
Advancing Cloud Task Scheduling: Recent Developments
and Comparative Insights

Jessica González-San-Martín1,*, Laura Cruz-Reyes1, Bernabé Dorronsoro2,
Héctor Fraire-Huacuja1, Marcela Quiroz-Castellanos3, Claudia Gómez-Santillán1,

Nelson Rangel-Valdez4

1 Tecnológico Nacional de México,
Instituto Tecnológico de Ciudad Madero,

Division of Graduate Studies and Research,
Mexico

2 University of Cadiz,
Computer Science Engineering,

Spain

3 Universidad Veracruzana,
Artificial Intelligence Research Center,

Mexico

4 Tecnológico Nacional de México,
Instituto Tecnológico de Ciudad Madero,

Research Fellow at Graduate Program Division,
Mexico

jessica.gs@cdmadero.tecnm.mx

Abstract. In the present landscape of cloud computing,
the effective scheduling of tasks stands as a pivotal
element in optimizing the operational efficiency of
distributed systems. This paper conducts a thorough and
comparative examination of recent trends and progress
within this vital and ever-evolving domain. By
meticulously reviewing crucial performance metrics and
critically analyzing state-of-the-art methodologies, we
present a comprehensive overview of Cloud Task
Scheduling. We emphasize the shift towards multi-
objective strategies, mirroring the escalating complexity
and diversity witnessed in cloud environments.
Employing innovative approaches and illustrative case
studies, we delve into the practical implementation of

prominent algorithms, including ���� , MaOEA-SIN, and
MALO. The detailed analysis not only underscores their
efficacy in real-world contexts but also pinpoints areas
ripe for enhancement and adaptation within multi-cloud
settings. Beyond offering an in-depth understanding of
the latest developments in Cloud Task Scheduling, this
article endeavors to stimulate collaboration and
discourse within the academic and professional

community. We aim to ignite future advancements,
thereby contributing to the sustained growth of this
strategic and dynamic field.

Keywords. Cloud task scheduling, cloud computing,
strategies and techniques, multi-
objective metaheuristics.

1 Introduction

Cloud computing is an information technology
service delivery model that allows access to
computing resources over the Internet. Instead of
owning and maintaining servers and other
infrastructure components locally, organizations
and users can rent or use cloud services provided
by specialized providers. In the current era of cloud
computing, Cloud Task Scheduling emerges as an
essential component to optimize resource
management in distributed systems.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

ISSN 2007-9737

Cloud computing has revolutionized the way
organizations manage and access computing
resources, offering flexibility and scalability. In this
context, efficient task allocation becomes a crucial
factor in optimizing performance and resource
utilization in cloud environments.

Cloud Task Scheduling refers to the efficient
planning and execution of tasks in distributed
systems and cloud computing environments.

This discipline seeks to address complex
challenges, such as optimal resource allocation,
minimization of execution time, and maximization
of the utilization of available resources. Given the
increasing diversity and complexity of cloud
environments, it becomes imperative to adopt
advanced approaches to task scheduling.

Instead of relying on single performance
metrics, the current trend is toward multi-objective
strategies that consider multiple metrics
simultaneously. This addresses the need to
address multiple objectives and challenges
inherent to cloud task scheduling, such as
makespan minimization, cost optimization, and
load balancing.

The adoption of multi-objective algorithms
allows greater flexibility and adaptability to
dynamic and heterogeneous cloud environments.
This article dives into a detailed exploration of the
latest trends and advancements in Cloud
Task Scheduling.

Through a review of key performance metrics
and critical analysis of cutting-edge
methodologies, a comprehensive overview of this
vital discipline is provided. The importance of multi-
objective approaches is highlighted, and
representative case studies will be explored.

The detailed analysis not only highlights
effectiveness in real-world scenarios but also
identifies areas ripe for improvements and
adaptations in multi-cloud environments.

Through this work, we seek to provide an in-
depth understanding of the latest developments in
Cloud Task Scheduling, as well as foster
collaboration within the academic and professional
community and highlight future advances to
contribute to the continued growth of this
research field.

2 Architectural Components of
Cloud Computing

The cloud computing architecture is a service
model that provides on-demand access to shared
computing resources over the Internet. This
architecture applied to the Cloud Task Scheduling
problem is generally divided into several service
models and layers, each with its characteristics
and functions. This allows efficient execution of
distributed applications. As service models:

– Infrastructure as a Service (IaaS): Offers
virtualized computing, storage, and network
resources over the Internet. Users can
manage and control these resources
according to their needs.

- Platform as a Service (PaaS): Provides
complete development and execution
environments, including database services,
middleware, and development tools. Users
focus on application development without
worrying about managing the
underlying infrastructure.

- Software as a Service (SaaS): Offers complete
applications through the cloud, generally
accessible through a web browser. Users can
use these applications without worrying about
infrastructure management, updates,
or maintenance.

As deployment models:

Fig. 1. Diagram by layers of cloud computing
architecture [1]

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Jessica González-San-Martín, Laura Cruz-Reyes, Bernabé Dorronsoro, et al.784

ISSN 2007-9737

Algorithm 1 General framework of ���� algorithm
Input: System parameters

Output: Best solution
1: for � = 1 to �size do
2: Initialize the solution in a random way.
3: Evaluate it and insert it into the initial

population.
4: Record the best solution found so far.
5: while the stopping criterion is not satisfied

do
6: Employed bee phase

7: for � = 1 �	
�� do

8: Set the �� employed bee on the ��
food source in the current population
and perform the explotation task.

9: Evaluate the newly generated solution
 and initialize the adaptive
 neighborhood structure.

10: Onlooker bee phase

11: for � = 1 �	
��
do

12: Randomly select three solutions in the
 current population, select the best one
 as the food source for the onlooker by
 using the tournament selection
 method.

13: Perform the exploitation task around
 the selected food source.

14: Evaluate the newly generated solution
 and update the adaptive
 neighborhood structure.

15: Perform the deep exploitation around
 the newly generated food source
 found by the above step.

16: Scout bee phase

17: If a solution in the population has not been
 improved during the limit trials, abandon it.

18: Generate eight neighboring solutions by
 using the perturbation structures, and
 select the best neighboring solution as the
 scout bee to replace the current solution.

19: Deep-exploitation phase

20: Perform the deep-exploitation process
 around the best food source found so far.

21: Replace the worst food source in the
 current population with the best one.

22: Output Best solution

- Public Cloud: Provides services over the
Internet for the public. Resources are shared
between multiple users and organizations.

- Private Cloud: Resources are used exclusively
by one organization.

It may be managed internally by the
organization or by a specialized service provider. It
provides greater control and customization but also
involves higher costs.

- Hybrid Cloud: Combines resources from public
and private clouds, allowing the portability of
data and applications between them. It offers
flexibility and the ability to take advantage of
the benefits of both implementations.

Finally, within the context of layers, Wei [1]
presents the following structure (Fig. 1) that
composes the architecture of cloud computing:

– Client Layer (Client): This is the outermost
layer and represents the interfaces through
which users interact with cloud services. It may
include graphical user interfaces, command
line interfaces, mobile applications, and other
means through which users access and
manage cloud resources.

– Application Layer: In this layer are the
applications and services that users deploy in
the cloud. It may include web applications,
business applications, and data analysis
services, among others. These applications
run on top of the infrastructure provided by the
lower layers.

– Platform Layer: The platform layer provides
execution environments and services that
facilitate the development, deployment, and
management of applications. Here is the
platform as a service (PaaS), which includes
managed databases, application servers,
development environments, and other
services that allow developers to focus on
application logic without worrying about the
underlying infrastructure.

– Infrastructure Layer: In this layer, infrastructure
as a service (IaaS) is provided that includes
computing resources, storage, and networks.
Users can provision and manage virtual
machines, virtual disks, virtual networks, and
other resources as needed.

This layer serves as the base upon which the
upper layers are built.

– Cloud Servers: At the lowest level, there are
the physical and virtual servers that form the
cloud infrastructure.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Advancing Cloud Task Scheduling: RecentDevelopments and Comparative Insights 785

ISSN 2007-9737

Algorithm 2 Framework of MaOEA-SIN
Input: The population �, the reference point �

Output: Population �
1: ��
� = min (�
) //the minimum value for the

objective function
2: while (� < �max) do
3: �
 = sin �(�
)
4: Select two individuals randomly ! and "
5: If ! < "
6: Mating Pool)�* = Mating Pool)�* ∪ !
7: else if �,! < �,"
8: Mating Pool)�* = Mating Pool)�* ∪ !
9: - = crossovermutation(Mating Pool)p*)

10: 4 =)�, -* 6 = ||4
 , ��
�||
11: for 8 = 1 ∶ : do //population with size :
12: Select two individuals with minimum

 angle 4
 , 4;

13: If 6(4
) > 6(4;)

14: 4
 →)* //Eliminating the individual

Algorithm 3 Ant Lion optimizer algorithm
1: Initialize the random solutions

2: Calculate the fitness function
3: Find the best antlions and assume it as the

optimal so far
4: while the termination criterion is not reached

do
5: for each solution (ant)

do
6: Select an antlion using Roulette wheel

7: Update the perimeters > and �

8: Create a random walk normalize the
chosen random walk

9: If ?¡ = A� then

10: Update the current solution by
using Eq. (15)

11: else if ? = A� then

12: Update the current solution by
using Eq. (23)

13: If ?¡ = A� then

14: Update the current solution by
using Eq. (23)

15: Calculate the fitness function of all
solutions using Eq. (13)

16: Replace an antlion (new solution) with
its corresponding ant (current) if
becomes fitter.

17: Update the current best solution if an
antlion becomes fitter than the old best.

18: return Thebestsolution(elite)

These servers are managed by cloud service
providers and provide the resources necessary to
host applications and services. They can include

globally distributed data centers to ensure
availability and redundancy.

Users and developers mainly interact with the
upper layers (Client, Application, and Platform),
while cloud service providers manage the
underlying infrastructure (Cloud Infrastructure
and Servers).

This hierarchical approach facilitates the
management and scalability of cloud services,
allowing users to focus on application development
and deployment without worrying about managing
physical infrastructure.

3 Unique Challenges and
Opportunities in Cloud
Task Scheduling

The dynamic and distributed environment of cloud
computing poses several challenges and
opportunities when it comes to efficient task
scheduling. Task scheduling policies and schemes
have direct impacts on effective resource utilization
and user task efficiency in the cloud.

Consequently, achieving optimal scheduling
and allocation of user tasks remains a very
important issue in the field of cloud computing [2].

Below, we will explore some of the most
important aspects that professionals in the field
propose to address to optimize the performance
and effectiveness of task scheduling in this
innovative environment. Among the challenges
identified are:

− Variability in Resources: The shared nature
of cloud resources introduces variability in
virtual machine performance and resource
availability. Task scheduling must be able to
adapt to these fluctuations to ensure
efficient execution.

− Network Latency: The geographic distribution
of data centers and reliance on cloud services
can lead to significant network latencies.
Minimizing the impact of latency on task
scheduling becomes a critical challenge.

− Dynamic Elasticity: The ability to scale
resources on demand is essential in the cloud.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Jessica González-San-Martín, Laura Cruz-Reyes, Bernabé Dorronsoro, et al.786

ISSN 2007-9737

However, effectively implementing dynamic
elasticity without compromising performance
presents specific challenges.

− Coordination and Communication: Effective
coordination between distributed tasks and
efficient management of communication
between components are crucial aspects to
avoid bottlenecks and ensure smooth
execution of tasks. In the area of opportunities,
the following standout:

− Resource Optimization: Flexibility in cloud
resource allocation provides opportunities to
optimize resource utilization, reducing costs
and improving energy efficiency.

− Orchestration Services: The increasing
availability of orchestration services, such as
Kubernetes, offers opportunities to simplify the
management and coordination of
distributed tasks.

− Predictive Analysis: Predictive analytics
based on historical data can be used to
anticipate load patterns and improve decision-
making in task scheduling, thereby
optimizing performance.

− Intelligent Automation: Applying intelligent
automation techniques, such as machine
learning, can improve adaptive capacity and
real-time decision-making to address dynamic
cloud challenges.

Exploring these challenges and opportunities
will provide a more complete view of the critical
aspects to consider when designing effective task
scheduling strategies in the cloud
computing environment.

4 Innovative Strategies
and Techniques

Research in cloud task scheduling has
experienced notable advances in the last decade,
highlighting innovative strategies and advanced
techniques. From 2019 to the present, numerous
studies have explored and refined approaches to
optimize task allocation in cloud computing
environments, creatively addressing changing
challenges. In this section, we present a summary
of the most recent works in the literature, covering
the period from 2019 to the present, and
highlighting the strategies used by each.

With a total of 26 studies selected, an important
shift towards multi-objective strategies instead of a
single objective is highlighted. This change reflects
the complexity of cloud environments, where
optimizing a single objective may not be enough.
Considering multiple performance metrics
becomes essential for more adaptable and
efficient solutions.

Next, we present works that adopt this multi-
objective approach, highlighting the importance of
considering multiple performance criteria in cloud
task scheduling.

Table 1. Most commonly used performance metrics in
cloud task scheduling

Performance
metric

Definition

Makespan
The total time from start to
completion of all scheduled
tasks.

Throughput
The number of tasks
completed per unit of time.

Latency
The time a task takes from
request to completion.

Resource
utilization

The proportion of resources
(CPU, memory, etc.) used
during task execution.

Resource
allocation

The system's ability to allocate
resources in an equitable and
optimized manner.

Cost

The total expenditure
associated with the execution
of tasks, considering factors
such as the cost of
infrastructure and energy.

Load balancing
The equitable distribution of
the workload among available
resources.

Energy efficiency
The system's ability to perform
tasks with the lowest possible
energy consumption.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Advancing Cloud Task Scheduling: RecentDevelopments and Comparative Insights 787

ISSN 2007-9737

We seek to offer a comprehensive view of the
latest innovations, emphasizing the effectiveness
of multi-objective approaches in this context.

Pang, 2019 [3]

– Algorithm: EDA-CG

– Year: 2019

– Strategy/Technique: Estimation of distribution
algorithm (EDA) and genetic algorithm (GA).

– No. Objectives: 2

– Objectives: Makespan and load balancing.

Langhnoja and Joshiyara, 2019 [4]

– Algorithm: Multi-objective based Integrated
Task scheduling.

– Year: 2019

– Strategy/Technique: A ranking method to find
the best possible solution.

– No. Objectives: 3

– Objectives: Makespan, cost, and
load balancing.

Abdullahi et al., 2019 [5]

– Algorithm: CMSOS

– Year: 2019

– Strategy/Technique: Chaotic optimization
strategy and chaotic local search strategy are
applied to Pareto Fronts.

– No. Objectives: 2

– Objectives: Makespan and cost.

Abdullah et al., 2019 [6]

– Algorithm: MOPSO and MOPSO_SI

– Year: 2019

– Strategy/Technique: Multi-Objectives PSO
(MOPSO) and MOPSO with Importance
Strategy (IS).

– No. Objectives: 3

– Objectives: Makespan, cost, and
load balancing.

Li and Han, 2020 [7]

– Algorithm: ����

– Year: 2020

– Strategy/Technique: Hybrid discrete artificial
bee colony (ABC) algorithm and permutation-
based encoding method.

– No. Objectives: 3

– Objectives: Makespan, device workload, and
total workloads.

Cai et al., 2020 [8]

– Algorithm: MaOEA-SIN

– Year: 2020

– Strategy/Technique: Many-objective intelligent
algorithm with sine function.

– No. Objectives: 6

– Objectives: Makespan, cost, throughput,
energy, resource utilization, and
balancing load.

Singh et al., 2020 [9]

– Algorithm: CPO-MTS

– Year: 2020

– Strategy/Technique: Crow Search optimization
Algorithm (CSA) and the Penguin Search
Optimization Algorithm (PeSOA).

– No. Objectives: 4

– Objectives: Load balancing, resource
utilization, makespan, and Quality of Service.

Abualigah and Diabat, 2021 [10]

– Algorithm: MALO

– Year: 2021

– Strategy/Technique: Hybrid antlion
optimization algorithm with elite-based
differential evolution.

– No. Objectives: 3

– Objectives: Makespan, response time (CPU),
and resource utilization.

Guo, 2021 [11]

– Algorithm: Fuzzy self-defense algorithm

– Year: 2021

– Strategy/Technique: Fuzzy self-
defense algorithm.

– No. Objectives: 3

– Objectives: Makespan, load balancing,
and cost.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Jessica González-San-Martín, Laura Cruz-Reyes, Bernabé Dorronsoro, et al.788

ISSN 2007-9737

Emara et al., 2021 [12]

– Algorithm: G-MOTSA

– Year: 2021

– Strategy/Technique: Modified genetic
algorithm (GA).

– No. Objectives: 6

– Objectives: Makespan, throughput, scheduling
length, resource utilization, energy, and
imbalance degree.

Kruekaew and Kimpan, 2022 [13]

– Algorithm: MOABCQ

– Year: 2022

– Strategy/Technique: Hybrid artificial bee
colony algorithm with reinforcement learning.

– No. Objectives: 3

– Objectives: Makespan, cost, and
resource utilization.

Mahmoud et al., 2022 [14]

– Algorithm: TS-DT

– Year: 2022

– Strategy/Technique: Multi-objective task
scheduling algorithm is proposed based on the
decision tree.

– No. Objectives: 3

– Objectives: Makespan, resource utilization,
and load balancing.

Mangalampalli et al., 2022 [15]

– Algorithm: CSO

– Year: 2022

– Strategy/Technique: Cat Swarm
Optimization algorithm.

– No. Objectives: 4

– Objectives: Makespan, migration time, energy,
and cost.

Mangalampalli et al., 2023 [16]

– Algorithm: MOTSGWO

– Year: 2023

– Strategy/Technique: Grey wolf
optimization algorithm.

– No. Objectives: 3

– Objectives: Makespan, migration time,
and energy.

Cui et al., 2023 [17]

– Algorithm: MO-MFO

– Year: 2023

– Strategy/Technique: Evolutionary multi-
factorial optimization algorithm.

– No. Objectives: 3

– Objectives: Makespan, cost, and
load balancing.

Chandrashekar et al., 2023 [18]

– Algorithm: HWACO

– Year: 2023

– Strategy/Technique: Hybrid Weighted Ant
Colony Optimization algorithm.

– No. Objectives: 2

– Objectives: Makespan and cost.

Agarwal et al., 2023 [19]

– Algorithm: HGA-ECS

– Year: 2023

– Strategy/Technique: Integration of Genetic
Algorithm (GA) and Energy Conscious
Scheduling (ECS) model.

– No. Objectives: 3

– Objectives: Makespan, energy consumption,
and optimization of task scheduling
over processors.

Mangalampalli et al., 2023 [20]

– Algorithm: MOTSWAO

– Year: 2023

– Strategy/Technique: Whale
Optimization Algorithm.

– No. Objectives: 2

– Objectives: Makespan and
energy consumption.

Malti et al., 2023 [21]

– Algorithm: Hybrid Multi-objective
Optimization Algorithm.

– Year: 2023

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Advancing Cloud Task Scheduling: RecentDevelopments and Comparative Insights 789

ISSN 2007-9737

– Strategy/Technique: Combination of flower
pollination behavior and grey wolf optimizer
strategy for task scheduling optimization.

– No. Objectives: 4

– Objectives: Makespan, resource utilization,
degree of imbalance, and maximization of
throughput in heterogeneous IaaS
cloud environments.

Pirozmand et al., 2023 [22]

– Algorithm: IPSO

– Year: 2023

– Strategy/Technique: Multi-adaptive learning
strategy to shorten the execution time of the
original PSO algorithm.

– No. Objectives: 3

– Objectives: Makespan, load balancing and
execution time.

Khan, 2024 [23]

– Algorithm: HLFO

– Year: 2024

– Strategy/Technique: Convolutional and
Recurrent Neural Networks in a deep learning
model for load calculation, Reinforcement
Learning with a Hybrid Lyrebird Falcon
Optimization (HLFO) algorithm.

– No. Objectives: 4

– Objectives: Makespan, energy consumption,
resource utilization and Quality of
Service (QoS).

Sabat et al., 2024 [24]

– Algorithm: Adaptive PSO-ACO

– Year: 2024

– Strategy/Technique: Adaptive particle swarm
optimization (PSO) and ant colony
optimization (ACO).

– No. Objectives: 3

– Objectives: Cost, makespan and
execution time.

Gupta and Singh, 2024 [25]

– Algorithm: WOA-Scheduler

– Year: 2024

– Strategy/Technique: Whale
Optimization Algorithm.

– No. Objectives: 3

– Objectives: Cost, makespan and
load balancing.

Ciptaningtyas et al., 2024 [26]

– Algorithm: Improved Squirrel Search Algorithm
(SSA)

– Year: 2024

– Strategy/Technique: Integration with
Opposition Based Learning (OBL) method to
address premature convergence.

– No. Objectives: 3

– Objectives: Makespan, throughput, and
resource utilization.

Nithiavathy et al., 2024 [27]

– Algorithm: AGDESMA

– Year: 2024

– Strategy/Technique: Slime Mould Algorithm
(SMA) and Adaptive Guided Differential
Evolution (AGDE).

– No. Objectives: 2

– Objectives: Makespan and cost.

Behera and Sobhanayak, 2024 [28]

– Algorithm: Hybrid GA-GWO

– Year: 2024

– Strategy/Technique: Grey Wolf Optimization
Algorithm (GWO) and the Genetic
Algorithm (GA).

– No. Objectives: 3

– Objectives: Makespan, cost and
energy consumption.

5 Critical Examination of State-of-the-
Art Methods

The previous section has provided an overview of
the most recent works in cloud task scheduling,
highlighting innovative strategies and advanced
techniques used by various researchers. Now, we
will delve into a critical analysis focused on the
three most representative works in this collection.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Jessica González-San-Martín, Laura Cruz-Reyes, Bernabé Dorronsoro, et al.790

ISSN 2007-9737

Each of these studies has contributed to the
evolution of methods and approaches in task
allocation optimization. We will break down in
detail the techniques used, and the algorithms
implemented by these selected works.

By critically examining these notable studies,
we seek to provide an in-depth understanding of
the key contributions that have driven the current
state of the art in cloud task scheduling. This
analysis will not only illustrate the strengths and
limitations of each approach but will also establish
a solid framework for understanding the broader
landscape of research in this dynamic and
constantly evolving field.

5.1 Hybrid Multi-Objective Artificial Bee
Colony Algorithm

Li and Han [7] proposed an algorithm called ���� ,
a hybrid and improved version of the artificial bee
colony (ABC) algorithm. In this approach, the initial
problem is modeled as a hybrid flow shop
scheduling (HFS) problem, addressing both single
and multiple objectives. In the context of multi-
objective HFS problems, three objectives are
simultaneously considered: minimizing the
makespan, the maximum workload on the device,

and the total workloads on all devices. The scope
of the algorithm extends to two distinct types of
HFS: those with identical parallel machines and
those involving unrelated machines. The proposed
approach incorporates three categories of artificial
bees, namely employed, observer, and scout bees,
similar to the classical ABC scheme.

Each solution is represented by a string of
integers. To adapt to the particularities of the
problem, various perturbation structures are
explored, and designed to improve the search
capabilities of the algorithm.

The inclusion of an improved version of the
adaptive perturbation structure in the proposed
algorithm stands out, which seeks to effectively
balance the exploitation and exploration capacity
during the optimization process. A simple but
highly effective selection strategy, along with an
updated approach, is implemented to enhance the
exploitation process.

To further intensify mining capabilities, a deep
mining operator is introduced. In addition, an
improved version of the scout bee is introduced
that uses various local search methods to find the
best food source or abandoned solution. This
approach significantly contributes to improving the
convergence ability of the proposed algorithm.

Table 2. Results obtained in [7] for the different objectives that ����addresses

Problem
BCDE

FG FH FI Fitness Value Average Makespan Time (s)

1 23+ 19 119.65 41.13+ 23+ 1.25

2 297+ 193.6 1642.7 535.12+ 297+ 0.53

Table 3. Results comparison presented in [7] of ���� algorithm against other approaches in the literature in terms

of makespan

Problem
BCDE AIS SFLA EDA

FG Average Makespan FG Average FG Average. FG Average

1 23+ 23+ 27 27 24 24 23 23.4

2 297+ 297+ - - 297 307.3 297 297.4

Table 4. Parameter settings for cloud simulation [8]

Cloud Mips Cost Bandwidth Transmission

Cloud1 300-450 0.03 1024-2048 0.01

Cloud2 500-1000 0.06 2048-3072 0.02

Cloud3 1500-2000 0.09 3072-4096 0.03

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Advancing Cloud Task Scheduling: RecentDevelopments and Comparative Insights 791

ISSN 2007-9737

The effectiveness of the algorithm is tested
using widely recognized benchmark instance sets,
and performance verification of the proposed
algorithm is performed.

5.2 Many-Objective Intelligent Algorithm with
Sine Function

Cai et al. [8] developed a multi-objective distributed
programming model that covers six objectives:
total time, cost, cloud performance,
energy consumption, resource utilization, and
load balancing.

Furthermore, they introduced an intelligent
multi-objective algorithm with a sine function to
implement this model, called MaOEA-SIN. This
algorithm considers the variation trend of the
diversity strategy in the population, modeling it in
an analogous way to the sine function.

The experimental results show outstanding
programming efficiency, which contributes to
improving security. This work presents a new
perspective to address the challenging problem of
data processing in the Internet of Things.

5.3 Multi-Objective Optimization Method using
Hybrid Antlion Optimizer Algorithm

Abualigah and Diabat [10] introduced an innovative
algorithm, called MALO, that combines antlion
optimization with elite-based differential evolution
to solve multi-objective task scheduling problems
in cloud computing environments. In this method,
the multi-objective nature of the problem arises
from the need to minimize the makespan and
maximize the resource utilization simultaneously.

The antlion optimization algorithm was
improved by incorporating elite-based differential
evolution as a local search technique. This
approach improves the exploitability of the
algorithm and prevents the possibility of getting
trapped in local optima. The obtained results
revealed that MALO outperformed other well-
known optimization algorithms.

Notably, MALO showed faster convergence
compared to other approaches when applied to
larger search spaces, positioning it as a suitable
option to address large-scale programming
problems. In addition, a statistical analysis was
carried out using �-tests, evidencing a significant
improvement in the results obtained by MALO. The
comprehensive evaluation of leading methods in
cloud task scheduling reveals a diversity of
innovative approaches and advanced strategies.

The three works examined have proven to be
pioneers in the development of efficient and
effective solutions to the challenges inherent in this
dynamic field. Together, these works have not only
contributed significantly to the current state of the
art in cloud task scheduling but also provided
valuable insights and foundations for future
research in this dynamic and challenging field.

6 Performance Metrics and
Benchmarks

In the dynamic and challenging realm of Cloud
Task Scheduling, accurate evaluation of algorithm
performance becomes a crucial component for
efficient solution development and deployment. To
carry out this evaluation, an essential set of tools is
used: performance metrics and benchmarks.

Table 5. Numerical analysis of different algorithms vs MaOEA-SIN with six objectives [8]

Algorithm
Total time (Min) Cost (Min) Throughput (Max) L. Balancing (Min) RU (Max) Energy (Min)

Average

NSGA-III 5.2260x105 9.8234 x105 3.9296 x10-4 2.6874 x107 6.7570 x10-1 3.5439 x104

VaEA 3.8351x105 7.7333 x105 3.8251 x10-4 2.2864 x107 7.9762 x10-1 2.7588 x104

GrEA 4.7793 x105 8.6360 x105 3.7990 x10-4 2.6619 x107 7.3459 x10-1 3.3846 x104

Two_Arch2 4.7032 x105 9.8155 x105 3.8555 x10-4 2.5797 x107 7.3034 x10-1 3.3580 x104

KnEA 4.5334 x105 9.0127 x105 4.0737 x10-4 2.5005 x107 7.3168 x10-1 3.2529 x104

MaOEA-SIN 2.9254 x105 5.4047 x105 4.0393 x10-4 1.9016 x107 9.2716 x10-1 2.1341 x104

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Jessica González-San-Martín, Laura Cruz-Reyes, Bernabé Dorronsoro, et al.792

ISSN 2007-9737

These tools provide the foundation upon which
researchers and developers can measure,
compare, and continually improve the performance
of cloud task scheduling algorithms.

6.1 Performance Metrics

Performance metrics play an essential role in
evaluating and improving algorithms. These
measures quantify the effectiveness and efficiency
of an algorithm by providing objective information
about its performance on various tasks.

Using performance metrics, developers and
data scientists can evaluate effectiveness,
compare algorithms, optimize parameters,
diagnose problems, and perform sensitivity
analysis, among other actions [29].

In the context of cloud computing, various
performance metrics have been used to evaluate
the efficiency and effectiveness of the algorithms
used, offering detailed insight into system
performance, and assisting developers in making
informed decisions. Below, Table 1 presents some
of the most used performance metrics in Cloud
Task Scheduling.

6.2 Benchmarks

Test instances or benchmarks are collections of
data created for the specific purpose of evaluating
and testing algorithms. The use of instances in the
evaluation of algorithms in Cloud Task Scheduling
provides a structured and objective framework to
analyze and improve the performance of solutions
in a dynamic and distributed environment.

These instances provide an accurate
representation of real-world challenges and
scenarios, allowing developers to make informed
decisions and refine their approaches.

There are different sets of instances widely
used for the evaluation of Cloud Task Scheduling
algorithms. Some notable examples include:

– Google Cluster-Trace Dataset (GoCJ) [30]:
GoCJ provides real traces of jobs and tasks
executed on Google clusters. It contains
valuable insights into the variability and
dynamics of work in large-scale
cloud environments.

Fig. 2. Comparison of performance presented in [8] of
different algorithms on six objectives

Table 6. CloudSim test settings [10]

Element Parameter Values

Datacenter No. of datacenter 2

Cloudlet
No. of cloudlets 100-1000

Length 1000-2000

Virtual
machine

RAM 512 MB

MIPS 100-1000

Size 10000

Bandwidth 1000

Policy type
Time

Shared

No. of CPUs 1

Host

No. of Hosts 2

RAM 2048 MB

Storage 1 million

Bandwidth 10000

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Advancing Cloud Task Scheduling: RecentDevelopments and Comparative Insights 793

ISSN 2007-9737

– NASA Ames iPSC/860 [31]: This set of
instances is based on execution traces of
scientific applications on the NASA Ames
Research Center iPSC/860 supercomputer.
Provides realistic data on scientific workloads in
high-performance environments.

– HPC2N-2002 [32]: Derived from execution
traces at the High-Performance Computing
Center North (HPC2N) in Sweden in 2002.
Contains information about the execution of
jobs on a high-performance cluster.

– CEC 2005 Benchmark Functions [33]: Although
most associated with benchmarking functions
for optimization algorithms, the CEC 2005
instance set is also used in some cases to
evaluate Cloud Task Scheduling algorithms.

These instance sets are used by the research
community to evaluate and compare Cloud Task
Scheduling algorithms in various contexts. Each
data set presents specific characteristics that allow
different aspects of performance in cloud
computing environments to be simulated
and analyzed.

On the other hand, there is CloudSim [34],
which is a simulation framework that provides sets
of simulated instances for the evaluation of cloud
task scheduling algorithms. It allows you to create
simulated cloud environments for performance
evaluations. Programmers can generate tasks,
virtual machines, and hosts randomly and with
different characteristics.

CloudSim is widely used by researchers to
evaluate their algorithms in different generated
environments.

7 Study Cases and Future Directions

In this section, we present a detailed analysis of
case studies that highlight the practical
applications and results obtained by the three
selected approaches: ���� [7], MaOEA-SIN [8],
and MALO [10]. We will mention the instances
used in their experiments, as well as the conditions
under which they were carried out and the
results obtained.

Through this case study analysis, we seek to
provide a deeper understanding of the
performance of these algorithms in real-world
situations, considering different data sets and
application scenarios. Furthermore, we will outline
possible future directions that arise from the
lessons learned and the results obtained, thus
helping to guide subsequent research in task
scheduling in cloud computing environments.

Fig. 3. Degree of imbalance of scheduling algorithms
presented in [10]

Fig. 4. The average makespan values for executing
small and large tasks [10]

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Jessica González-San-Martín, Laura Cruz-Reyes, Bernabé Dorronsoro, et al.794

ISSN 2007-9737

7.1 Study Cases

Li and Han Li and Han compared their proposed
���� [7] against three different algorithms from the
literature: EDA (Wang et al. [35]), AIS (Liu et al.
[36]), and SFLA (Xu et al. [37]). For the
experimentation, they used a computer with a 3.3
GHz Intel Core i5 processor and 4 GB memory.

To test the performance of the algorithms in a
multi-objective environment, they selected as
instances two unrelated real machine HFS
problems from [35] to make the problem more like
reality in a cloud system.

The results obtained by ���� are presented in
Table 2 and 3 revealing the following highlights:

1 When analyzing the comparison of results for
each instance, superior performance by the
algorithm is evident.

2 In terms of the average value of makespan, the
computational results generated by the
algorithm match the optimal values for each
instance on average, thus underlining the
robustness of ���� .

3 Considering the calculation times used in the
test instances, the ���� algorithm also exhibits
superior performance.

The ���� algorithm according to Li and Han [7]
stands out for its competitive performance against
various efficient algorithms. This success is based
on the introduction of eight meticulously designed
disturbance structures to improve exploitation

Fig. 5. The CPU time(s) of the task scheduling
algorithms for the synthetic datasets [10]

Fig. 7. The CPU time(s) of the task scheduling algorithms
for solving the NASA Ames datasets [10]

Fig. 6. The CPU time(s) of the task scheduling
algorithms for solving the HPC2N Seth datasets [10]

Fig. 8. The degree of imbalance of the tasks scheduling
optimization algorithms using the HPC2N Seth
datasets [10]

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Advancing Cloud Task Scheduling: RecentDevelopments and Comparative Insights 795

ISSN 2007-9737

capacity, the use of an improved deep exploitation
observer bee mechanism to intensify local search,
the implementation of an adaptive perturbation that
balances exploitation and exploration, and a
specific approach for scout bees that boosts the
convergence capacity of the algorithm.

Cai et al. [8] conducted their experiments
through the simulation of three clouds with different
characteristics, the main difference is the Mips
execution speed and the cost. The execution cost
of the first cloud is cheaper, but the execution
speed is slower and takes longer, which is suitable
for smaller tasks. The second cloud has a relatively
medium execution speed and execution cost.

The third cloud has a faster execution speed,
but the cost also becomes high, suitable for
performing larger tasks. Table 4 presents the
detailed parameter settings of the simulated
clouds. The experimentation was carried out by
generating 300 tasks with an initial length of 500
million instructions (MI), the file size is 200 KB and
the output file size is 100 KB. Then each task
gradually increases with a trend of 500 MI, 10 KB,
and 10 KB respectively.

The comparison of the MaOEA-SIN algorithm
was carried out against five algorithms from the
literature: NSGA-III, VaEA, GrEA, Two_Arch2, and
KnEA. The study evaluated the performance of the
MaOEA-SIN algorithm in a multi-cloud model by
comparing six objective values.

The best, worst, and average solutions were
selected based on the performance of these
values. Table 5 presents six objectives: Total time,

cost, cloud throughput, load balancing, resource
utilization (RU) and Energy consumption, for six
different approaches.

The average results presented in Table 5,
indicate that MaOEA-SIN outperforms GrEA in
cost, although it shows inferior performance in the
cloud throughput objective. MaOEA-SIN stands
out for its excellent average performance,
demonstrating strong convergence.

Figure 2 shows the distribution of the data in the
form of a box plot. Looking at the upper quartile,
the median, and the lower quartile, the MaOEA-
SIN algorithm has better convergence and
distribution for six objectives. Convergence is
reflected in the fact that the midline values are all
optimal values in each objective.

The distribution is reflected in the fact that the
MaOEA-SIN algorithm has more dispersed points.
In summary, the performance of the MaOEA-SIN
algorithm is superior to that of other algorithms. To
validate the effectiveness of the MALO algorithm,
Abualigah and Diabat [10] present two series of
experiments using synthetic datasets and real
trace datasets.

For the first set of instances, the Cloudsim
environment was used, which is a set of tools to
imitate cloud computing scenarios [34], because
the investigation of new procedures or approaches
in the real cloud computing ecosystem is usually
limited by solid foundations, such as protection,
security, speed and the high cost of money if
experiments are carried out.m Therefore, it is
difficult to conduct such research in repeatable,
reliable, and scalable ecosystems (environments)
using real world cloud environments [10].

For experimentation, they built two data centers
within CloudSim, each with two hosts. Each host
has 20 GB of RAM (one host is a dual-core
machine and the other is a quad-core machine)
and one TB of memory storage.

Each host has a collective processing power of
one million MIPS. Several virtual machines were
designed with different distributions generated
such as 100, 200, 300, 400, 500, 600, 700, 800,
900, 1000, and 2000 instances. The CloudSim
configuration is presented in Table 6. The MALO
algorithm is compared against seven approaches
from the literature: (Genetic Algorithm (GA) [38],
Discrete Symbiotic Organism Search (DSOS)
Algorithm [39], Hybrid Moth Search Algorithm

Fig. 9. The degree of imbalance of the tasks scheduling
optimization algorithms using the NASA Ames
datasets [10]

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Jessica González-San-Martín, Laura Cruz-Reyes, Bernabé Dorronsoro, et al.796

ISSN 2007-9737

(MSDE) [40], Particle Swarm Optimization (PSO)
Algorithm [41], Whale Optimization Algorithm
(WOA) [42], Moth Search Algorithm (MSA) [43],
and Antlion Optimizer (ALO) Algorithm [44]).

Figure 3 presents the results obtained by the
algorithms in terms of the degree of imbalance
(DI), this metric shows us how equitably the tasks
are distributed in the different resources. A lower
degree of imbalance translates to a better use of
resources and here we can see that MALO obtains
the best DI compared to the other algorithms.

On the other hand, Figure 4 shows the average
makespan values obtained by the algorithms for
small and large tasks. The MALO algorithm
reduced the value of makespan in all task cases. It
is concluded that the value of the makespan
increases slowly as the size of the tasks increases.

The average value of makespan when using
the modified optimization algorithms is better than
traditional optimization algorithms [10]. Meanwhile,
the average time interval of the MALO algorithm is
smaller than that of other comparative methods.
Figure 5 displays the response times (CPU)
achieved by different task scheduling algorithms
(GA, DSOS, MSDE, PSO, WOA, MSA, ALO, and
the proposed MALO).

It is highlighted that MALO achieved minimum
response times to solve problems of various sizes
compared to the other methods, indicating a
significant improvement in the efficiency of the
algorithm. Specifically, for a task size of 600, the
PSO algorithm recorded the lowest response time
compared to other methods. For evaluation results
of real trace datasets Abualigah and Diabat used
the NASA Ames dataset [32] and the HPC2N Seth
dataset [33].

Figures 6 and 7 present the response times
(CPU) of various task scheduling algorithms (GA,
DSOS, MSDE, PSO, WOA, MSA, ALO, and
MALO) when performing tasks with real trace data
sets. In Figure 6, MALO manages to almost reach
the minimum response time for solving tasks of all
sizes compared to other methods, especially using
the HPC2N Seth datasets.

Similarly, in Figure 7, MALO stands out in
approaching the minimum response time for tasks
of all sizes, especially with the NASA Ames
datasets. The difference in algorithm response
times is evident across all task sizes, particularly
with the HPC2N Seth datasets, standing out over

other methods. Although the difference in
response times of the MALO algorithm across all
task sizes is not as clear compared to DSOS, an
overall improvement is observed that contributes to
the reduction in the time needed to find
optimal solutions.

The degree of imbalance results between the
MALO algorithm and other benchmark algorithms
are presented in Figures 8 and 9 for the HPC2N
Seth and NASA Ames datasets. MALO achieved a
higher load balance (lower degree of imbalance)
compared to the other methods. In almost all cases
of data sets (100-2000), MALO exhibited the
lowest degree of imbalance, highlighting its
superior performance compared to comparative
optimization algorithms.

This is reflected in a better balance between
virtual machines in all problem instances. bMALO
converged faster than the other approaches for
larger search spaces, making it suitable for large
scheduling problems.

7.2 Future Directions

Based on insights gained from case studies of
three prominent algorithms in Cloud Task
Scheduling [7,8,10], we identify promising
directions for future research and development.

1 Improvements in Hybrid Algorithms:

- Inspired by the success of ���� in introducing
innovative perturbation structures, there is
potential to explore new hybrid algorithms that
combine different optimization strategies for
improved performance.

- Investigating advanced exploitation
mechanisms and adaptive perturbation
strategies, as demonstrated in ���� , can be
crucial to address the constantly evolving
challenges in Cloud Task Scheduling.

2 Multi-Cloud Environments:

- Given the dynamic nature of cloud
environments, future studies could focus on
multi-cloud scenarios with variable execution
speeds and costs. This aligns with the
approach of Cai et al. by simulating three
clouds with different characteristics.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Advancing Cloud Task Scheduling: RecentDevelopments and Comparative Insights 797

ISSN 2007-9737

- Exploring adaptive algorithms capable of
dynamically adjusting to various cloud
configurations can improve the adaptability of
scheduling algorithms.

3 Real World Cloud Experiments:

- Bridging the gap between simulations and real-
world cloud environments remains a
challenge. Future research could explore
methodologies for conducting repeatable,
reliable, and scalable experiments in real-
world cloud ecosystems, considering factors
such as security, cost, and efficiency.

- Addressing the limitations associated with
real-world experiments would significantly
contribute to the practical applicability of the
proposed scheduling algorithms.

4 Expansion of Performance Metrics:

- Extending the set of performance metrics
beyond traditional objectives, such as
exploring energy efficiency, security, and
adaptability, can offer a more comprehensive
evaluation of scheduling algorithms.

- Investigating the impact of scheduling
decisions on the overall sustainability and
security of cloud systems would be a valuable
avenue for future research.

5 Optimization for Large-Scale Problems:

- The success of MALO in handling larger
search spaces suggests the need for
algorithms that can scale efficiently for large
programming problems.

- Future studies could explore optimization
techniques specifically designed to handle the
complexity and scale associated with task
scheduling in expansive cloud environments.

6 Dynamic Workloads and Task Characteristics:

- Adapting algorithms to accommodate dynamic
workloads and diverse task characteristics is
crucial. Future research could focus on
developing scheduling approaches capable of
dynamically adjusting to varying task
requirements and environmental conditions.

These future directions aim to guide
researchers and practitioners in advancing the field

of Cloud Task Scheduling, addressing emerging
challenges, and ensuring the continued evolution
of efficient and adaptive scheduling algorithms.

8 Conclusions

This comprehensive study explores Cloud Task
Scheduling, analyzing recent developments and
offering valuable comparative insights. The
importance of performance metrics and
benchmarks in the evaluation of algorithms is
highlighted, underlining their critical role in
continuous improvement.

We provide a comprehensive overview of the
latest work in the literature, highlighting the
richness of multi-objective approaches that seek to
simultaneously improve multiple performance
metrics. This shift toward more complex and
comprehensive strategies reflects the growing
awareness of the multifaceted and challenging
nature of cloud task scheduling.

Detailed analysis of case studies, including
���� , MaOEA-SIN and MALO, provide significant
insights into their strengths and areas for
improvement. The applicability and robustness of
these approaches are highlighted in multi-cloud
environments and with real data sets.

Promising future directions are identified, from
improvements in hybrid algorithms to adaptation to
real cloud environments and exploration of
additional metrics.

This article aims to contribute to the continued
growth of the field by providing an in-depth
overview of recent developments. We seek to
foster collaboration and dialogue in the academic
and professional community, paving the way for
future achievements in cloud task scheduling.

References

1. Wei, X. (2020). Task scheduling optimization
strategy using improved ant colony
optimization algorithm in cloud computing.
Journal of Ambient Intelligence and
Humanized Computing, pp. 1–12. DOI: 10.10
07/s12652-020-02614-7.

2. Madni, S. H. H., Abd Latiff, M. S., Coulibaly,
Y. (2016). Resource scheduling for

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Jessica González-San-Martín, Laura Cruz-Reyes, Bernabé Dorronsoro, et al.798

ISSN 2007-9737

infrastructure as a service (IaaS) in cloud
computing: Challenges and opportunities.
Journal of Network and Computer
Applications, Vol. 68, pp. 173–200. DOI: 10.10
16/j.jnca.2016.04.016.

3. Pang, S., Li, W., He, H., Shan, Z., Wang, X.
(2019). An EDA-GA hybrid algorithm for multi-
objective task scheduling in cloud computing.
IEEE Access, Vol. 7, pp. 146379–146389.
DOI: 10.1109/access.2019.2946216.

4. Langhnoja, H. K., Joshiyara, P. H. A. (2019).
Multi-objective based integrated task
scheduling in cloud computing. 3rd
International conference on Electronics,
Communication and Aerospace Technology.
DOI: 10.1109/iceca.2019.8821912.

5. Abdullahi, M., Ngadi, M. A., Dishing, S. I.,
Abdulhamid, S. M., Ahmad, B. I. (2019). An
efficient symbiotic organisms search algorithm
with chaotic optimization strategy for multi-
objective task scheduling problems in cloud
computing environment. Journal of Network
and Computer Applications, Vol. 133, pp. 60–
74. DOI: 10.1016/j.jnca.2019.02.005.

6. Abdullah, M., Al-Muta’a, E. A., Al-Sanabani,
M. (2019). Integrated MOPSO algorithms for
task scheduling in cloud computing. Journal of
Intelligent & Fuzzy Systems, Vol. 36, No. 2, pp.
1823–1836. DOI: 10.3233/jifs-181005.

7. Li, J., Han, Y. (2019). A hybrid multi-objective
artificial bee colony algorithm for flexible task
scheduling problems in cloud computing
system. Cluster Computing, Vol. 23, No. 4, pp.
2483–2499. DOI: 10.1007/s10586-019-
03022- z.

8. Cai, X., Geng, S., Wu, D., Cai, J., Chen, J.
(2021). A multicloud-model-based many-
objective intelligent algorithm for efficient task
scheduling in internet of things. IEEE Internet
of Things Journal, Vol. 8, No. 12, pp. 9645–
9653. DOI: 10.1109/jiot.2020.3040019.

9. Singh, H., Tyagi, S., Kumar, P. (2020). Crow–
penguin optimizer for multiobjective task
scheduling strategy in cloud computing.
International Journal of Communication
Systems, Vol. 33, No. 14, pp. e4467. DOI: 10.1
002/dac.4467.

10. Abualigah, L., Diabat, A. (2020). A novel
hybrid antlion optimization algorithm for multi-
objective task scheduling problems in cloud
computing environments. Cluster Computing,
Vol. 24, No. 1, pp. 205–223. DOI: 10.1007/
s10586-020-03075-5.

11. Guo, X. (2021). Multi-objective task
scheduling optimization in cloud computing
based on fuzzy self-defense algorithm.
Alexandria Engineering Journal, Vol. 60, No. 6,
pp. 5603–5609. DOI: 10.1016/j.aej.20
21.04.051.

12. Emara, F. A., Gad-Elrab, A., Sobhi, A.,
Raslan, K. R. (2021). Genetic-based multi-
objective task scheduling algorithm in cloud
computing environment. International Journal
of Intelligent Engineering and Systems, Vol.
14, No. 5, pp. 571–582. DOI: 10.22266/ijies20
21.1031.50.

13. Kruekaew, B., Kimpan, W. (2022). Multi-
objective task scheduling optimization for load
balancing in cloud computing environment
using hybrid artificial bee colony algorithm with
reinforcement learning. IEEE Access, Vol. 10,
pp. 17803–17818. DOI: 10.1109/access.2022.
3149955.

14. Mahmoud, H., Thabet, M., Khafagy, M. H.,
Omara, F. A. (2022). Multiobjective task
scheduling in cloud environment using
decision tree algorithm. IEEE Access, Vol. 10,
pp. 36140–36151. DOI: 10.1109/access.2022.
3163273.

15. Mangalampalli, S., Swain, S. K.,
Mangalampalli, V. K. (2021). Multi objective
task scheduling in cloud computing using cat
swarm optimization algorithm. Arabian Journal
for Science and Engineering, Vol. 47, No. 2,
pp. 1821–1830. DOI: 10.1007/s13369-021-
06076-7.

16. Mangalampalli, S., Karri, G. R., Kumar, M.
(2022). Multi objective task scheduling
algorithm in cloud computing using grey wolf
optimization. Cluster Computing, Vol. 26, No.
6, pp. 3803–3822. DOI: 10.1007/s10586-022-
03786-x.

17. Cui, Z., Zhao, T., Wu, L., Qin, A. K., Li, J.
(2023). Multi-objective cloud task scheduling
optimization based on evolutionary multi-factor
algorithm. IEEE Transactions on Cloud

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Advancing Cloud Task Scheduling: RecentDevelopments and Comparative Insights 799

ISSN 2007-9737

Computing, Vol. 11, No. 4, pp. 3685–3699.
DOI: 10.1109/tcc.2023.3315014.

18. Chandrashekar, C., Krishnadoss, P.,
Poornachary, V. K., Ananthakrishnan, B.,
Rangasamy, K. (2023). HWACOA scheduler:
Hybrid weighted ant colony optimization
algorithm for task scheduling in cloud
computing. Applied Sciences, Vol. 13, No. 6,
pp. 3433. DOI: 10.3390/app13063433.

19. Agarwal, G., Gupta, S., Ahuja, R., Rai, A. K.
(2023). Multiprocessor task scheduling using
multi-objective hybrid genetic algorithm in fog–
cloud computing. Knowledge-Based Systems,
Vol. 272, pp. 110563. DOI: 10.1016/j.knosys.
2023.110563.

20. Mangalampalli, S., Karri, G. R., Kose, U.
(2023). Multi objective trust aware task
scheduling algorithm in cloud computing using
whale optimization. Journal of King Saud
University - Computer and Information
Sciences, Vol. 35, No. 2, pp. 791–809. DOI:
10.1016/j.jksuci.2023.01.016.

21. Malti, A. N., Hakem, M., Benmammar, B.
(2023). A new hybrid multi-objective
optimization algorithm for task scheduling in
cloud systems. Cluster Computing. DOI:
10.1007/s10586-023-04099-3.

22. Pirozmand, P., Jalalinejad, H.,
Hosseinabadi, A. A. R., Mirkamali, S., Li, Y.
(2023). An improved particle swarm
optimization algorithm for task scheduling in
cloud computing. Journal of Ambient
Intelligence and Humanized Computing, Vol.
14, No. 4, pp. 4313–4327. DOI: 10.1007/
s12652-023-04541-9.

23. Khan, A. R. (2024). Dynamic load balancing in
cloud computing: optimized RL-based
clustering with multi-objective optimized task
scheduling. Processes, Vol. 12, No. 3, pp. 519.
DOI: 10.3390/pr12030519.

24. Sabat, N. R., Sahoo, R. R., Pradhan, M. R.,
Acharya, B. (2024). Hybrid technique for
optimal task scheduling in cloud computing
environments. TELKOMNIKA
(Telecommunication Computing Electronics
and Control), Vol. 22, No. 2, pp. 380. DOI:
10.12928/telkomnika.v22i2.25641.

25. Gupta, S., Singh, R. S. (2024). User-defined
weight based multi objective task scheduling in
cloud using whale optimization algorithm.
Simulation Modelling Practice and Theory, Vol.
133, pp. 102915. DOI: 10.1016/j.simpat.2024.
102915.

26. Ciptaningtyas, H. T., Shiddiqi, A. M.,
Purwitasari, D., Rosyadi, F. D., Fauzan, M.
N. (2024). Multi-objective task scheduling
algorithm in cloud computing using improved
squirrel search algorithm. International Journal
of Intelligent Engineering & Systems, Vol. 17,
No. 1.

27. Nithiavathy, R., Janakiraman, S., Priya, M.
D. (2023). Adaptive guided differential
evolution‐based slime mould algorithm‐based
efficient multi‐objective task scheduling for
cloud computing environments. Transactions
on Emerging Telecommunications
Technologies, Vol. 35, No. 1. DOI: 10.1002/
ett.4902.

28. Behera, I., Sobhanayak, S. (2024). Task
scheduling optimization in heterogeneous
cloud computing environments: a hybrid GA-
GWO approach. Journal of Parallel and
Distributed Computing, Vol. 183, pp. 104766.
DOI: 10.1016/j.jpdc.2023.104766.

29. González-San-Martín, J., Cruz-Reyes, L.,
Gómez-Santillán, C., Fraire, H., Rangel-
Valdez, N., Dorronsoro, B., Quiroz-
Castellanos, M. (2023). Comparative study of
heuristics for the one-dimensional bin packing
problem. Studies in Computational
Intelligence, pp. 293–305. DOI: 10.1007/978-
3-031-28999-6_19.

30. Hussain, A., Aleem, M. (2018). GoCJ: google
cloud jobs dataset for distributed and cloud
computing infrastructures. Data, Vol. 3, No. 4,
pp. 38. DOI: 10.3390/data3040038.

31. Feitelson, D. G., Nitzberg, B. (1995). Job
characteristics of a production parallel
scientific workload on the NASA Ames
iPSC/860. Lecture Notes in Computer
Science, pp. 337–360. DOI: 10.1007/3-540-
60153-8_38.

32. HPC2N. (n.d.). High performance computing
center north (HPC2N) is a national center for
scientific and parallel computing.
https://www.hpc2n.umu.se/.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Jessica González-San-Martín, Laura Cruz-Reyes, Bernabé Dorronsoro, et al.800

ISSN 2007-9737

33. Suganthan, P. N., Hansen, N., Liang, J. J.,
Deb, K., Chen, Y. P., Auger, A., Tiwari, S.
(2005). Problem definitions and evaluation
criteria for the CEC 2005 special session on
real-parameter optimization. KanGAL report,
pp. 1–50.

34. Calheiros, R. N., Ranjan, R., De-Rose, C. A.,
Buyya, R. (2009). CloudSim: A novel
framework for modeling and simulation of
cloud computing infrastructures and services.
ArXiv. DOI: 10.48550/ARXIV.0903.2525.

35. Wang, S., Wang, L., Liu, M., Xu, Y. (2013). An
enhanced estimation of distribution algorithm
for solving hybrid flow-shop scheduling
problem with identical parallel machines. The
International Journal of Advanced
Manufacturing Technology, Vol. 68, No. 9-12,
pp. 2043–2056. DOI: 10.1007/s00170-
013- 4819-y.

36. Liu, F., Zhang, X., Zou, F., Zeng, L. (2009).
Immune clonal selection algorithm for hybrid
flow-shop scheduling problem. Chinese
Control and Decision Conference. DOI:
10.1109/ccdc.2009.5194868.

37. Xu, Y., Wang, L., Zhou, G., Wang, S. (2011).
An effective shuffled frog leaping algorithm for
solving hybrid flow-shop scheduling problem.
Lecture Notes in Computer Science, pp. 560–
567. DOI: 10.1007/978-3-642-24728-6_76.

38. Zhang, L., Li, K., Li, C., Li, K. (2017). Bi-
objective workflow scheduling of the energy
consumption and reliability in heterogeneous
computing systems. Information Sciences,
Vol. 379, pp. 241–256. DOI: 10.1016/j.ins.
2016.08.003.

39. Abdullahi, M., Ngadi, M. A., Abdulhamid, S.
M. (2016). Symbiotic organism search
optimization based task scheduling in cloud
computing environment. Future Generation
Computer Systems, Vol. 56, pp. 640–650.
DOI: 10.1016/j.future.2015.08.006.

40. Elaziz, M. A., Xiong, S., Jayasena, K., Li, L.
(2019). Task scheduling in cloud computing
based on hybrid moth search algorithm and
differential evolution. Knowledge-Based
Systems, Vol. 169, pp. 39–52. DOI: 10.1016/j.
knosys.2019.01.023.

41. Zuo, X., Zhang, G., Tan, W. (2014). Self-
adaptive learning PSO-based deadline
constrained task scheduling for hybrid IaaS
cloud. IEEE Transactions on Automation
Science and Engineering, Vol. 11, No. 2, pp.
564–573. DOI: 10.1109/tase.2013.2272758.

42. Mirjalili, S., Lewis, A. (2016). The whale
optimization algorithm. Advances in
Engineering Software, Vol. 95, pp. 51–67. DOI:
10.1016/j.advengsoft.2016.01.008.

43. Wang, G. (2016). Moth search algorithm: A
bio-inspired metaheuristic algorithm for global
optimization problems. Memetic Computing,
Vol. 10, No. 2, pp. 151–164. DOI: 10.1007/
s12293-016-0212-3.

44. Mirjalili, S. (2015). The ant lion optimizer.
Advances in Engineering Software, Vol. 83,
pp. 80–98. DOI:10.1016/j.advengsoft.2015.
01.010.

Article received on 31/01/2024; accepted on 24/04/2024.
*Corresponding author is Jessica González-San-Martín.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 783–801
doi: 10.13053/CyS-28-2-5023

Advancing Cloud Task Scheduling: RecentDevelopments and Comparative Insights 801

ISSN 2007-9737

