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Abstract. This research presents a novel trajectory 
generation algorithm and the design of a 
prescribed time controller for trajectory tracking 
tasks for autonomous vehicles. The trajectory 
generation algorithm uses a hybrid combination of 
computer vision techniques and intelligent rail 
detection methods using an on-board camera. 
Based on the previous information, a possible 
trajectory is then generated that the vehicle should 
follow. A time-prescribed controller is then 
developed and implemented to track the trajectory 
generated by the proposed methodology. The 
controller uses a hybrid structure in which a time-
varying feedback controller transitions into a fixed-
time controller. This approach achieves 
stabilization in the prescribed time despite the 
initial conditions. To address the trajectory design, 
a scaled autonomous vehicle simulator was used 
to then evaluate the prescribed time controller 
compared to a finite time controller and a dynamic 
feedback controller. The simulation results 
demonstrate the effectiveness of trajectory 
generation and trajectory tracking control 
algorithms in addressing these challenges in real-
world scenarios by examining two situations: 
unperturbed and perturbed cases. 

Keywords. Prescribed time stabilization, trajectory 
generation, neural networks. 

1 Introduction 

Research on autonomous vehicles is intensively 
explored due to their increasing scope of 
application, such as surveillance tasks, space 
exploration, delivery, transportation, and others [1, 
2, 3, 4]. These vehicle systems require information 
about the environment to correctly perform the 
various tasks and avoid collisions with various 
obstacles in the environment. The various tasks 
that these vehicles perform are classified into three 
main problems: trajectory tracking, path tracking, 
and point stabilization [5,6]. 

All information is collected by the sensors these 
systems are equipped with, such as B. LiDAR, 
ultrasonic sensors, GPS, and cameras. The 
information of the environment is processed and 
interpreted to perform the above-mentioned 
navigation tasks and avoid accidents and collisions 
[4, 7]. Therefore, the main focus of this study 
consists of the precise control of the vehicle’s 
movement along a desired path, known as 
trajectory tracking, as well as the generation of 
such paths, known as trajectory generation. These 
topics have attracted significant attention in the 
field of autonomous vehicles [8]. A wide range of 
studies have been carried out on the generation 
of trajectories. 

Prior studies [9, 10, 11, 12] have shown that it 
is possible to implement intelligent techniques for 
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generating trajectories and segmenting lanes. A 
technique for lane line identification is proposed by 
the authors in [13]. This approach utilizes the 
RANSAC algorithm to aid in the detection of lane 
lines and is predicated on an adaptive region of 
interest extraction strategy. 

In addition, convolutional neural network-based 
algorithms for lane line detection are proposed by 
Haixia and colleagues [14]. For training and 
validation purposes, their algorithms employ the 
TuSimple dataset. The implementation of a Neural 
Network (NN) using an on-board camera in [9] 
leads to favorable outcomes in the trajectory 
generation process. 

Hart et al. [10] describe the implementation of 
intelligent methodologies to create a viable 
trajectory generator.  The study’s findings indicate 
that it is feasible to create trajectories using 
intelligent methodologies. However, Bellusci et al. 
[11] present a new approach to lane segmentation 
using neural networks and computer vision 
techniques to create a map of the surroundings. 
Nevertheless, it does not explain the process of 
generating trajectories. 

Besides, in [15] the system utilizes a 
convolutional neural network along with an 
auxiliary layer to detect the borders of lanes. In 
addition, the authors suggest a straightforward 
algorithm to rectify the vehicle's orientation by 
utilizing the centroid of the drivable area. 

Unfortunately, there is no process for 
generating trajectories. In addition, in [16] was 
developed an independent navigation system using 
machine learning and computer vision techniques 
on a scaled vehicle. 

The system also incorporates a depth camera 
for localization. However, the algorithm’s 
performance is reduced in low-brightness 
scenarios. Furthermore, a study conducted by 
Neven et al. [17] focuses on the development of a 
control system for a Car-Like robot equipped with 
a vision system. 

This system enables the robot to detect and 
monitor lanes on a road. The study’s findings 
indicate that the utilization of vision techniques 
leads to effective lane detection in 
practical situations. 

After addressing the trajectory generation 
problem, the subsequent critical task is solving 
trajectory tracking. Numerous studies have tackled 

this challenge, but there are lingering issues in the 
field. Various control schemes, including feedback 
control strategies [18], Sliding Mode Control (SMC) 
[19], and decoupled approaches [20], have 
been explored. 

Furthermore, these controllers use different 
scenarios that encompass diverse convergence 
rates [20, 21], the effect of disturbances [19, 22, 
23], and different kinematic models [18]. Cui et al. 
[24] introduced an adaptive control law within 
SMC, demonstrating exponential convergence to 
the trajectory.  

The proposed methodology implements a 
decoupled approach to position and orientation 
tracking. Experimental results indicated its 
effectiveness for trajectory tracking despite 
disturbances. Nevertheless, the proposed 
methodology implements a simplified kinematic 
model, and the convergence rate is low. Qun Lu et 
al [21] proposed a fixed-time controller coupled with 
an observer under kinematic disturbances. 

The controller accounted for signal saturation to 
prevent slipping, yielding satisfactory tracking 
results. However, it is noteworthy that the 
convergence exhibited a gradual pace. The 
employed kinematic model was the simplified 
version, and the control structure is complex. In 
[25], the authors presented a prescribed-time 
containment controller coupled with a prescribed-
time observer to achieve leader-follower tasks.  

This study employs the effect of uncertainties 
and external disturbances by using a chain of 
integrators for the model. The results 
demonstrated good tracking performance and 
disturbance rejection. The research on trajectory 
tracking has been tackled from different 
perspectives, like finite-time stability, fixed-time 
stability, and simplified kinematic models.  

However, prescribed-time stability has not been 
widely studied on WMRs, but in [25] it was proved 
that this methodology can be implemented in 
these systems by achieving a fast convergence 
rate and low tracking errors. Thus, it is important to 
tackle this problem in WMRs because these 
systems need to attain a fast response in different 
scenarios where convergence time is crucial. 

Furthermore, trajectory generation is a problem 
that has been studied from different perspectives, 
however, there are not many studies with onboard 
cameras on this crucial task.  
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1.1 Contribution 

Based on the previous literature review, the 
contribution of this research is to address the 
trajectory generation and trajectory tracking tasks 
for autonomous vehicles. 

To attain the trajectory generation problem, we 
develop a novel algorithm that combines computer 
vision techniques and NNs that enable us to 
segment rails and then design a feasible trajectory 
using an onboard camera. 

We generate the trajectory using the Autominy 
simulator and propose a novel methodology. 
Furthermore, we design a new prescribed-time 
controller that drives the vehicle to the desired 
trajectory despite the effects of the disturbances.  

This controller is composed of two stages: 
initially, a time-varying feedback control drives the 
system to a neighborhood of the origin; then it 
switches to a twisting controller that converges in 
fixed time to the origin. 

To implement the proposed controller, we 
perform a coordinate transformation to the 
complete kinematic model of a Car-Like robot. 
Then, a series of simulations are performed 
between the proposed controller against a finite-
time controller and a feedback controller. The 
trajectory tracked is the reference signal generated 
by the proposed algorithm. 

The results demonstrate that the desired 
trajectory is a good option for trajectory generation 
problems, and the proposed controller is also a 
feasible option for trajectory tracking by 
demonstrating its superior performance against 
the compared control schemes. Then, the main 
contributions are: 

– Develop a novel trajectory generation 
algorithm by combining NNs and computer 
vision techniques for WMRs using an on-
board camera. 

– Design of a novel prescribed time controller 
using the complete kinematic model of a WMR, 
that attains the trajectory tracking problem 
despite the effect of kinematic disturbances. 

– Validation of the trajectory generated by the 
proposed algorithm by comparing the 
proposed controller and control schemes from 
the literature. 

– Exhaustive qualitative and quantitative study 
that demonstrates the superiority of the 
proposed controller against the finite time and 
dynamic feedback controllers. 

1.2 Organization 

The subsequent sections are arranged in the 
following order: Section 2 describes the novel 
approach for generating trajectories, detailing both 
the intelligent method and the vision techniques. 
Section 3 provides a detailed explanation of the 
kinematic model of a WMR, including a coordinate 
transformation that allows for the implementation 
of a hybrid control scheme. 

Section 4 develops the controller design that 
attains the prescribed time stabilization. The 
outcomes of the trajectory generation methodology 
are showcased in Section 5, alongside the 
evaluation of the suggested controller formulated 
in Section 4. Section 6, ultimately, provides the 
final findings and results of this manuscript. 

 

Fig. 1. Trajectory generation methodology 

 

Fig. 2. HybridNets architecture [29] 
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1.3 Notation 

Trigonometric functions are described as �� , �� , �� 

which corresponds to cos	
�, sin	
� and tan	
� correspondingly. The function sign	�� ��/|�| if � � 0, and sign	0� ∈ ��1,1�. ℝ� represents 
positive real numbers. 

2 Trajectory Generation 

The generation of trajectories is an essential 
undertaking for WMRs owing to the diverse 
outcomes it has in real-world situations and the 
limitations it must satisfy to ensure its tracking is 
feasible. To achieve this goal, we propose the use 
of the methodology presented in Fig. 1, which 
integrates computer vision techniques and neural 

                                                      
1 The TuSimple dataset, comprising 6408 images of highways in 
the United States presented at a resolution of 1280x720, was 
utilized to train HybridNets [26]. 

networks. To achieve this objective, we provide a 
detailed description of the proposed strategy. 

2.1 HybridNets Neural Network 

The Neural Network employed is HybridNets11 [27, 
28], which is an end-to-end perception neural 
network based on PyTorch. The objective is to 
address the multi-task issue by employing 
segmentation and box detection classification 
networks. Its main architecture comprises two 
networks, as depicted in Fig. 2. 

The initial part of the system is the backbone, 
which uses the EfficientNet-B3 convolutional 
neural network architecture to extract 
characteristics from the input. This architecture 
scales the dimensions of depth, width, and 
resolution using a composite coefficient to obtain 
feature maps of the image.  

The information extracted by the backbone is 
then passed on to the neck network, called 
EfficientDet, which uses a Weighted Bi-directional 
Feature Pyramid Network (BiFPN) module for 
image segmentation and object detection. The 
BiFPN module achieves this by creating 
bidirectional interconnections between network 
nodes. Each input feature is assigned an additional 
weight, allowing the network to determine the 
individual significance of each feature2. 

2.2 Proposed Algorithm 

To attain the trajectory generation task, we perform 
a series of steps detailed in Fig. 1, which allows us 
to finally obtain a feasible trajectory for a WMR 
using an on-board camera. 

To this end, we provide a deep description of 
this algorithm in this section by using the Gazebo 
simulator of the Autominy vehicle [31]. 

Image acquisition. The first step entails 
reading the input image captured by the vehicle’s 
built-in camera, as shown in Fig. 3. 

This step can be realized through the 
application of the available topics and the Robotic 
Operating System (ROS) to control the vehicle. 

2 To implement the intelligent method, the NN was converted to an Open 
Neural Network Exchange (ONNX) model to enhance its inference. The 
codes can be found in [29], while the weights can be found in [30]. 

 

Fig. 3. Image acquired from the on-board camera of the 
Autominy simulator 

 

Fig. 4. Output image with HybridNets NN 
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Intelligent Methods for Lane Detection.  
HybridNets NN application is used for lane 
segmentation and lane detection. This scheme 
identifies and separates the lane observed by the 
vehicle’s on-board camera. An important 
advantage of this NN is its ability to accurately 
identify the lane directly above the vehicle, as 
shown in Fig. 4. 

Perspective Transformation. The output NN 
image undergoes a perspective transformation 
technique called “bird’s eye view”. This technique 
simulates the image being viewed from a higher 
angle, similar to a bird’s viewpoint [32]. 

Leveraging this transformation provides a 
comprehensive perspective of the lane, ensuring 
both lanes remain parallel to facilitate the 
implementation of lane detection and 
segmentation processes. This simplifies the 
detection and segmentation processes. Figure 5 
illustrates the use of the technique from a bird’s 
eye view. 

Maximum Drivable Area Acquisition. In our 
pursuit to determine the largest navigable region, 
we first examine the area divided by the NN and 
thus determine the track with the largest extent to 
generate the desired path. To achieve this, a mask 
is implemented, which makes use of the 
segmentation color indicated by the intelligent 
method results (blue area). 

All resulting available segmented areas are 
then found and the maximum available area is 
calculated. Subsequent to this phase, the largest 
area is selected and highlighted in green to 
proceed with the trajectory generation method. 

The algorithm then identifies all currently 
available segmented areas and uses them to 
calculate the largest possible area. Next, the 
algorithm identifies the largest area and marks it 
with a green marker to proceed with 
trajectory creation. 

Centroid Calculation and Reference Point 
Determination. The subsequent procedure entails 
determining the centroid of the drivable area that 
has been identified through the green contour in 
the segmented results, as depicted in Fig. 6. 
Afterward, five points are positioned to create the 
intended trajectory. Initially, two immobile points 
are positioned at an equivalent elevation as the 
ArUco marker on the Autominy vehicle. These 

 

Fig. 5. Bird-Eye-View perspective transformation 

 

Fig. 6. Procedure for determining the centroid of the 
available drivable area 

 

Fig. 7. Reference points for path visualization 
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points are fixed and serve as the initial positions for 
displaying the trajectory. In addition, two extra 
points are included, one located blow, and one 
above the calculated centroid. The reference 
points are adjusted according to the area 
determined by the NN, and they help to determine 
the trajectory when navigating a curved lane based 
on the captured image. 

Afterward, the visual representation of the 
trajectory that corresponds to the five points 
mentioned earlier is displayed in Fig. 7. 
Additionally, the homography transformation 
converts the image representing the aerial 
perspective into the initial image perspective [33]. 

This transformation is dependent on the ArUco 
position, which serves as a reference point.  This 
procedure utilizes the marker location and its 
position within the pixel coordinates on the bird-eye 
view image to accurately convert them into the 
corrected perspective pixel coordinates. 

Figure 8 illustrates the process of translating 
the first trajectory to its equivalent on the 
vehicle’s perspective. 

Path generation. Ultimately, we derive the 
equation that defines the reference trajectory. The 
outcomes of the trajectory generation phase 
utilizing our suggested approach are depicted in 
Fig. 9. The trajectory is determined by analyzing 
the image captured by the on-board camera. 

This visual observation is used to determine the 
trajectory. Figure 10 illustrates the reference 
trajectory produced using the proposed 
methodology in conjunction with the Autominy 
simulator. The controller will receive this trajectory 
as the reference input. 

3 Kinematic Model and Control 
Design 

To tackle the trajectory tracking problem, we aim to 
design a controller that achieves prescribed-time 
stability to the desired trajectory. To this end, let us 
consider the full kinematic model a Car-Like robot 
depicted in Fig. 11, where �	�� � ��	��,  	��, !	��,"	��� ∈ ℝ# is the system’s vector configuration, the �	��,  	�� is the position on the plane with respect 
to the world frame $�,  %, !	�� is the orientation of 
the vehicle with respect to the � axis, "	�� is the 

 

Fig. 8. Perspective correction 

 

Fig. 9. Results for trajectory generation 

 

Fig. 10. Path generated using the proposed trajectory 
generation method 

 

Fig. 11. Description of the WMR’s kinematic model in 
the x, y plane 
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steering angle of the front wheels. Now, the 
kinematic model of the WMR is described as: 

�& 	�� � '	(�)	�� * +	��, (1) 

'	�� � ,�- �- �./ 0
0 0 0 10 , )	�� � 123	��24	��5 , (2) 

With 2	�� � �23	��, 24	���6 ∈ ℝ4 is the control 
input vector with 23	��, 24	�� being the linear and 
angular velocities, and +	�� � �73	��, 74	��, 78	��,7#	���6 ∈   ℝ# encompasses the disturbances, 
which are bounded and smooth until its first time 
derivative [34]. 

Furthermore, the actuators generate bounded 
control signals. Hence, based on the previous 
statement we are able to consider the 
following assumption. 

Assumption 1. There exist some positive 
constants D;, d=, V3�, V4�, and Φ such that: 

@|+	��|@ A  B;, ||+& 	��|| A 7̅, |23	��| A D3�, 
(3) |24	��| A D4�, |"	��| A Φ E F/2. 

Then, we perform a coordinate transformation 
by defining the new output variable: 

ζ	t�  � 1K3	��K4	��5 � L � * / �- * M�	-�.� * / �- * M �	-�.�N. (4) 

With an arbitrary M � 0, which will be used to 
design a controller. Furthermore, to attain the 
trajectory tracking problem, a reference kinematic 
model is required, which is described by: 

�+& 	�� � '	(O�)+	��, 

(5) '	�+� � ,�-+ �-+
�.+/ 0

0 0 0 10, 
)+	�� � 12O3	��2O4	��5, 

where �+ 	�� � ��O	��,    O	��, !O	��,   O	���6 ∈ ℝ#, 2O3	��, 2O4	�� ∈ ℝ are the reference signals of �	��  

and 23	��, 24	��. Moreover, we perform the same 
coordinate transformation as in (4): 

P+	t�  � 1KO3	��KO4	��5 � L �O * / �-Q * M�	-Q�.Q� O * / �-Q * M �	-Q�.Q�N. (6) 

By following the procedure described in [20] 
along the coordinate transformation (5) and the 
reference model (9), we define the tracking error RS	�� � R	�� � R+	��, which yields to the following 
dynamic error structure: 

 

Fig. 12. General scheme of the proposed methodology 
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RST 	�� � U	!, "�V;	�� * U̅	!, "�)	�� * W& 	X��  U	!O , "O�V;+	��� U&	!O , "O�)+, (7) 

where the structure of U	!, "�, U̅	!, "�, V;	��, W& 	��,V;+	��, U&	!O, "O�, and )+	�� can be consulted 
in [23].  

Now we can state the control objective by 
implementing a hybrid control scheme that makes 
the tracking error signal RS	�� to converge to zero in 
a prescribed time despite disturbances. 

Control objective. Considering the WMR’s 
kinematic model (1), the coordinate transformation 
(4), and the error’s dynamics (7), design a control 
input )	�� such that the tracking error converges to 
zero in a prescribed time. 

4 Control Design 

In order to design the proposed controller, depicted 
in Fig. 12, we begin by presenting a general 
structure for the controller, which is then applied to 
the kinematic model (1) by employing the tracking 
error RS	��, and the error's dynamics (7) to achieve 
prescribed time stability to the desired trajectory. 

4.1 General Structure 

The control problem encompasses two stages. 
First, the system is directed towards an arbitrary 
small attraction zone by means of a time-varying 
state feedback control law.  

Once the system enters the attraction zone, a 
twisting controller is executed to ensure that it 
converges to the equilibrium point in prescribed 
time [35]. 

In order to address this issue, we begin by 
formulating a general second-order system with 
the following structure: 

where Y	�� � ��3, �4�6 ∈ ℝ4 is the state vector, Z	�, Y� ∈ ℝ is the control input, and [	�, Y� ∈ ℝ 
encompasses smooth and bounded disturbances, 
such that |[	�, ��| A  \�, with \� ∈ ℝ being the 

upper bound of the disturbances. To attain 
prescribed time stability, we structure the control 
input as follows: 

Z � ]Z3	�, Y�,Z4	Y�,   � E 3̂ and Y ∈ ℝ4  \ `a
otherwise

, (9) 

where `a � $Y: D	Y� A c% is the attraction 
domain, and: 

Z3	�, �� � �/3	���3	�� � /4	���4	��, (10) 

Z4	�� � ��3sign	�3� � �4sign	�4�, (11) 

/3	t� � d4	t��2 * e��3 * e� * g3d	t��2 * e�* g4d8�h	t��2 * e�* g3g4d4�h	t�, (12) 

/4	t� �  2d	t��2 * e� * g3 * g4d	t�4�h . 
With e ∈ ℕ, g3, g4 ∈  ℝ�, and the function: 

d	�� � 1
3̂ * �j � �. (13) 

The control signal Z3	�, Y� employs some time-
varying gains /3	�� and /4	��, which act in the first 
stage of the control strategy in � E ^. Then the 
twisting controller, represented by u4	t� with some 
gains �3 > �4 > \� > 0, is introduced once the 
trajectories of the system enter the attraction 
domain `a, defined by the parameter c and the 
time ^. Furthermore, this domain is set by the non-
strict Lyapunov function: 

Which ensures that the equilibrium point is 
finite-time stable, according to [36, Theorem 5.1]. 
The proposed controller attains prescribed-time 
stabilization by combining two methodologies; the 
first stage consists in a control structure 
encompassed by time-varying gains (12) that 
drives the trajectories of the system to a vicinity of 
the origin defined by the time ^ and the attraction 
domain `a. 

Once the trajectories reach this vicinity, the 
twisting controller (11) is introduced to reach the 
origin in fixed time with an admissible disturbance 
(for more details, refer [35]).  Based on the previous 
information, the controller’s implementation for the 
WMR is described in the following subsection. 

�&3	�� � �4	��, 
(8) �&4	�� � Z	�, �� * [	�, ��, 

D	Y� � �3|�3	��| * 12 �44	��. (14) 
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4.2 Wheeled Mobile Robot Controller 

To implement the hybrid control scheme (9), we 
first define the following state variables: 

�3	�� � mn3	��,  �4	�� � mn&3	��, (15) 

�8	�� � mn4	��,  �#	�� � mn&4	��. (16) 

Thus, we can rewrite the error’s dynamics (7) 
by using definitions (15, 16), which yields to two 
decoupled second-order systems: 

Υ3 ]�&3	�� � �4	��,�&4	�� � Z3	�, �� * [3	�, ��, (17) 

Υ4 ]�&8	�� � �#	��,�&#	�� � Z4	�, �� * [4	�, ��, (18) 

where Z3	�, Y� and Z4	Y� are the control inputs 
retrieved from: 

V	t� �  U	!, "�V;	t� . (19) 

Being: 

 V � �Z3	�, ��, Z4	�, ���6 , 

(20) 
[3 � p&3323 * p&3424 * λ3& � pO332&O3 � pO342O4&� p&O332O3 � p&O342O4, 
[4 � p&4323 * p&4424 * λ4& � pO432&O3 � pO442O4&� p&O432O3 � p&O442O4, 

where [r	�� are considered smooth and bounded 
disturbances, such as |[r	�, ��| A  sr� with t ∈$1, 2%. According to (9), the hybrid controller is 
structured as [35]: 

Zr � ]Z3r ,Z4r ,      � E 3̂r  and Y ∈ ℝ4  \ `ar
otherwise,  (21) 

where 3̂r > 0 is a design parameter, and: 

Z33 � /33	���3	�� � /34�4	��, (22) 

Z34 � �/43	���8	�� � /44�#	��, (23) 

Z43 � ��33sign	�3� � �34sign	�4�, (24) 

Z44 � ��43sign	�8� � �44sign	�#�, (25) 

`a3 � $Y: D	�3, �4� A c3%, (26) 

`a4 � $Y: D	�8, �#� A c4%. (27) 

The control Z3r	�, �� is a linear time-varying 
state feedback with positive time-varying gains /3r	��, /4r	�� with the structure defined in (12), and 
the control structure Z4r	�� attains stability in finite 
time to the origin according to the stability analysis 
developed with the non-strict Lyapunov function 
(14) [36]. 

Finally, in order to recover the control inputs 23	��, and 24	�� we use the definitions U	!, "� and )& 	�� from (19), which yields to: 

)	�� � 123	��24	��5 �
⎣⎢
⎢⎢
⎡x 23& 	y�z

j 7y 
x 24&z

j 	τ�7y ⎦⎥
⎥⎥
⎤ , (28) 

where V;	�� � U�3	!, "�V	��. Therefore, we 
synthesize the stated controller in the 
following Theorem. 

Theorem 1. [35] Let the dynamic’s error (7) and 
assume that A1 holds. Then, the controller (19), 
(21)-(28), provided (12, 13), ensures the trajectory 
tracking in prescribed time. 

5 Numerical Results 

To assess the proposed approaches for trajectory 
generation and trajectory tracking tasks, we 
conducted simulations using 
MATLAB/SIMULINK® for trajectory tracking and 
the Autominy simulator for trajectory generation 
[4]. The trajectory generated via the methodology 
described in Section 2 is illustrated in Fig. 13. 

To assess the performance of the proposed 
methodology, named PTC, we consider the 
controllers described in references [18] and [20]. 
We choose the dynamic feedback controller [18] 
(named DFC), due its simple structure and 
because it implements the complete kinematic 
model of a Car-Like robot. 

Furthermore, we also employ [20] (referred to 
as FTC) because it utilizes the full kinematic model 
of the Car-Like robot, attains the trajectory tracking 
problem by using a decoupling approach, and 
achieves Finite-time stability. The following cases 
are considered for the validation of the 
PTC controller: 

– C1: There is no effect of kinematic 
disturbances in the model, considering the 
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initial conditions ��	0�,  	0�, !	0�, "	0��6 ���1, �2, arctan	π/2� , 0�6 and / � 0.255 �m�. 
– C2: A The effect of kinematic disturbances is 

introduced with 73	�� � 0.05 * 0.05 sin	2��, 74	�� � �0.05 � 0.05 cos	2��, 78	�� � 0.05, 7#	�� � �0.05, with the initial conditions 
considered in case C1. 

The gains considered for the DFC are g�r � 343, g�r � 147, g�r � 21, and for the FTC are g3 � 35, g4 � 25, g8 � 5 and g# � 7. Finally, the 
parameters for the PTC's time-varying gains are 

3̂r � 1, g33 � 5, g34 � 5, g43 � 25, g44 � 15, e_t �  1, and for the twisting controller are �33 � 275, �34 � 495, �43 � 770, �44 � 715 with δ � 0.03. The simulation in Matlab/Simulink was 
performed using the sampling time of 1 � 10�# 
seconds and Runge-Kutta algorithm as the solver. 

In Fig. 13 is depicted the final trajectory 
generated with the procedure detailed in Section 2. 
The red marks are the samples gathered from the 
Autominy simulator, and the smooth trajectory 
generated with the time intervals and the red marks 
is represented by the blue line. The equations that 
represent the motion at each time interval are 
shown in Table 3 (see Appendix A) and are 
depicted in generalized coordinates in Fig. 14. 

In Fig. 15 are depicted the tracking errors in 
generalized coordinates. It can be observed that 
the FTC and the PTC controllers converge faster 
than the DFC. Also, the proposed controller 
reaches the vicinity near the origin in t E 1�s�, as 
highlighted with the orange area; during this 
transitory stage the time-varying feedback 
control scheme is used, which afterwards is 
switched to the twisting controller. 

This behavior is also present in y�, where the 
FTC and the PTC present the fastest responses, 
followed by the DFC. The PTC controller 
exhibits a slight overshoot; however, it 
approaches the vicinity of the origin at t E 1�s� 
within the orange region.  

Finally, in "S  the PTC controller obtains the 
fastest convergence compared with the DFC 
and FTC controllers; however, it also exhibits the 
highest level of overshoot. Furthermore, in 10 A� A  14.15 the proposed controller achieves the 
lowest overshoots compared with the FTC and 
DFC controllers; this behavior can be attributed 

 

Fig. 13. Reference points for path visualization 

 

Fig. 14. Desired trajectory represented in generalized 
coordinates �	��,  	��, θ	�� and ϕ	�� 

 

Fig. 15. Tracking errors in ��,  �, !Sand "S for case C1 
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to the alterations in the reference signal for "	�� 
as depicted in Fig.14 during this specific period. 

Furthermore, in Fig.16 are depicted the 
control signals generated by the controllers in 
comparison to the desired control inputs 23	�� 
and 24	��, which are represented by the black-
colored dashed lines. In 23	��, it is evident that 
the FTC controller exhibits the highest overshoot 
when compared to the PTC and DFC controllers; 
this behavior is associated with the fastest 
convergence of the FTC’s tracking �� in Fig. 15, 
which is attributed to the presence of the SMC in 
the x coordinate. 

However, the PTC achieves the fastest 
response, which implies the fastest tracking 
response. For 24	��, the PTC controller generates 
a large control signal before the commutation of the 
twisting controller, then it generates a noisy control 
signal, which is directly related to the tracking error 
of ϕ(t) in Fig. 15. Moreover, it is evident that the PTC 
controller transitions to the twisting control scheme 
in a time period less than 1 second. 

As observed in the signal, the PTC controller 
generates the effect of chattering due to the 
presence of the twisting controller. In addition, all the 
control signals remain with similar behaviors after 
the transient stage. 

Figure 17 depicts the tracking errors for case 
C2 in the �,  , ! and " coordinates. It can be 
observed that �� behaves similarly, with the FTC 
and PTC controllers achieving the fastest 
response, even when disturbances are 
considered. Regarding  �	��, it is evident that the 
FTC and PTC controllers also achieve the fastest 
response; nevertheless, the performance of the 
FTC and DFC controllers is diminished due to the 
generation of greater oscillations. 

Furthermore, it is noteworthy that the time-
varying stage of the PTC commutes to the twisting 
controller before the orange-colored area ends, 
where the twisting control signal is introduced, and 
thereafter the error signal keeps a neighborhood 
in zero. 

For !S, the fastest response is achieved by the 
PTC and FTC control schemes, but the PTC 
controller keep less oscillations. It can also be 
observed that the DFC controller generates a 
greater error at the end of the simulation. 

For "S	��, the largest overshoot was generated 
by the PTC due to the time-varying stage and the 

 

Fig. 16. Control signals 23	�� and 24	�� generated for 
case C1 

 

Fig. 17. Tracking errors in ��,  �, !Sand "S for case C2 

 

Fig. 18. Control signals 23	�� and 24	�� generated for 
case C2 
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control signal 24	��, which is observed at the 
beginning of the orange-colored area. 

The PTC maintains the lowest tracking errors in 
this coordinate with the lowest oscillations even in 
the presence of disturbances. 

Conversely, the DFC and FTC controllers 
present the large oscillations during the trajectory 
tracking. The tracking error "S	�� is associated with 
the control signal 24	�� depicted in Fig. 18, where 
it is corroborated that the DFC controller generated 
large control signals. On the other hand, the PTC 
controller generated the largest overshoot while 
the time-varying gains were active, i.e., in the 
orange-colored area at � E  1���; afterwards, the 
proposed scheme presents the effect of chattering 
due to the properties of the twisting controller 
and the SMC, however, its magnitude is small. 

For 23	��, the PTC controller achieved the 
fastest response with a slight overshoot compared 
with the FTC controller. The DFC controller 
generated the lowest overshot and achieved the 
lowest response. In addition, it is clear that the 
proposed PTC controller achieves the fastest 

response and keeps the lowest oscillations in 
comparison with the DFC and FTC controllers. 

Hence, the aforementioned findings illustrate 
that the PTC controller achieves the fastest 
response and the lowest oscillations, despite the 
existence of disturbances. Therefore, it can be 
inferred that the PTC controller excels over the DFC 
and FTC controllers. 

In addition, a quantitative analysis was con- 
ducted to supplement the qualitative analysis. 
Tables 1 and 2 expose the IAE (Integral of 
Absolute Error) and ITSE (Integral of Time-
weighted Squared Error) for evaluating the tracking 
error of the controllers, while the ISV (Integral of 
Squared Control Signal) is used to quantify the 
control signals [20]. Table 1 displays the 
quantitative tracking errors and ISV for case C1 
while Table 2 showcases the performance indexes 
for case C2. 

Regarding case C1, it is evident that the PTC 
controller achieves the lowest tracking errors for 
each coordinate, except for "	��, where the FTC 
controller achieves the lowest tracking errors in 
terms of ITSE. These quantities indicate that the 
PTC controller outstands with the best 
performance by achieving the lowest tracking 
errors with respect to the DFC and FTC controllers. 

In addition, for case C2, the FTC controller 
demonstrated the smallest tracking error in !	��, 
while the PTC controller exhibited the smallest 
tracking errors in the remaining coordinates, thus 
demonstrating its superior performance in 
comparison with the other controllers. 

Based on the preceding qualitative and 
quantitative analysis, we can deduce that the PTC 
controller demonstrates superior performance in 
both disturbed and undisturbed scenarios by 
achieving the fastest response and lowest 
oscillations with respect to the DFC and 
PTC controllers. Moreover, the proposed control 
strategy achieved the lowest tracking errors with 
ITSE and IAE in general, thus outstanding its 
performance. Furthermore, we have observed that 
the trajectory generation algorithm is an effective 
solution for the task of generating trajectories. 

This is because it successfully fulfills the non-
holonomic constraints of WMRs. The simulations 
conducted with the controllers have demonstrated 
the algorithm’s ability to track trajectories in real-world 
scenarios, even in the presence of disturbances. 

Table 1. Performance indexes IAE, ITSE and ISV for 
the WMR for case C1 

Controller 
IAE 

ISV ��  � !S "S 

PTC 0.653 0.168 0.21 0.245 149.2 

DFC 1.415 0.392 0.314 0.299 28.44 

FTC 0.939 0.26 0.522 1.18 45.03 

 
ITSE 

 ��  � !S "S 

PTC 0.119 0.006 0.008 0.148 

 DFC 0.29 0.038 0.019 0.111 

FTC 0.264 0.033 0.207 3.242 

Table 2. Performance indexes IAE, ITSE and ISV for 
the WMR for case C2 

Controller 
IAE 

ISV ��  � !S "S 

PTC 0.697 0.268 0.62 0.455 190.1 

DFC 1.373 0.447 1.01 2.03 169.5 

FTC 0.936 0.371 0.544 1.147 44.47 

 
ITSE 

 ��  � !S "S 

PTC 0.133 0.017 0.253 0.312 

 DFC 0.49 0.04 1.35 16.26 

FTC 0.263 0.171 0.159 2.59 
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6 Trajectory Generation 

The trajectory generation algorithm obtained 
specific points from the rail detections, which were 
subsequently analyzed to calculate two 
polynomials in the �,   plane. In order to achieve a 
feasible trajectory for a Car-Like robot [17], it is 
necessary for these polynomials to be both smooth 
and continuous. The procedure for designing the 
equations is described in [37], resulting in the 
equation's trims presented in Table 3. 

7 Conclusions 

The manuscript introduced an innovative approach 
for generating trajectories in vehicular systems 
by utilizing an on-board camera, computer vision 
techniques, and intelligent algorithms. 

The proposed methodology was evaluated by 
employing three controllers that successfully 
achieved the trajectory tracking task. In addition, a 
prescribed-time controller was introduced for the 
purpose of trajectory tracking tasks. The 

Table 3. Polynomials for trajectory reference 

Time interval Reference trajectories 

0 A � E 1.13 
�O	�� � 0.0776�� * 0.4971�� � 1.7644�� * 1.3442�# * 0.1� *  1.668 

 O	�� �  0.0074�� * 0.0471�� � 0.167�� * 0.1274�# * 9��8� * 0.4869 

1.13 A � E 2.14 
�O	�� � 0.004�� * 0.88�� � 8.37�� * 31.73�# � 62.0045�8 * 66.23�4 � 36.73� *  9.68 

 O	�� � 5��#�� * 752��#�� � 707.7��8�� * 2.638�# � 5.069�8 * 5.328�4 � 2.909� *  1.1545 

2.14 A � E 3.23 
�O	�� � �0.01�� * 0.1552�� � 0.97�# * 3.187�8 � 5.806�4 * 5.92� � 1.2013 

 O	�� � �15.8��8�� * 246��8�� � 1.569�# * 5.262�8 � 9.797�4 * 9.625� � 3.38 

3.21 A � E 4.32 
�O	�� � 2��#�� * 0.175�� � 3.68�� * 31.51�# � 141.87�8 * 353.27�4 � 464.53� *  251.09 

 O	�� � �15.2��8�� * 0.327�� � 2.91�# * 13.672�8 � 35.83�4 * 49.682� � 27.951 

4.32 A � E 5.31 
�O	�� � 0.5�� * 13.8�� * 156.6�# � 942.8�8 * 3172.7�4 � 5659.4� * 4181.8 

 O	�� � 36��#�� � 0.1�� * 1.161�# � 7.117�8 * 24.431�4 � 44.536� * 34.212 

5.31 A � E 6.81 
�O	�� � 0.1�� � 2.9�� * 41.1�# � 308.7�8 * 1294.2�4 � 2870.9� *  2635.1 

 O	�� � �4��#�� * 12.2��8�� � 0.1618�# * 1.1245�8 � 4.292�4 * 8.483� � 6.1832 

6.81 A � E 7.83 
�O	�� � �19�� * 324�# � 2994�8 * 15515�4 � 42699� *  48755 

 O	�� � 19�� * 324�# � 2994�8 * 15515�4 � 42699� *  48755 

7.83 A � E 9 
�O	�� � �8�� * 152�# � 1638�8 * 9883�4 � 31714� *  42282 

 O	�� � �0.2�� * 4.4�# � 48.1�8 * 292.1�4 � 944.8� * 1270.5 

9 A � E 10.03 
�O	�� �  �3�� * 57�# � 672�8 * 4435�4 � 15499� *  22397 

 O	�� � 0.2�� � 4.1�# * 47.1�8 � 296.7�4 * 980.6� � 1321 

10.03 A � E 11.25 
�O	�� � �0.8�� * 19.1�# � 242.5�8 * 1712.4�4 � 6342.8� *  9588.1 

 O	�� � �2�� * 64�# � 896�8 * 7053�4  � 29575� * 51615 

11.25 A � E 12.26 
�O	�� � �80�# * 1460�8 � 14040�4 * 71590� � 150960 

 O	�� �  �10�� * 210�# � 3150�8 * 26780�4 � 121230� *  228190 

12.26 A � E 13.34 
�O	�� � 3�# * 79�8 � 2077�4 * 17320� � 51070 

 O	�� � �2�� * 64�# � 915�8 * 7138�4 � 28147� * 42243 

13.34 A � E 14.51 
�O	�� �  �� � 21�# * 344�8 � 3102�4 * 14569� � 27559 

 O	�� � �O	�� �  �� � 21�# * 344�8 � 3102�4 * 14569� � 27559 * 18543� � 35323 

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 821–836
doi: 10.13053/CyS-28-2-5025

Prescribed-Time Trajectory Tracking Control of Wheeled Mobile Robots Using Neural ... 833

ISSN 2007-9737



performance of this controller was evaluated by 
comparing it to two controllers previously 
discussed in the literature. 

Employing the simulation capabilities of 
MATLAB/SIMULINK, the prescribed-time 
controller demonstrated be superior, showcasing 
its resilience and adaptability in maintaining the 
desired trajectory, irrespective of the presence 
of disturbances. 

The proposed methodology demonstrated its 
key feature of adjusting the convergence rate and 
its ability to withstand disturbances. Therefore, this 
study introduced a novel approach that integrates 
two approaches to tackle significant challenges in 
vehicular systems: the prescribed-time controller 
and the trajectory generation algorithm. 

Future research ought to emphasize on 
enhancing the prescribed time controller by means 
of reducing or modifying the control structure to 
mitigate chattering and minimize the overshoot of 
the control signal of v2(t). 

Furthermore, the trajectory generation 
algorithm can be enhanced by utilizing optimization 
algorithms to enhance its desired control signals in 
relation to generalized coordinates. 
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