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Mexico

{martha.pulido, pmelin}@tectijuana.mx

Abstract. Recurrent Neural Networks have proven
to provide good results in time series prediction. In
this paper, an ensemble recurrent neural network, for
prediction is used. Euro/Mexican pesos and Euro/Dollar
series are utilized to develop a prediction model. The
design of this consists of an ensemble recurrent neural
network and the optimization of its structure is achieved
with the bird swarm algorithm and Particle Swarm
Optimization. The outputs of the networks are integrated
with type-1 and type-2 fuzzy systems. These fuzzy
systems are of the Mamdani type. The tests were
realized with the designed method and a good result
was obtained in the application to time series, as well
as a comparison of the two optimization algorithms
was made.
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1 Introduction

In nature, we find situations and processes for
which there is no immediate explanation. A
particular case of this is swarming, in which many
simple individuals act in such a way that intelligent
behavior emerges.

Swarm intelligence is the branch of artificial
intelligence that seeks to study and simulate the
complex behaviors found in these swarms, such
as flocks of birds or ant colonies. In this case,
an algorithm based on the behavior of birds
was implemented, applying it to complex time
series prediction.

A time series can represent anything from
the prices of an item, unemployment rates, the
maximum daily temperature, and wind speed, to
the efforts and temperatures at various points of an
instrumented civil work, etc., since it is a sequence
of data arranged chronologically and are used
to study the causal relationship between various
variables that change over time.

In this work, we use recurrent neural networks
(RNNs) since these are one of the most used
models. For example, in voice recognition
systems or video analysis, or in natural language
processing, and these models are these models
capable of processing different types of sequences
(such as videos, conversations, text) and, unlike
neural or convolutional networks, this type of neural
network are capable of generating new sequences,
likes time series.

RNNs use the concept of recurrence: to
generate the output, which we will call activation
from now on. The network uses not only the
current input, but also the activation generated in
the previous iteration. In a nutshell, RNNs use a
certain type of “memory” to generate the desired
output [17].

Some models based on RNNs can be found
in finance [4], electronic commerce [5, 6], capital
markets [7, 8], macroeconomy [9, 10], health [11,
12], signal processing, meteorology [13, 14], voice
recognition [15] and traffic control [16].

When birds are fed with flocks of birds, we
can have more information and a good foraging
effectiveness and survival benefits.
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Table 1. Parameters of the BSA

Parameter Value
M1 100
pop 100

Dime 60

FQ1 9

Co1 0.5

Co2 0.5
a1 2
a2 2

Table 2. Parameters of the PSO

Parameters Value
P 100
I 100

C1 2

C2 2

C 0-0.9
W 0-0.9

Table 3. Parameters

Parameters
ERRN

Value
Min Max

NN1 1 5
NL1 1 3
NN1 1 30

Table 4. Euro/Mexican pesos time series results of
the optimization

No. NM NL Time PE
1 2 16, 16

18, 17
01:38:47 0.01806

2 2 10
15

01:40:41 0.01842

3 2 24, 22
16, 23

01:35:11 0.019807

4 2 25, 16
1, 6

01:40:41 0.01802

5 2 25, 17
15, 16

01:15:42 0.01827

6 2 6, 9
28, 4

01:45:35 0.019806

7 2 6, 9
28, 4

01:35:35 0.01827

8 1 17 01:42:17 0.01822
9 2 25

15
01:15:42 0.01835

10 2 6.9, 22
26, 2, 26

01:26:15 0.01807

If one bird finds food, others may feed from it
[19] While foraging, birds often unite due to the
Predation threat [20]. They constantly scan their
surroundings and raise their heads.

These behaviors, interpreted as vigilance
behavior [21], may be conducive to detecting
Predators [22]. Studies showed that birds would
randomly choose between foraging and keeping
vigilance [23]. Birds often give alarm calls when
they detect a Predator [24]. Thus, the whole group
would fly off together. Birds in the border of a
group have higher probability of being attacked by
Predators than those in the center.

Studies suggest that animals foraging in the
flock center may move to their neighbors to protect
themselves from being attacked [25]. The birds
move towards the center of the flock as they
perceive them. This motion, however, may be
affected by the interference induced by competing
bird swarms [26].

For this reason, the birds move toward the
center of the swarm. This work outlines the
formation of the ensemble recurrent neural network
(ERNN). This model is applied to time series
prediction [27, 32].

The architecture is optimized with the bird
swarm algorithm, (BSA) [29-32], and Particle
Swarm Optimization (PSO). The responses of
the ERNN modules are integrated with type-1
and type-2 fuzzy systems (IT2FS), [32-38]. The
optimization of the RNN consists finding the best
the number of hidden layer (NL), number of
neurons (NN) and the number of modules (NM).

We integrate responses in the ERNN, with
type-1 and Fuzzy System Type-2 (IT2FS) and in
this way we achieve Prediction. The Mamdani
fuzzy inference system (FIS) has five inputs (Pr1,
Pr2, Pr3, Pr4, and Pr5) and one output that is
called Prediction.

The number of inputs of the fuzzy system (FS)
is according to the outputs of ERNN and Mamdani
fuzzy FIS is created. This FIS five inputs, which are
Pr1, Pr2, Pr3, Pr4, and Pr5, have a from the range
from 0 to 1.4.

The output is called Prediction, the range
goes from 0 to 1.4 and is granulated into
two membership functions (MFs) “Low”, “High”
[50-53]. The main contribution of this work is the
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Fig. 1. General scheme

Fig. 2. Euro/Mexican pesos time series Fig. 3. Euro/Dollar time series

optimization of recurrent neural networks with the
BSA algorithm, and PSO applied to time series,
which represents a different way to optimize this
kind of neural networks.

This paper is consisting of 4 parts: In section
2, the problem to be solved and the solution with
the proposed method are mentioned, section 3
describes in the results obtained with the model
and section 5 offers the conclusions.

2 Proposed Method

In this section, a recurrent neural network
optimization model with the Bird Swarm algorithm
(BSA) is offered. We have historical data that
enters the ENN modules, and then responses from

the ENN are integrated with type-1 and IT2FS for
the Prediction of the time series.

In this case: Euro/Mexican pesos and
Euro/Dollar time series. Figure 1 shows a general
scheme of each of the steps of the method
postulated in this paper which is explained in more
detail below:

2.1 Parameters for BSA Applied to the RNN

Table 1 summarizes the parameters used for
the optimization of ERNN with the BSA, where
Dime is the number of dimensions used for
optimization, M1 is the iteration number, pop is
the bird population, FQ1 (FL) is the bird behavior
frequency, a1 and a2 are values related to the
vigilance behavior of the birds these effects are
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If (Pr1 is Pe1L) and (Pr2 is Pe2L) and (Pr3 is Pe3L) and (Pr is Pe4L) and (Pr5 is Pe5L) then (Pr is Lo) If (Pr1 is Pe1H) and (Pr2 is Pe2H)
and (Pr3 is Pe3H) and (Pr4 is Pe4H) and (Pr5 is Pe5H) then (Pr is Hh) If (Pr1 is Pe1L) and (Pr2 is Pe2L) and (Pr3 is Pe3L) and (Pr4
is Pe4L) and (Pr5 is Pe5H) then (Pr is Lo) If (Pr1 is Pe1H) and (Pr2 is Pe2H) and (Pr3 is Pe3H) and (Pr4 is Pe4H) and (Pr5 is Pe5L)
then (Pr is Hh) If (Pr1 is Pe1L) and (Pr2 is Pe2L) and (Pr3 is Pe3L) and (Pr4 is Pe4H) and (Pr5 is Pe5H) then (Pr is Lo) If (Pr1 is Pe1H)
and (Pr2 is Pe2H) and (Pr3 is Pe3H) and (Pr4 is Pe4L) and (Pr5 is Pe5L) then (Pr is Hh) If (Pr1 is Pe1L) and (Pr2 is Pe2L) and (Pr3 is
Pe3H) and (Pr4 is Pe4H) and (Pr5 is Pe5H) then (Pr is Hh) If (Pr1 is Pe1H) and (Pr2 is Pe2H) and (Pr3 is Pe3L) and (Pr4 is Pe4L) and
(Pr5 is Pe5L) then (Pr is Lo) If (Pr1 is Pe1L) and (Pr2 is Pe2H) and (Pr3 is Pe3H) and (Pr4 is Pe4H) and (Pr5 is Pe5H) then (Pr is Hh) If
(Pr1 is Pe1H) and (Pr2 is Pe2L) and (Pr3 is Pe3L) and (Pr4 is Pe4L) and (Pr5 is Pe5L) then (Pr is Lo) If (Pr1 is Pe1L) and (Pr2 is Pe2H)
and (Pr3 is Pe3L) and (Pr4 is Pe4H) and (Pr5 is Pe5L) then (Pr is Lo) If (Pr1 is Pe1H) and (Pr2 is Pe2L) and (Pr3 is Pe3H) and (Pr4
is Pe4L) and (Pr5 is Pe5H) then (Pr is Hh) If (Pr1 is Pe1L) and (Pr2 is Pe2H) and (Pr3 is Pe3L) and (Pr4 is Pe4L) and (Pr5 is Pe5L)
then (Pr is Lo) If (Pr1 is Pe1H) and (Pr2 is Pe2L) and (Pr3 is Pe3H) and (Pr4 is Pe4H) and (Pr5 is Pe5H) then (Pr is Hh) If (Pr1 is Pe1L)
and (Pr2 is Pe2L) and (Pr3 is Pe3H) and (Pr4 is Pe4L) and (Pr5 is Pe5L) then (Pr is Lo) If (Pr1 is Pe1H) and (Pr2 is Pe2H) and (Pr3
is Pe3L) and (Pr4 is Pe4H) and (Pr5 is Pe5H) then (Pr is Hh) If (Pr1 is Pe1L) and (Pr2 is Pe2L) and (Pr3 is Pe3L) and (Pr4 is Pe4H)
and (Pr5 is Pe5L) then (Pr is Lo) If (Pr1 is Pe1H) and (Pr2 is Pe2H) and (Pr3 is Pe3H) and (Pr4 is Pe4L) and (Pr5 is Pe5H) then (Pr is
Hh) If (P1 is Pe1L) and (Pr2 is Pe2L) and (Pr3 is Pe3H) and (Pr4 is Pe4H) and (Pr5 is Pe5L) then (Pr is Lo) If (Pr1 is Pe1H) and (Pr2
is Pe2H) and (Pr3 is Pe3L) and (Pr4 is Pe4L) and (Pr5 is Pe5H) then (Pr is Hh) If (Pr1 is Pe1L) and (Pr2 is Pe2H) and (Pr3 is Pe3H)
and (Pr4 is Pe4L) and (Pr5 is Pe5L) then (Pr is Lo) If (Pr1 is Pe1H) and (Pr2 is Pe2L) and (Pr3 is Pe3L) and (Pr4 is Pe4H) and (Pr5 is
Pe5H) then (Pr is Hh) If (Pr1 is Pe1L) and (Pr2 is Pe2L) and (Pr3 is Pe3H) and (Pr4 is Pe4H) and (Pr5 is Pe5L) then (Pr is Lo) If (Pr1
is Pe1H) and (Pr2 is Pe2H) and (Pr3 is Pe3L) and (Pr4 is Pe4L) and (Pr5 is P5eH) then (Pr is Hh) If (Pr1 is Pe1L) and (Pr2 is Pe2H)
and (Pr3 is Pe3H) and (Pr4 is Pe4L) and (Pr5 is Pe5H) then (Pr is Hh) If (Pr1 is Pe1H) and (Pr2 is Pe2L) and (Pr3 is Pe3L) and (Pr4
is Pe4H) and (Pr5 is Pe5H) then (Pr is Lo) If (Pr1 is Pe1L) and (Pr2 is Pe2H) and (Pr3 is Pe3L) and (Pr4 is Pe4H) and (Pr5 is Pe5L)
then (Pr is Lo) If (Pr1 is Pe1H) and (Pr2 is Pe2L) and (Pr3 is Pe3H) and (Pr4 is Pe4L) and (Pr5 is Pe5H) then (Pr is Hh) If (Pr1 is Pe1L)
and (Pr2 is Pe2H) and (Pr3 is Pe3H) and (Pr4 is Pe4H) and (Pr5 is Pe5H) then (Pr is Lo) If (Pr1 is Pe1H) and (Pr2 is Pe2L) and (Pr3 is
Pe3L) and (Pr4 is Pe4H) and (Pr5 is Pe5H) then (Pr is Lo) If (Pr1 is Pe1L) and (Pr2 is Pe2H) and (Pr3 is Pe3L) and (Pr4 is Pe4H) and
(Pr5 is P5eH) then (Pr is Hh) If (Pr1 is Pe1H) and (Pr2 is Pe2L) and (Pr3 is Pe3H) and (Pr4 is Pe4L) and (Pr5 is Pe5L) then (Pr is Lo)

Fig. 4. IT2FS rules

Table 5. Results integration for the Euro/Mexican pesos

No. Type-1 Fuzzy Integrator

1 0.3026

2 0.1408

3 0.1384

4 0.1122

5 0.3175

6 0.3022

7 0.1408

8 0.1383

9 0.1383

10 0.3021

indirect and direct. co1 cognitive is the coefficient
and co2 is the accelerated social coefficient.
Table 2 illustrated the parameters used for the
optimization of ERNN with the PSO, where P is the
number of particles, I is the iteration number, the
cognitive component is C1, the Social Component

Fig. 5. IT2FS

is C2, Constriction coefficient of linear increase is
Cand Inertia weight with linear decrease is (W).

2.2 Parameters for PSO Applied to and RNN

The following equation is used to minimize
the prediction error, the objective function we
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Table 6. Results for the IT2FS for the
Euro/Mexican pesos

No. PE 0.3 PE 0.4 PE 0.5
1 0.2219 0.2210 0.2286
2 0.2263 0.2268 0.2274
3 0.2215 0.2236 0.2339
4 0.2212 0.2222 0.2228
5 0.2229 0.2339 0.2348
6 0.2222 0.2225 0.2231
7 0.2221 0.2229 0.2235
8 0.2261 0.2268 0.2371
9 0.2256 0.2268 0.2387
10 0.2268 0.2274 0.2389

Table 7. Euro/Dollar pesos time series results of
the optimization

No. NM NL Time PE

1 3
18
15
17

01:05:22 0.00042061

2 3
5, 18

15, 13
17, 18

01:19:33 0.00055028

3 4
17, 5, 7

12, 25, 13
20, 27, 22

01:28:04 0.00042102

4 2

10, 11
11, 12
15, 17
18, 16

01:45:20 0.0005802

5 3 18, 19, 17
13, 13.18

01:10:15 0.00050568

6 3
22, 19, 14
27, 17, 12
16, 17, 19

01:11:03 0.00051168

7 3
8, 22, 21

11, 23, 21
16, 6, 23

01:33:18 0.00052428

8 3
18, 19, 25
15, 22, 19
16, 11, 23

01:22:20 0.00528091

9 4
7, 7, 12
21, 2, 19

21, 13, 12
01:51:21 0.00505413

10 4

5, 27, 28
20, 20, 6

13, 12, 12
12, 26, 6

01:51:22 0.00042107

employed with the bird swarm algorithm and PSO:

ERMod =
1

d

d∑
i=1

|pdi − rdi|, (1)

PE =
1

T
(ERMod1 + ERMod2 + . . .+ ERModN ), (2)

where PE is Prediction Error, d the data number,
pd corresponds to the predicted data for each
of the 5 modules, rd represents the real data,
ERMod is the Module Prediction error, T represent
module number determined by the BSA and the
Predicion Error is the average prediction error
for the modules. Table 2 represents the search
space parameters.

2.3 Data Base

Fig. 2 presents the plot of the data Euro/Mexican
pesos [18], where we use 800 data that belong to
the time of 12/08/2017 to 31/12/2020. We apply
30% to test the RNN and 70% for the training of the
RNN. Fig. 3 exhibits the plot of the data Euro/Dollar
[18], where we use 800 data that belong to the time
12/08/2017 to 31/12/2020. We apply 30% to test
the RNN and 70% for the training of the RNN.

2.4 Description of the Architecture of Type-1
and IT2FS

The following equation shows how the Fuzzy
System is calculated:

y =

n∑
i=1di

m (di)

n∑
i=1

m (di)i

, (3)

where m corresponds MFs and represents the
input data.
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Table 8. Results of the integration for Euro/Dollar

No. Type-1 fuzzy integrator

1 0.1225

2 0.1228

3 0.1432

4 0.2223

5 0.225

6 0.2822

7 0.1736

8 0.3220

9 0.2217

10 0.2325

Table 9. Euro/Mexican pesos time series results of
the PSO

No Modules Layers Time P

1 3
16,18
20,22
15,17

01:07:17 0.01922

2 2 22,23
24.25 01:02:23 0.02202

3 3
24,24
23,21
19.20

01:05:11 0.01988

4 2 27,21
24,23 01:07:22 0.02107

5 4

27,15
20,21
25,24
23,22

01:07:25 0.01977

6 2 26,29
28,27 01:07:32 0.02106

7 3 6,9
28,4 01:35:35 0.01827

8 2 20,23
21,22 01:07:17 0.01738

9 2 25,23
21,22 01:07:12 0.01732

10 3
6,9,22
26,2,26
22,21,10

01:06:13

2.5 Type-2 Memberships Functions

Below are equations of type-2 fuzzy system
membership functions:

ũ(x) = [µ (x) , ũ (x)] = gausstype2(x, [σxm1,m2]), (4)

where “igaussstype2” stands for the Gaussian
generalized type-2 membership function with
uncertain mean:

mx =
m1 +m2

2
, (5)

px = gaussmf(x, [σxm1, m2]), (6)

=⇒ px = exp

[
1

2

(
x−mx

σx

)2
]
, (7)

px = gaussmf(x, [σx, mx]), (8)

ũ(x, µ) = gaussmf(µ, [σx, px]), (9)

=⇒ ũ(x,µ) = exp

[
1

2

(
x− px
σu

)2
]
, (10)

where px = is of the center of the function and σu

is the implication of the function. MF too high:

MFToohigh = e
−
1

2

(
x− 234

25.2

)2

, (11)

where px = 234 and σu = 25.2, where px = 234
and σu = 25.2. The fuzzy system that was used
has five inputs that are Pr1, Pr2, Pr3, Pr4, and
Pr5, and an output called Pr, where the parameters
have a range from 0 to 1.4 and the variables are
denominated “Low” and “High”, in Figure 5 as
present. The Figure 4 lists the rules used in the
type-1 and IT2FL.

The rules were obtained based on previous
work used in the fuzzy system [36]. The Figure 4
represents the rules employed in the fuzzy system.
The rules were formulated based on previous work
used in the fuzzy system where 32 rules were used
and they are all possible rules since we have 5
inputs and one output, and each input has two MFs
and the consequents are determined by trial and
error [36].
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Table 10. Results for the IT2FS for the Euro/Dollar

No. PE 0.3 PE 0.4 PE 0.5
1 0.3827 0.3849 0.3864
2 0.4162 0.4165 0.4168
3 0.4168 0.4236 0.4238
4 0.4229 0.4239 0.4249
5 0.4422 0.4436 0.4443
6 0.4987 0.4222 0.4229
7 0.4668 0.4544 0.4277
8 0.4492 0.4898 0.4899
9 0.4449 0.4453 0.4456

10 0.4966 0.4988 0.4994

Table 11. Results integration for the Euro/Mexican pesos
for PSO

No. Type-1 fuzzy integrator
1 0.3228
2 0.3417
3 0.3263
4 0.3123
5 0.3442
6 0.3227
7 0.3409
8 0.3386
9 0.3323

10 0.3122

Table 12. Results for the IT2FS for the Euro/Mexicans
pesos for PSO

No. PE 0.3 PE 0.4 PE 0.5
1 0.2330 0.2332 0.2377
2 0.2383 0.2385 0.2366
3 0.2318 0.2338 0.2380
4 0.2333 0.2346 0.2348
5 0.2388 0.2389 0.2391
6 0.2382 0.2385 0.2381
7 0.2371 0.2373 0.2376
8 0.2381 0.2384 0.2387
9 0.2390 0.2392 0.2396

10 0.2377 0.2379 0.2381

3 Results

In this section, the results of the experiments of the
presented model are outlined. In this case, the bird
algorithm and particle swarm optimization were
used for the optimization of the ERNN, and the
type-1 and IT2FS integration and 10 experiments
were carried out and the time series of the
Euro/Mexican pesos and Euro/Dollar pesos were
considered. Table 4 represents the Euro/Mexican
pesos time series results of the Optimization of
ERNN for 10 experiments, where 100 generations
and 100 population is used.

Table 5 shows the Euro/Mexican pesos
time series results of 10 type-1 fuzzy system
experiments. Table 6 represents the Euro/Mexican
pesos time series results of the IT2FLS for 10
experiments with different levels of uncertainty.

Table 7 represents Euro/Dollar time series
results of the Optimization of ERNN for 10
experiments, where 100 generations and 100
population is used. Table 8 shows the Euro/Dollar
time series results of 10 type-1 fuzzy system
experiments. Table 9 represents the Euro/Mexican
pesos time series results of the PSO of ERNN
10 experiments, where 100 particles and 100
iterations is used. Table 10 represents the
Euro/Dollar time series results of 10 IT2FS
experiments with different uncertainty levels.

Table 11 shows the Euro/Mexican pesos
time series results for 10 type-1 fuzzy system
experiments for PSO. Table 12 represents the
Euro/Mexican pesos time series results of the
IT2FLS 10 experiment for PSO with different levels
of uncertainty.

Table 13 shows the Euro/Dollar time series
results of 10 type-1 fuzzy system experiments for
PSO. Table 14 represents the Euro/Dollar time
series results of 10 IT2FS experiments for PSO
with different levels of uncertainty.

To compare the two optimization algorithms,
Bird Sarm Algorithm and Particle Swarm, for
Euro/Mexican pesos time series, the t statistical
test was used and we can conclude that there is
significant evidence between the optimization of
the NN with the BSA and PSO. In other words, it
can be said that the BSA algorithm is better.
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Table 13. Euro/Dollar pesos time series results of the
PSO

No. Mod. Layers Time P

1 2 15,17
15,16 01:08:35 0.00052058

2 2 17,15
15,15 01:08:33 0.00051022

3 3
16,15,15
13,15,16
15,17,12

01:08:31 0.00052323

4 3

21,20,19
22,18,20
21,20,18
20,22,22

01:08:27 0.00062023

5 2 15,18,19
16,15,17 01:08:26 0.00056032

6 4

21,20,19
22,18,20
21,20,18
20,22,22

01:09:03 0.00051168

7 3
21,22,
15,16
16,17

01:08:55 0.00053328

8 4 20,19
21,22 01:08:28 0.00628082

9 2

21,20
22,18
21,20
20,22

01:09:01 0.00605332

10 3
2,27

20,21
17,20

01:09:09 0.00661133

Table 14. Results of the integration for Euro/Dollar for
PSO

No. PE 0.3 PE 0.4 PE 0.5
1 0.4327 0.4449 0.4451
2 0.4522 0.4523 0.4528
3 0.4238 0.4242 0.4244
4 0.4266 0.4268 0.4270
5 0.4292 0.4298 0.4301
6 0.4287 0.4289 0.4290
7 0.4266 0.4268 0.4270
8 0.4292 0.4294 0.4296
9 0.4275 0.4277 0.4279

10 0.4223 0.4226 0.4229

Table 15. t-Statistical test for Euro/Mexican pesos

Algorithm N Mean Standard
Deviation Mean Error

BSA 29 0.018518 0.00635 0.00012

PSO 29 0.01955 0.00154 0.00029

Table 16. t-Statistical test for Euro/Dollar

Algorithm N Mean Standard
deviation Mean Error

BSA 29 0.00355 0.00927 0.0017

PSO 29 0.00261 0.00261 0.00049

The number of samples was 29, and a 95%
confidence interval was used. and produce a P
value of 0.002 and T value of -3.34 and Critical
Value of 0.0668. To compare the two optimization
algorithms of BSA and PSO for Euro/Dollar Peso
time series, t-statistic test was used and we can
conclude that there is no significant evidence
between the optimization of with the BSA and PSO
algorithm. In other words, it can be said that the
BSA algorithm and the PSO are equal since the
results are almost the same, the samples used
were 29 and a 95% confidence interval was used.

4 Conclusions

Recurrent neural networks are an excellent model
for time series data. In this paper we, so we
conclude that this type of network produces good
results, as well as the optimization of the structure
of this network, and then the fuzzy integration of
the network responses to test this method was
used Euro/Dollar and Euro/Mexican pesos time
series. When performing statistical tests, we had
the goal finding out it both algorithms are good at
solving time series problems.

In the Euro/Mexican time series the BSA
algorithm was better and for the Euro/Dollar time
series, both were goodComparisons were made
with the two optimization algorithms Bird Swarm
Algorithm and Particle Swarm, for Euro/Mexican
pesos time series, the statistical t test was used
and we can conclude that there is significant
evidence between the optimization with the BSA
and PSO.
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Fig. 6. Box plot for Euro/Mexican pesos time series Fig. 7. Graph of values for Euro/Mexican pesos time series

Fig. 8. Graph of values for Euro/Dollar time series Fig. 9. Graph of values for Euro/Mexican pesos time series

In other words, it can be said that the BSA
algorithm is better, and for Euro/Dollar Peso
time series, the t-statistic test was also used
and we can conclude that there is no significant
evidence between the optimization with the BSA
algorithm and PSO. In other words, it can be
said that the BSA algorithm and the PSO are
the same. As future work, we plan to consider
other similar metaheuristics (instead of BSA and
PSO), like in [53-57], and also undertake other
application areas [58-61].
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