrier (B). Table 3 shows the results obtained
from the experimentation. From this table, OPT
refers to the optimal solutions, whereas PS t(s),
DS t(s), and B t(s) refer to the running time per
instance for each relaxation method.

5 Analysis and Discussion of Results

In this section, we explore challenges in optimizing
the proposed model with added types of water
and carriers, impacting solution space, instance
generation, and resolution dynamics.

The obtained results showcase the potential
applicability in real-world scenarios. The results
reported in Table 3 affirm the feasibility of
optimizing our proposal using a mathematical
optimization approach. In all the cases, the optimal
solutions were found. For this experimentation,
we can appreciate that using different relaxation
techniques does not change radically the running
time. However, for bigger instances, we could

1https://github.com/alex-cornejo/WaterManagement-ComSis

Table 3. Optimization results for each instance, reporting
its optimal value OPT and the execution time for each
strategy measured in seconds t(s)

Instance OPT PS t(s) DS t(s) B t(s)

1 235,044 0.003 0.034 0.036
2 405,326 0.001 0.002 0.000
3 656,886 0.004 0.004 0.013
4 793,611 0.003 0.004 0.004
5 489,604 0.003 0.003 0.007
6 96,280 0.002 0.001 0.001
7 227,303 0.002 0.000 0.000
8 85,908 0.004 0.005 0.004
9 249,383 0.003 0.000 0.001

10 304,674 0.004 0.004 0.006
11 1,310,305 0.027 0.022 0.081
12 1,290,357 0.034 0.031 0.050
13 2,180,535 0.081 0.086 0.083
14 2,527,523 0.162 0.146 0.167
15 3,582,503 0.270 0.297 0.283
16 705,887 0.019 0.029 0.033
17 703,887 0.022 0.016 0.017
18 1,034,468 0.068 0.062 0.066
19 1,308,086 0.140 0.159 0.150
20 1,680,449 0.296 0.303 0.299
21 10,854,584 4.454 3.864 5.518
22 9,084,413 11.084 9.272 13.205
23 7,580,286 18.027 15.151 21.556
24 6,212,880 22.829 19.389 26.393
25 4,544,234 22.190 22.589 22.874
26 4,744,219 5.067 4.297 5.902
27 5,871,442 11.502 10.102 13.886
28 7,716,824 17.815 15.057 21.407
29 9,287,937 19.743 18.116 20.121
30 10,517,914 22.349 20.405 23.261

not ensure this. Through experimentation,
we noticed that the running time of different
relaxation algorithms can change drastically for
some instances with |V | > 600. Nevertheless,
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we could not include experimentation for bigger
instances due to the practical issues discussed
below.

The escalating complexity introduced by
including more types of water and carriers
imposes significant challenges on the problem.
The imposed constraints not only shape the
feasible solution space but also impact both the
instance generation process and the optimization
procedure.

Through empirical experimentation, we
observed that the water type constraint poses
a more intricate challenge for the optimization
process than the carrier capacity constraint.
This complexity is evident in the increased
time required to resolve instances. Conversely,
with a growing number of carriers, the memory
requirements for processing instances also surge.
Each carrier, having an associated transportation
cost expressed in a cost matrix, contributes to
the memory load. For instance, if there are 200
carriers, there would be 200 distinct cost matrices
per instance stored in memory. Furthermore, the
size of the matrix (|V | × |U |) is contingent on the
number of supply and demand nodes. Therefore,
spatial complexity becomes a critical consideration
for both instance generation and optimization.

These challenges could be effectively
addressed by adopting other optimization
techniques, such as evolutionary computation
of metaheuristics. For instance, solution
representation in metaheuristics could involve
a set of genes encoding the assignment of
water types to carriers alongside other pertinent
parameters. Designing crossover and mutation
operators respecting problem constraints ensures
the generation of feasible solutions. Selection
operators favoring diversity and exploration of the
search space can be implemented. Strategies
can be integrated to handle specific constraints
on the type of water, such as sanctions in the
objective function for non-compliance, or remedial
mechanisms for infeasible solutions.

Metaheuristics also allows for the consideration
of parallelism or distribution strategies to optimize
execution time, which is particularly crucial
for large optimization problems. Lastly, while
a comprehensive study of the computational

complexity of the problem would be valuable, this
aspect will be rigorously addressed in future work.

6 Conclusion and Future Work

This paper introduces an innovative approach to
tackling the global water stress challenge through
the application of mathematical optimization,
framing the Water Resources Management
problem. We performed this by proposing a
mathematical model, specifically an MIQCP.
The proposed mathematical model is akin to
the classical transportation problem, which is
well-known in the field of operations research.
Then, we used off-the-shelf optimization software
to test the mathematical model over a set of
proposed instances that consider restrictions of
possible real scenarios.

The results serve as a robust affirmation,
supporting the effectiveness and utility of the
proposed model in addressing optimization
challenges related to water use. These
findings underscore the model’s practical
applicability and its efficacy in solving real-world
problems associated with Water Resource
Management optimization.

Our study reveals that the inclusion of multiple
water types introduces increased complexity.
Instances with over 50 different water types
proved more intricate, necessitating a scaling
of computational resources. This adaptation
becomes crucial to overcome model limitations and
enhance the likelihood of finding viable solutions,
hinting at the potential for specialized optimization
strategies such as evolutionary computation and
heuristics/metaheuristics.

In future work, we will focus on refining the
model to increasingly align it with real-world
scenarios, which will involve deep analysis of
water management information. The complexity
of the problem will also be rigorously studied,
together with the possibility of improving the
model by looking to linearize the constraints or
propose new mathematical models with practical
advantages. Finally, other strategies may be
considered, particularly the implementation of
evolutionary computing or heuristic/metaheuristic
approaches.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 889–901
doi: 10.13053/CyS-28-2-5030

Valentin Calzada-Ledesma, José Alejandro Cornejo-Acosta, Blanca Verónica Zúñiga-Núñez898

ISSN 2007-9737



Acknowledgments

We acknowledge Tecnológico Nacional de México
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