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Abstract. In the present landscape of cloud computing, 
the effective scheduling of tasks stands as a pivotal 
element in optimizing the operational efficiency of 
distributed systems. This paper conducts a thorough and 
comparative examination of recent trends and progress 
within this vital and ever-evolving domain. By 
meticulously reviewing crucial performance metrics and 
critically analyzing state-of-the-art methodologies, we 
present a comprehensive overview of Cloud Task 
Scheduling. We emphasize the shift towards multi-
objective strategies, mirroring the escalating complexity 
and diversity witnessed in cloud environments. 
Employing innovative approaches and illustrative case 
studies, we delve into the practical implementation of 

prominent algorithms, including ���� , MaOEA-SIN, and 
MALO. The detailed analysis not only underscores their 
efficacy in real-world contexts but also pinpoints areas 
ripe for enhancement and adaptation within multi-cloud 
settings. Beyond offering an in-depth understanding of 
the latest developments in Cloud Task Scheduling, this 
article endeavors to stimulate collaboration and 
discourse within the academic and professional 

community. We aim to ignite future advancements, 
thereby contributing to the sustained growth of this 
strategic and dynamic field. 

Keywords. Cloud task scheduling, cloud computing, 
strategies and techniques, multi-
objective metaheuristics. 

1 Introduction 

Cloud computing is an information technology 
service delivery model that allows access to 
computing resources over the Internet. Instead of 
owning and maintaining servers and other 
infrastructure components locally, organizations 
and users can rent or use cloud services provided 
by specialized providers. In the current era of cloud 
computing, Cloud Task Scheduling emerges as an 
essential component to optimize resource 
management in distributed systems. 

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

ISSN 2007-9737



Cloud computing has revolutionized the way 
organizations manage and access computing 
resources, offering flexibility and scalability. In this 
context, efficient task allocation becomes a crucial 
factor in optimizing performance and resource 
utilization in cloud environments. 

Cloud Task Scheduling refers to the efficient 
planning and execution of tasks in distributed 
systems and cloud computing environments. 

This discipline seeks to address complex 
challenges, such as optimal resource allocation, 
minimization of execution time, and maximization 
of the utilization of available resources. Given the 
increasing diversity and complexity of cloud 
environments, it becomes imperative to adopt 
advanced approaches to task scheduling. 

Instead of relying on single performance 
metrics, the current trend is toward multi-objective 
strategies that consider multiple metrics 
simultaneously. This addresses the need to 
address multiple objectives and challenges 
inherent to cloud task scheduling, such as 
makespan minimization, cost optimization, and 
load balancing. 

The adoption of multi-objective algorithms 
allows greater flexibility and adaptability to 
dynamic and heterogeneous cloud environments. 
This article dives into a detailed exploration of the 
latest trends and advancements in Cloud 
Task Scheduling. 

Through a review of key performance metrics 
and critical analysis of cutting-edge 
methodologies, a comprehensive overview of this 
vital discipline is provided. The importance of multi-
objective approaches is highlighted, and 
representative case studies will be explored. 

The detailed analysis not only highlights 
effectiveness in real-world scenarios but also 
identifies areas ripe for improvements and 
adaptations in multi-cloud environments. 

Through this work, we seek to provide an in-
depth understanding of the latest developments in 
Cloud Task Scheduling, as well as foster 
collaboration within the academic and professional 
community and highlight future advances to 
contribute to the continued growth of this 
research field. 

2 Architectural Components of 
Cloud Computing 

The cloud computing architecture is a service 
model that provides on-demand access to shared 
computing resources over the Internet. This 
architecture applied to the Cloud Task Scheduling 
problem is generally divided into several service 
models and layers, each with its characteristics 
and functions. This allows efficient execution of 
distributed applications. As service models: 

– Infrastructure as a Service (IaaS): Offers 
virtualized computing, storage, and network 
resources over the Internet. Users can 
manage and control these resources 
according to their needs. 

- Platform as a Service (PaaS): Provides 
complete development and execution 
environments, including database services, 
middleware, and development tools. Users 
focus on application development without 
worrying about managing the 
underlying infrastructure. 

- Software as a Service (SaaS): Offers complete 
applications through the cloud, generally 
accessible through a web browser. Users can 
use these applications without worrying about 
infrastructure management, updates, 
or maintenance. 

As deployment models: 

 

Fig. 1. Diagram by layers of cloud computing 
architecture [1] 
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Algorithm 1 General framework of ���� algorithm 
Input: System parameters 

Output: Best solution 
1: for � = 1 to �size do 
2: Initialize the solution in a random way. 
3: Evaluate it and insert it into the initial  

population. 
4: Record the best solution found so far. 
5: while the stopping criterion is not satisfied  

do 
6: Employed bee phase 

7: for � = 1 �	
�� do 

8: Set the �� employed bee on the ��  
food source in the current population  
and perform the explotation task. 

9:  Evaluate the newly generated solution  
 and initialize the adaptive  
 neighborhood structure. 

10:  Onlooker bee phase 

11:  for � = 1 �	
��  
do 

12:  Randomly select three solutions in the  
 current population, select the best one  
 as the food source for the onlooker by  
 using the tournament selection  
 method. 

13:  Perform the exploitation task around  
 the selected food source. 

14:  Evaluate the newly generated solution  
 and update the adaptive 
  neighborhood structure. 

15:  Perform the deep exploitation around  
 the newly generated food source 
 found by the above step. 

16:  Scout bee phase 

17:  If a solution in the population has not been  
 improved during the limit trials, abandon it. 

18:  Generate eight neighboring solutions by  
 using the perturbation structures, and 
 select the best neighboring solution as the  
  scout bee to replace the current solution. 

19:  Deep-exploitation phase 

20:  Perform the deep-exploitation process  
 around the best food source found so far. 

21:  Replace the worst food source in the  
  current population with the best one. 

22: Output Best solution 

- Public Cloud: Provides services over the 
Internet for the public. Resources are shared 
between multiple users and organizations. 

- Private Cloud: Resources are used exclusively 
by one organization. 

It may be managed internally by the 
organization or by a specialized service provider. It 
provides greater control and customization but also 
involves higher costs. 

- Hybrid Cloud: Combines resources from public 
and private clouds, allowing the portability of 
data and applications between them. It offers 
flexibility and the ability to take advantage of 
the benefits of both implementations. 

Finally, within the context of layers, Wei [1] 
presents the following structure (Fig. 1) that 
composes the architecture of cloud computing: 

– Client Layer (Client): This is the outermost 
layer and represents the interfaces through 
which users interact with cloud services. It may 
include graphical user interfaces, command 
line interfaces, mobile applications, and other 
means through which users access and 
manage cloud resources. 

– Application Layer: In this layer are the 
applications and services that users deploy in 
the cloud. It may include web applications, 
business applications, and data analysis 
services, among others. These applications 
run on top of the infrastructure provided by the 
lower layers. 

– Platform Layer: The platform layer provides 
execution environments and services that 
facilitate the development, deployment, and 
management of applications. Here is the 
platform as a service (PaaS), which includes 
managed databases, application servers, 
development environments, and other 
services that allow developers to focus on 
application logic without worrying about the 
underlying infrastructure. 

– Infrastructure Layer: In this layer, infrastructure 
as a service (IaaS) is provided that includes 
computing resources, storage, and networks. 
Users can provision and manage virtual 
machines, virtual disks, virtual networks, and 
other resources as needed. 

This layer serves as the base upon which the 
upper layers are built. 

– Cloud Servers: At the lowest level, there are 
the physical and virtual servers that form the 
cloud infrastructure. 
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Algorithm 2 Framework of MaOEA-SIN 
Input: The population �, the reference point � 

Output: Population � 
1: ��
� = min (�
) //the minimum value for the 

objective function 
2: while (� < �max) do 
3: �
 = sin �(�
) 
4: Select two individuals randomly  ! and  " 
5: If  ! <  " 
6: Mating Pool)�* =  Mating Pool)�* ∪  !  
7: else if �,! < �," 
8: Mating Pool)�* =  Mating Pool)�* ∪  ! 
9: - = crossovermutation(Mating Pool)p*) 

10: 4 = )�, -* 6 = ||4
 , ��
�|| 
11:    for 8 = 1 ∶ :  do //population with size : 
12:  Select two individuals with minimum  

 angle 4
 , 4; 

13:  If 6(4
) >  6(4;) 

14:  4
 → )* //Eliminating the individual 

 

Algorithm 3 Ant Lion optimizer algorithm 
1: Initialize the random solutions 

2: Calculate the fitness function 
3: Find the best antlions and assume it as the 

optimal so far 
4: while the termination criterion is not reached 

do 
5:  for each solution (ant)  

do 
6: Select an antlion using Roulette wheel 

7: Update the perimeters > and � 

8: Create a random walk normalize the  
chosen random walk 

9: If ?¡ = A� then 

10: Update the current solution by  
using Eq. (15) 

11: else if ? = A� then 

12: Update the current solution by  
using Eq. (23) 

13:  If ?¡ = A� then 

14: Update the current solution by  
using Eq. (23) 

15: Calculate the fitness function of all  
solutions using Eq. (13) 

16: Replace an antlion (new solution) with  
its corresponding ant (current) if  
becomes fitter. 

17: Update the current best solution if an    
antlion becomes fitter than the old best. 

18: return Thebestsolution(elite) 

These servers are managed by cloud service 
providers and provide the resources necessary to 
host applications and services. They can include 

globally distributed data centers to ensure 
availability and redundancy. 

Users and developers mainly interact with the 
upper layers (Client, Application, and Platform), 
while cloud service providers manage the 
underlying infrastructure (Cloud Infrastructure 
and Servers). 

This hierarchical approach facilitates the 
management and scalability of cloud services, 
allowing users to focus on application development 
and deployment without worrying about managing 
physical infrastructure. 

3 Unique Challenges and 
Opportunities in Cloud 
Task Scheduling 

The dynamic and distributed environment of cloud 
computing poses several challenges and 
opportunities when it comes to efficient task 
scheduling. Task scheduling policies and schemes 
have direct impacts on effective resource utilization 
and user task efficiency in the cloud. 

Consequently, achieving optimal scheduling 
and allocation of user tasks remains a very 
important issue in the field of cloud computing [2]. 

Below, we will explore some of the most 
important aspects that professionals in the field 
propose to address to optimize the performance 
and effectiveness of task scheduling in this 
innovative environment. Among the challenges 
identified are: 

− Variability in Resources: The shared nature 
of cloud resources introduces variability in 
virtual machine performance and resource 
availability. Task scheduling must be able to 
adapt to these fluctuations to ensure 
efficient execution. 

− Network Latency: The geographic distribution 
of data centers and reliance on cloud services 
can lead to significant network latencies. 
Minimizing the impact of latency on task 
scheduling becomes a critical challenge. 

− Dynamic Elasticity: The ability to scale 
resources on demand is essential in the cloud. 
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However, effectively implementing dynamic 
elasticity without compromising performance 
presents specific challenges. 

− Coordination and Communication: Effective 
coordination between distributed tasks and 
efficient management of communication 
between components are crucial aspects to 
avoid bottlenecks and ensure smooth 
execution of tasks. In the area of opportunities, 
the following standout:  

− Resource Optimization: Flexibility in cloud 
resource allocation provides opportunities to 
optimize resource utilization, reducing costs 
and improving energy efficiency. 

− Orchestration Services: The increasing 
availability of orchestration services, such as 
Kubernetes, offers opportunities to simplify the 
management and coordination of 
distributed tasks. 

− Predictive Analysis: Predictive analytics 
based on historical data can be used to 
anticipate load patterns and improve decision-
making in task scheduling, thereby 
optimizing performance. 

− Intelligent Automation: Applying intelligent 
automation techniques, such as machine 
learning, can improve adaptive capacity and 
real-time decision-making to address dynamic 
cloud challenges. 

Exploring these challenges and opportunities 
will provide a more complete view of the critical 
aspects to consider when designing effective task 
scheduling strategies in the cloud 
computing environment. 

4  Innovative Strategies 
and Techniques 

Research in cloud task scheduling has 
experienced notable advances in the last decade, 
highlighting innovative strategies and advanced 
techniques. From 2019 to the present, numerous 
studies have explored and refined approaches to 
optimize task allocation in cloud computing 
environments, creatively addressing changing 
challenges. In this section, we present a summary 
of the most recent works in the literature, covering 
the period from 2019 to the present, and 
highlighting the strategies used by each. 

With a total of 26 studies selected, an important 
shift towards multi-objective strategies instead of a 
single objective is highlighted. This change reflects 
the complexity of cloud environments, where 
optimizing a single objective may not be enough. 
Considering multiple performance metrics 
becomes essential for more adaptable and 
efficient solutions. 

Next, we present works that adopt this multi-
objective approach, highlighting the importance of 
considering multiple performance criteria in cloud 
task scheduling. 

Table 1. Most commonly used performance metrics in 
cloud task scheduling 

Performance 
metric 

Definition 

Makespan 
The total time from start to 
completion of all scheduled 
tasks. 

Throughput 
The number of tasks 
completed per unit of time. 

Latency 
The time a task takes from 
request to completion. 

Resource 
utilization 

The proportion of resources 
(CPU, memory, etc.) used 
during task execution. 

Resource 
allocation 

The system's ability to allocate 
resources in an equitable and 
optimized manner. 

Cost 

The total expenditure 
associated with the execution 
of tasks, considering factors 
such as the cost of 
infrastructure and energy. 

Load balancing 
The equitable distribution of 
the workload among available 
resources. 

Energy efficiency 
The system's ability to perform 
tasks with the lowest possible 
energy consumption. 
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We seek to offer a comprehensive view of the 
latest innovations, emphasizing the effectiveness 
of multi-objective approaches in this context. 

Pang, 2019 [3] 

– Algorithm: EDA-CG 

– Year: 2019 

– Strategy/Technique: Estimation of distribution 
algorithm (EDA) and genetic algorithm (GA). 

– No. Objectives: 2 

– Objectives: Makespan and load balancing. 

Langhnoja and Joshiyara, 2019 [4] 

– Algorithm: Multi-objective based Integrated 
Task scheduling. 

– Year: 2019 

– Strategy/Technique: A ranking method to find 
the best possible solution. 

– No. Objectives: 3 

– Objectives: Makespan, cost, and 
load balancing. 

Abdullahi et al., 2019 [5] 

– Algorithm: CMSOS 

– Year: 2019 

– Strategy/Technique: Chaotic optimization 
strategy and chaotic local search strategy are 
applied to Pareto Fronts. 

– No. Objectives: 2 

– Objectives: Makespan and cost. 

Abdullah et al., 2019 [6] 

– Algorithm: MOPSO and MOPSO_SI 

– Year: 2019 

– Strategy/Technique: Multi-Objectives PSO 
(MOPSO) and MOPSO with Importance 
Strategy (IS). 

– No. Objectives: 3 

– Objectives: Makespan, cost, and 
load balancing. 

Li and Han, 2020 [7] 

– Algorithm: ����  

– Year: 2020 

– Strategy/Technique: Hybrid discrete artificial 
bee colony (ABC) algorithm and permutation-
based encoding method. 

– No. Objectives: 3 

– Objectives: Makespan, device workload, and 
total workloads. 

Cai et al., 2020 [8] 

– Algorithm: MaOEA-SIN 

– Year: 2020 

– Strategy/Technique: Many-objective intelligent 
algorithm with sine function. 

– No. Objectives: 6 

– Objectives: Makespan, cost, throughput, 
energy, resource utilization, and 
balancing load. 

Singh et al., 2020 [9] 

– Algorithm: CPO-MTS 

– Year: 2020 

– Strategy/Technique: Crow Search optimization 
Algorithm (CSA) and the Penguin Search 
Optimization Algorithm (PeSOA). 

– No. Objectives: 4 

– Objectives: Load balancing, resource 
utilization, makespan, and Quality of Service. 

Abualigah and Diabat, 2021 [10] 

– Algorithm: MALO 

– Year: 2021 

– Strategy/Technique: Hybrid antlion 
optimization algorithm with elite-based 
differential evolution. 

– No. Objectives: 3 

– Objectives: Makespan, response time (CPU), 
and resource utilization. 

Guo, 2021 [11] 

– Algorithm: Fuzzy self-defense algorithm 

– Year: 2021 

– Strategy/Technique: Fuzzy self-
defense algorithm. 

– No. Objectives: 3 

– Objectives: Makespan, load balancing, 
and cost. 
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Emara et al., 2021 [12] 

– Algorithm: G-MOTSA 

– Year: 2021 

– Strategy/Technique: Modified genetic 
algorithm (GA). 

– No. Objectives: 6 

– Objectives: Makespan, throughput, scheduling 
length, resource utilization, energy, and 
imbalance degree. 

Kruekaew and Kimpan, 2022 [13] 

– Algorithm: MOABCQ 

– Year: 2022 

– Strategy/Technique: Hybrid artificial bee 
colony algorithm with reinforcement learning. 

– No. Objectives: 3 

– Objectives: Makespan, cost, and 
resource utilization. 

Mahmoud et al., 2022 [14] 

– Algorithm: TS-DT 

– Year: 2022 

– Strategy/Technique: Multi-objective task 
scheduling algorithm is proposed based on the 
decision tree. 

– No. Objectives: 3 

– Objectives: Makespan, resource utilization, 
and load balancing. 

Mangalampalli et al., 2022 [15] 

– Algorithm: CSO 

– Year: 2022 

– Strategy/Technique: Cat Swarm 
Optimization algorithm. 

– No. Objectives: 4 

– Objectives: Makespan, migration time, energy, 
and cost. 

Mangalampalli et al., 2023 [16] 

– Algorithm: MOTSGWO 

– Year: 2023 

– Strategy/Technique: Grey wolf 
optimization algorithm. 

– No. Objectives: 3 

– Objectives: Makespan, migration time, 
and energy. 

Cui et al., 2023 [17] 

– Algorithm: MO-MFO 

– Year: 2023 

– Strategy/Technique: Evolutionary multi-
factorial optimization algorithm. 

– No. Objectives: 3 

– Objectives: Makespan, cost, and 
load balancing. 

Chandrashekar et al., 2023 [18] 

– Algorithm: HWACO 

– Year: 2023 

– Strategy/Technique: Hybrid Weighted Ant 
Colony Optimization algorithm. 

– No. Objectives: 2 

– Objectives: Makespan and cost. 

Agarwal et al., 2023 [19] 

– Algorithm: HGA-ECS 

– Year: 2023 

– Strategy/Technique: Integration of Genetic 
Algorithm (GA) and Energy Conscious 
Scheduling (ECS) model. 

– No. Objectives: 3 

– Objectives: Makespan, energy consumption, 
and optimization of task scheduling 
over processors. 

Mangalampalli et al., 2023 [20] 

– Algorithm: MOTSWAO 

– Year: 2023 

– Strategy/Technique: Whale 
Optimization Algorithm. 

– No. Objectives: 2 

– Objectives: Makespan and 
energy consumption. 

Malti et al., 2023 [21] 

– Algorithm: Hybrid Multi-objective 
Optimization Algorithm. 

– Year: 2023 
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– Strategy/Technique: Combination of flower 
pollination behavior and grey wolf optimizer 
strategy for task scheduling optimization. 

– No. Objectives: 4 

– Objectives: Makespan, resource utilization, 
degree of imbalance, and maximization of 
throughput in heterogeneous IaaS 
cloud environments. 

Pirozmand et al., 2023 [22] 

– Algorithm: IPSO 

– Year: 2023 

– Strategy/Technique: Multi-adaptive learning 
strategy to shorten the execution time of the 
original PSO algorithm. 

– No. Objectives: 3 

– Objectives: Makespan, load balancing and 
execution time. 

Khan, 2024 [23] 

– Algorithm: HLFO 

– Year: 2024 

– Strategy/Technique: Convolutional and 
Recurrent Neural Networks in a deep learning 
model for load calculation, Reinforcement 
Learning with a Hybrid Lyrebird Falcon 
Optimization (HLFO) algorithm. 

– No. Objectives: 4 

– Objectives: Makespan, energy consumption, 
resource utilization and Quality of 
Service (QoS). 

Sabat et al., 2024 [24] 

– Algorithm: Adaptive PSO-ACO 

– Year: 2024 

– Strategy/Technique: Adaptive particle swarm 
optimization (PSO) and ant colony 
optimization (ACO). 

– No. Objectives: 3 

– Objectives: Cost, makespan and 
execution time. 

Gupta and Singh, 2024 [25] 

– Algorithm: WOA-Scheduler 

– Year: 2024 

– Strategy/Technique: Whale 
Optimization Algorithm. 

– No. Objectives: 3 

– Objectives: Cost, makespan and 
load balancing. 

Ciptaningtyas et al., 2024 [26] 

– Algorithm: Improved Squirrel Search Algorithm 
(SSA) 

– Year: 2024 

– Strategy/Technique: Integration with 
Opposition Based Learning (OBL) method to 
address premature convergence. 

– No. Objectives: 3 

– Objectives: Makespan, throughput, and 
resource utilization. 

Nithiavathy et al., 2024 [27] 

– Algorithm: AGDESMA 

– Year: 2024 

– Strategy/Technique: Slime Mould Algorithm 
(SMA) and Adaptive Guided Differential 
Evolution (AGDE). 

– No. Objectives: 2 

– Objectives: Makespan and cost. 

Behera and Sobhanayak, 2024 [28] 

– Algorithm: Hybrid GA-GWO 

– Year: 2024 

– Strategy/Technique: Grey Wolf Optimization 
Algorithm (GWO) and the Genetic 
Algorithm (GA). 

– No. Objectives: 3 

– Objectives: Makespan, cost and 
energy consumption. 

5 Critical Examination of State-of-the-
Art Methods 

The previous section has provided an overview of 
the most recent works in cloud task scheduling, 
highlighting innovative strategies and advanced 
techniques used by various researchers. Now, we 
will delve into a critical analysis focused on the 
three most representative works in this collection. 

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Jessica González-San-Martín, Laura Cruz-Reyes, Bernabé Dorronsoro, et al.790

ISSN 2007-9737



Each of these studies has contributed to the 
evolution of methods and approaches in task 
allocation optimization. We will break down in 
detail the techniques used, and the algorithms 
implemented by these selected works. 

By critically examining these notable studies, 
we seek to provide an in-depth understanding of 
the key contributions that have driven the current 
state of the art in cloud task scheduling. This 
analysis will not only illustrate the strengths and 
limitations of each approach but will also establish 
a solid framework for understanding the broader 
landscape of research in this dynamic and 
constantly evolving field. 

5.1 Hybrid Multi-Objective Artificial Bee 
Colony Algorithm 

Li and Han [7] proposed an algorithm called ���� , 
a hybrid and improved version of the artificial bee 
colony (ABC) algorithm. In this approach, the initial 
problem is modeled as a hybrid flow shop 
scheduling (HFS) problem, addressing both single 
and multiple objectives. In the context of multi-
objective HFS problems, three objectives are 
simultaneously considered: minimizing the 
makespan, the maximum workload on the device, 

and the total workloads on all devices. The scope 
of the algorithm extends to two distinct types of 
HFS: those with identical parallel machines and 
those involving unrelated machines. The proposed 
approach incorporates three categories of artificial 
bees, namely employed, observer, and scout bees, 
similar to the classical ABC scheme. 

Each solution is represented by a string of 
integers. To adapt to the particularities of the 
problem, various perturbation structures are 
explored, and designed to improve the search 
capabilities of the algorithm. 

The inclusion of an improved version of the 
adaptive perturbation structure in the proposed 
algorithm stands out, which seeks to effectively 
balance the exploitation and exploration capacity 
during the optimization process. A simple but 
highly effective selection strategy, along with an 
updated approach, is implemented to enhance the 
exploitation process. 

To further intensify mining capabilities, a deep 
mining operator is introduced. In addition, an 
improved version of the scout bee is introduced 
that uses various local search methods to find the 
best food source or abandoned solution. This 
approach significantly contributes to improving the 
convergence ability of the proposed algorithm. 

Table 2. Results obtained in [7] for the different objectives that ����addresses 

Problem 
BCDE 

FG FH FI Fitness Value Average Makespan Time (s) 

1 23+ 19 119.65 41.13+ 23+ 1.25 

2 297+ 193.6 1642.7 535.12+ 297+ 0.53 

Table 3. Results comparison presented in [7] of ���� algorithm against other approaches in the literature in terms 

of makespan 

Problem 
BCDE AIS SFLA EDA 

FG Average Makespan FG Average FG Average. FG Average 

1 23+ 23+ 27 27 24 24 23 23.4 

2 297+ 297+ - - 297 307.3 297 297.4 

Table 4. Parameter settings for cloud simulation [8] 

Cloud Mips Cost Bandwidth Transmission 

Cloud1 300-450 0.03 1024-2048 0.01 

Cloud2 500-1000 0.06 2048-3072 0.02 

Cloud3 1500-2000 0.09 3072-4096 0.03 
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The effectiveness of the algorithm is tested 
using widely recognized benchmark instance sets, 
and performance verification of the proposed 
algorithm is performed. 

5.2 Many-Objective Intelligent Algorithm with 
Sine Function 

Cai et al. [8] developed a multi-objective distributed 
programming model that covers six objectives: 
total time, cost, cloud performance, 
energy consumption, resource utilization, and 
load balancing. 

Furthermore, they introduced an intelligent 
multi-objective algorithm with a sine function to 
implement this model, called MaOEA-SIN. This 
algorithm considers the variation trend of the 
diversity strategy in the population, modeling it in 
an analogous way to the sine function. 

The experimental results show outstanding 
programming efficiency, which contributes to 
improving security. This work presents a new 
perspective to address the challenging problem of 
data processing in the Internet of Things. 

5.3 Multi-Objective Optimization Method using 
Hybrid Antlion Optimizer Algorithm 

Abualigah and Diabat [10] introduced an innovative 
algorithm, called MALO, that combines antlion 
optimization with elite-based differential evolution 
to solve multi-objective task scheduling problems 
in cloud computing environments. In this method, 
the multi-objective nature of the problem arises 
from the need to minimize the makespan and 
maximize the resource utilization simultaneously. 

The antlion optimization algorithm was 
improved by incorporating elite-based differential 
evolution as a local search technique. This 
approach improves the exploitability of the 
algorithm and prevents the possibility of getting 
trapped in local optima. The obtained results 
revealed that MALO outperformed other well-
known optimization algorithms. 

Notably, MALO showed faster convergence 
compared to other approaches when applied to 
larger search spaces, positioning it as a suitable 
option to address large-scale programming 
problems. In addition, a statistical analysis was 
carried out using �-tests, evidencing a significant 
improvement in the results obtained by MALO. The 
comprehensive evaluation of leading methods in 
cloud task scheduling reveals a diversity of 
innovative approaches and advanced strategies. 

The three works examined have proven to be 
pioneers in the development of efficient and 
effective solutions to the challenges inherent in this 
dynamic field. Together, these works have not only 
contributed significantly to the current state of the 
art in cloud task scheduling but also provided 
valuable insights and foundations for future 
research in this dynamic and challenging field. 

6 Performance Metrics and 
Benchmarks 

In the dynamic and challenging realm of Cloud 
Task Scheduling, accurate evaluation of algorithm 
performance becomes a crucial component for 
efficient solution development and deployment. To 
carry out this evaluation, an essential set of tools is 
used: performance metrics and benchmarks. 

Table 5. Numerical analysis of different algorithms vs MaOEA-SIN with six objectives [8] 

Algorithm 
Total time (Min) Cost (Min) Throughput (Max) L. Balancing (Min) RU (Max) Energy (Min) 

Average 

NSGA-III 5.2260x105 9.8234 x105 3.9296 x10-4 2.6874 x107 6.7570 x10-1 3.5439 x104 

VaEA 3.8351x105 7.7333 x105 3.8251 x10-4 2.2864 x107 7.9762 x10-1 2.7588 x104 

GrEA 4.7793 x105 8.6360 x105 3.7990 x10-4 2.6619 x107 7.3459 x10-1 3.3846 x104 

Two_Arch2 4.7032 x105 9.8155 x105 3.8555 x10-4 2.5797 x107 7.3034 x10-1 3.3580 x104 

KnEA 4.5334 x105 9.0127 x105 4.0737 x10-4 2.5005 x107 7.3168 x10-1 3.2529 x104 

MaOEA-SIN 2.9254 x105 5.4047 x105 4.0393 x10-4 1.9016 x107 9.2716 x10-1 2.1341 x104 
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These tools provide the foundation upon which 
researchers and developers can measure, 
compare, and continually improve the performance 
of cloud task scheduling algorithms. 

6.1 Performance Metrics 

Performance metrics play an essential role in 
evaluating and improving algorithms. These 
measures quantify the effectiveness and efficiency 
of an algorithm by providing objective information 
about its performance on various tasks. 

Using performance metrics, developers and 
data scientists can evaluate effectiveness, 
compare algorithms, optimize parameters, 
diagnose problems, and perform sensitivity 
analysis, among other actions [29]. 

In the context of cloud computing, various 
performance metrics have been used to evaluate 
the efficiency and effectiveness of the algorithms 
used, offering detailed insight into system 
performance, and assisting developers in making 
informed decisions. Below, Table 1 presents some 
of the most used performance metrics in Cloud 
Task Scheduling. 

6.2 Benchmarks 

Test instances or benchmarks are collections of 
data created for the specific purpose of evaluating 
and testing algorithms. The use of instances in the 
evaluation of algorithms in Cloud Task Scheduling 
provides a structured and objective framework to 
analyze and improve the performance of solutions 
in a dynamic and distributed environment. 

These instances provide an accurate 
representation of real-world challenges and 
scenarios, allowing developers to make informed 
decisions and refine their approaches. 

There are different sets of instances widely 
used for the evaluation of Cloud Task Scheduling 
algorithms. Some notable examples include: 

– Google Cluster-Trace Dataset (GoCJ) [30]: 
GoCJ provides real traces of jobs and tasks 
executed on Google clusters. It contains 
valuable insights into the variability and 
dynamics of work in large-scale 
cloud environments. 

 

Fig. 2. Comparison of performance presented in [8] of 
different algorithms on six objectives 

Table 6. CloudSim test settings [10] 

Element Parameter Values 

Datacenter No. of datacenter 2 

Cloudlet 
No. of cloudlets 100-1000 

Length 1000-2000 

Virtual 
machine 

RAM 512 MB 

MIPS 100-1000 

Size 10000 

Bandwidth 1000 

Policy type 
Time 

Shared 

No. of CPUs 1 

Host 

No. of Hosts 2 

RAM 2048 MB 

Storage 1 million 

Bandwidth 10000 
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– NASA Ames iPSC/860 [31]: This set of 
instances is based on execution traces of 
scientific applications on the NASA Ames 
Research Center iPSC/860 supercomputer. 
Provides realistic data on scientific workloads in 
high-performance environments. 

– HPC2N-2002 [32]: Derived from execution 
traces at the High-Performance Computing 
Center North (HPC2N) in Sweden in 2002. 
Contains information about the execution of 
jobs on a high-performance cluster. 

– CEC 2005 Benchmark Functions [33]: Although 
most associated with benchmarking functions 
for optimization algorithms, the CEC 2005 
instance set is also used in some cases to 
evaluate Cloud Task Scheduling algorithms. 

These instance sets are used by the research 
community to evaluate and compare Cloud Task 
Scheduling algorithms in various contexts. Each 
data set presents specific characteristics that allow 
different aspects of performance in cloud 
computing environments to be simulated 
and analyzed.  

On the other hand, there is CloudSim [34], 
which is a simulation framework that provides sets 
of simulated instances for the evaluation of cloud 
task scheduling algorithms. It allows you to create 
simulated cloud environments for performance 
evaluations. Programmers can generate tasks, 
virtual machines, and hosts randomly and with 
different characteristics. 

CloudSim is widely used by researchers to 
evaluate their algorithms in different generated 
environments. 

7 Study Cases and Future Directions 

In this section, we present a detailed analysis of 
case studies that highlight the practical 
applications and results obtained by the three 
selected approaches: ����  [7], MaOEA-SIN [8], 
and MALO [10]. We will mention the instances 
used in their experiments, as well as the conditions 
under which they were carried out and the 
results obtained. 

Through this case study analysis, we seek to 
provide a deeper understanding of the 
performance of these algorithms in real-world 
situations, considering different data sets and 
application scenarios. Furthermore, we will outline 
possible future directions that arise from the 
lessons learned and the results obtained, thus 
helping to guide subsequent research in task 
scheduling in cloud computing environments. 

 

Fig. 3. Degree of imbalance of scheduling algorithms 
presented in [10] 

 

 

Fig. 4. The average makespan values for executing 
small and large tasks [10] 
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7.1 Study Cases 

Li and Han Li and Han compared their proposed 
����  [7] against three different algorithms from the 
literature: EDA (Wang et al. [35]), AIS (Liu et al. 
[36]), and SFLA (Xu et al. [37]). For the 
experimentation, they used a computer with a 3.3 
GHz Intel Core i5 processor and 4 GB memory. 

To test the performance of the algorithms in a 
multi-objective environment, they selected as 
instances two unrelated real machine HFS 
problems from [35] to make the problem more like 
reality in a cloud system. 

The results obtained by ����  are presented in 
Table 2 and 3 revealing the following highlights: 

1 When analyzing the comparison of results for 
each instance, superior performance by the 
algorithm is evident. 

2 In terms of the average value of makespan, the 
computational results generated by the 
algorithm match the optimal values for each 
instance on average, thus underlining the 
robustness of ���� . 

3 Considering the calculation times used in the 
test instances, the ����  algorithm also exhibits 
superior performance. 

The ����  algorithm according to Li and Han [7] 
stands out for its competitive performance against 
various efficient algorithms. This success is based 
on the introduction of eight meticulously designed 
disturbance structures to improve exploitation 

 
 

Fig. 5. The CPU time(s) of the task scheduling 
algorithms for the synthetic datasets [10] 

Fig. 7. The CPU time(s) of the task scheduling algorithms 
for solving the NASA Ames datasets [10] 

 
 

Fig. 6. The CPU time(s) of the task scheduling 
algorithms for solving the HPC2N Seth datasets [10] 

Fig. 8. The degree of imbalance of the tasks scheduling 
optimization algorithms using the HPC2N Seth 
datasets [10] 
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capacity, the use of an improved deep exploitation 
observer bee mechanism to intensify local search, 
the implementation of an adaptive perturbation that 
balances exploitation and exploration, and a 
specific approach for scout bees that boosts the 
convergence capacity of the algorithm. 

Cai et al. [8] conducted their experiments 
through the simulation of three clouds with different 
characteristics, the main difference is the Mips 
execution speed and the cost. The execution cost 
of the first cloud is cheaper, but the execution 
speed is slower and takes longer, which is suitable 
for smaller tasks. The second cloud has a relatively 
medium execution speed and execution cost. 

The third cloud has a faster execution speed, 
but the cost also becomes high, suitable for 
performing larger tasks. Table 4 presents the 
detailed parameter settings of the simulated 
clouds. The experimentation was carried out by 
generating 300 tasks with an initial length of 500 
million instructions (MI), the file size is 200 KB and 
the output file size is 100 KB. Then each task 
gradually increases with a trend of 500 MI, 10 KB, 
and 10 KB respectively. 

The comparison of the MaOEA-SIN algorithm 
was carried out against five algorithms from the 
literature: NSGA-III, VaEA, GrEA, Two_Arch2, and 
KnEA. The study evaluated the performance of the 
MaOEA-SIN algorithm in a multi-cloud model by 
comparing six objective values. 

The best, worst, and average solutions were 
selected based on the performance of these 
values. Table 5 presents six objectives: Total time, 

cost, cloud throughput, load balancing, resource 
utilization (RU) and Energy consumption, for six 
different approaches. 

The average results presented in Table 5, 
indicate that MaOEA-SIN outperforms GrEA in 
cost, although it shows inferior performance in the 
cloud throughput objective. MaOEA-SIN stands 
out for its excellent average performance, 
demonstrating strong convergence. 

Figure 2 shows the distribution of the data in the 
form of a box plot. Looking at the upper quartile, 
the median, and the lower quartile, the MaOEA-
SIN algorithm has better convergence and 
distribution for six objectives. Convergence is 
reflected in the fact that the midline values are all 
optimal values in each objective. 

The distribution is reflected in the fact that the 
MaOEA-SIN algorithm has more dispersed points. 
In summary, the performance of the MaOEA-SIN 
algorithm is superior to that of other algorithms. To 
validate the effectiveness of the MALO algorithm, 
Abualigah and Diabat [10] present two series of 
experiments using synthetic datasets and real 
trace datasets. 

For the first set of instances, the Cloudsim 
environment was used, which is a set of tools to 
imitate cloud computing scenarios [34], because 
the investigation of new procedures or approaches 
in the real cloud computing ecosystem is usually 
limited by solid foundations, such as protection, 
security, speed and the high cost of money if 
experiments are carried out.m Therefore, it is 
difficult to conduct such research in repeatable, 
reliable, and scalable ecosystems (environments) 
using real world cloud environments [10]. 

For experimentation, they built two data centers 
within CloudSim, each with two hosts. Each host 
has 20 GB of RAM (one host is a dual-core 
machine and the other is a quad-core machine) 
and one TB of memory storage. 

Each host has a collective processing power of 
one million MIPS. Several virtual machines were 
designed with different distributions generated 
such as 100, 200, 300, 400, 500, 600, 700, 800, 
900, 1000, and 2000 instances. The CloudSim 
configuration is presented in Table 6. The MALO 
algorithm is compared against seven approaches 
from the literature: (Genetic Algorithm (GA) [38], 
Discrete Symbiotic Organism Search (DSOS) 
Algorithm [39], Hybrid Moth Search Algorithm 

 

Fig. 9. The degree of imbalance of the tasks scheduling 
optimization algorithms using the NASA Ames 
datasets [10] 
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(MSDE) [40], Particle Swarm Optimization (PSO) 
Algorithm [41], Whale Optimization Algorithm 
(WOA) [42], Moth Search Algorithm (MSA) [43], 
and Antlion Optimizer (ALO) Algorithm [44]). 

Figure 3 presents the results obtained by the 
algorithms in terms of the degree of imbalance 
(DI), this metric shows us how equitably the tasks 
are distributed in the different resources. A lower 
degree of imbalance translates to a better use of 
resources and here we can see that MALO obtains 
the best DI compared to the other algorithms. 

On the other hand, Figure 4 shows the average 
makespan values obtained by the algorithms for 
small and large tasks. The MALO algorithm 
reduced the value of makespan in all task cases. It 
is concluded that the value of the makespan 
increases slowly as the size of the tasks increases. 

The average value of makespan when using 
the modified optimization algorithms is better than 
traditional optimization algorithms [10]. Meanwhile, 
the average time interval of the MALO algorithm is 
smaller than that of other comparative methods. 
Figure 5 displays the response times (CPU) 
achieved by different task scheduling algorithms 
(GA, DSOS, MSDE, PSO, WOA, MSA, ALO, and 
the proposed MALO). 

It is highlighted that MALO achieved minimum 
response times to solve problems of various sizes 
compared to the other methods, indicating a 
significant improvement in the efficiency of the 
algorithm. Specifically, for a task size of 600, the 
PSO algorithm recorded the lowest response time 
compared to other methods. For evaluation results 
of real trace datasets Abualigah and Diabat used 
the NASA Ames dataset [32] and the HPC2N Seth 
dataset [33]. 

Figures 6 and 7 present the response times 
(CPU) of various task scheduling algorithms (GA, 
DSOS, MSDE, PSO, WOA, MSA, ALO, and 
MALO) when performing tasks with real trace data 
sets. In Figure 6, MALO manages to almost reach 
the minimum response time for solving tasks of all 
sizes compared to other methods, especially using 
the HPC2N Seth datasets. 

Similarly, in Figure 7, MALO stands out in 
approaching the minimum response time for tasks 
of all sizes, especially with the NASA Ames 
datasets. The difference in algorithm response 
times is evident across all task sizes, particularly 
with the HPC2N Seth datasets, standing out over 

other methods. Although the difference in 
response times of the MALO algorithm across all 
task sizes is not as clear compared to DSOS, an 
overall improvement is observed that contributes to 
the reduction in the time needed to find 
optimal solutions. 

The degree of imbalance results between the 
MALO algorithm and other benchmark algorithms 
are presented in Figures 8 and 9 for the HPC2N 
Seth and NASA Ames datasets. MALO achieved a 
higher load balance (lower degree of imbalance) 
compared to the other methods. In almost all cases 
of data sets (100-2000), MALO exhibited the 
lowest degree of imbalance, highlighting its 
superior performance compared to comparative 
optimization algorithms. 

This is reflected in a better balance between 
virtual machines in all problem instances. bMALO 
converged faster than the other approaches for 
larger search spaces, making it suitable for large 
scheduling problems. 

7.2 Future Directions 

Based on insights gained from case studies of 
three prominent algorithms in Cloud Task 
Scheduling [7,8,10], we identify promising 
directions for future research and development. 

1 Improvements in Hybrid Algorithms: 

- Inspired by the success of ����  in introducing 
innovative perturbation structures, there is 
potential to explore new hybrid algorithms that 
combine different optimization strategies for 
improved performance. 

- Investigating advanced exploitation 
mechanisms and adaptive perturbation 
strategies, as demonstrated in ���� , can be 
crucial to address the constantly evolving 
challenges in Cloud Task Scheduling. 

2 Multi-Cloud Environments: 

- Given the dynamic nature of cloud 
environments, future studies could focus on 
multi-cloud scenarios with variable execution 
speeds and costs. This aligns with the 
approach of Cai et al. by simulating three 
clouds with different characteristics. 
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- Exploring adaptive algorithms capable of 
dynamically adjusting to various cloud 
configurations can improve the adaptability of 
scheduling algorithms. 

3 Real World Cloud Experiments: 

- Bridging the gap between simulations and real-
world cloud environments remains a 
challenge. Future research could explore 
methodologies for conducting repeatable, 
reliable, and scalable experiments in real-
world cloud ecosystems, considering factors 
such as security, cost, and efficiency. 

- Addressing the limitations associated with 
real-world experiments would significantly 
contribute to the practical applicability of the 
proposed scheduling algorithms. 

4 Expansion of Performance Metrics: 

- Extending the set of performance metrics 
beyond traditional objectives, such as 
exploring energy efficiency, security, and 
adaptability, can offer a more comprehensive 
evaluation of scheduling algorithms. 

- Investigating the impact of scheduling 
decisions on the overall sustainability and 
security of cloud systems would be a valuable 
avenue for future research. 

5 Optimization for Large-Scale Problems: 

- The success of MALO in handling larger 
search spaces suggests the need for 
algorithms that can scale efficiently for large 
programming problems. 

- Future studies could explore optimization 
techniques specifically designed to handle the 
complexity and scale associated with task 
scheduling in expansive cloud environments. 

6 Dynamic Workloads and Task Characteristics: 

- Adapting algorithms to accommodate dynamic 
workloads and diverse task characteristics is 
crucial. Future research could focus on 
developing scheduling approaches capable of 
dynamically adjusting to varying task 
requirements and environmental conditions. 

These future directions aim to guide 
researchers and practitioners in advancing the field 

of Cloud Task Scheduling, addressing emerging 
challenges, and ensuring the continued evolution 
of efficient and adaptive scheduling algorithms. 

8 Conclusions 

This comprehensive study explores Cloud Task 
Scheduling, analyzing recent developments and 
offering valuable comparative insights. The 
importance of performance metrics and 
benchmarks in the evaluation of algorithms is 
highlighted, underlining their critical role in 
continuous improvement. 

We provide a comprehensive overview of the 
latest work in the literature, highlighting the 
richness of multi-objective approaches that seek to 
simultaneously improve multiple performance 
metrics. This shift toward more complex and 
comprehensive strategies reflects the growing 
awareness of the multifaceted and challenging 
nature of cloud task scheduling. 

Detailed analysis of case studies, including 
���� , MaOEA-SIN and MALO, provide significant 
insights into their strengths and areas for 
improvement. The applicability and robustness of 
these approaches are highlighted in multi-cloud 
environments and with real data sets. 

Promising future directions are identified, from 
improvements in hybrid algorithms to adaptation to 
real cloud environments and exploration of 
additional metrics. 

This article aims to contribute to the continued 
growth of the field by providing an in-depth 
overview of recent developments. We seek to 
foster collaboration and dialogue in the academic 
and professional community, paving the way for 
future achievements in cloud task scheduling. 
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