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Abstract. In this paper, we study the dragonfly 
algorithm, an optimization method derived from the 
observation of nature and mathematical modeled after 
the swarming behavior of dragonflies. Xin-She Yang 
devised this approach, which has been applied to 
various optimization challenges. [1]. The algorithm 
effectively explores the search space by imitating 
dragonfly behaviors like hunting for prey, fleeing from 
predators, and swarming. The method consists in apply 
Type-1 Fuzzy Logic to some of the parameters of the 
algorithm, in this case, W and Betha to analyze the 
results applied to the mathematical functions F1 through 
F10 included in this paper, once that we have applied 
the adaptation of parameters, we will review the results 
compared with the rest of the papers that implement the 
same mathematical functions, so we can have a general 
idea if this method can be reliable. 

Keywords: Optimization, dragonfly algorithm, bio-
inspired, type-1 fuzzy logic. 

1 Introduction 

Search and optimization algorithms such as 
Particle Swarm Optimization (PSO), Differential 
Evolution (DE), Genetic Algorithm (GA), Firefly 
Algorithm (FA), and Dragonfly Algorithm (DA) have 
proven to be efficient in terms of speed and 
convergence for certain types of problems, so we 
expect the optimization algorithm to work efficiently 
applied to intelligent computing optimization 
problems. These algorithms are based on 
bioinspired principles and have been extensively 
studied and tested in scientific literature. 

The choice of a specific algorithm depends on 
the optimization problem in question and its 
characteristics. However, combining different 

search and optimization algorithms in an algorithm 
can further improve efficiency in terms of 
convergence speed and the quality of the solution 
obtained. Algorithms that combine different search 
and optimization strategies can take advantage of 
the strengths of each of the algorithms and 
overcome their limitations. 

In summary, an optimization algorithm 
combining PSO, DE, GA, and FA are expected to 
perform efficiently when applied to optimization 
problems due to its proven effectiveness in terms 
of speed of convergence in solving optimization 
problems. Where there are insects like dragonflies, 
fireflies, and damselflies, there are many more 
insects with the same similarities for hunting, 
reproduction, or in matters of movement on the 
entire ecosystem. 

Observing the behaviors and structures of 
organisms in nature often suggests they perform 
their functions exceptionally well.  Numerous 
studies have been conducted on this subject, 
including one by Xin-She Yang that began with 
publications pertaining to the firefly algorithm. The 
classification of many species of related insects will 
be reviewed in the following study [2]. 

Metaheuristics encompass broad strategies 
that skillfully blend different methodologies to 
navigate through the solution space. In design of 
optimization, the design objective can be as simple 
as maximizing production efficiency or minimizing 
production costs. An optimization algorithm is a 
technique that compares several solutions 
repeatedly until an ideal or feasible answer is 
identified. Currently, two types of optimization 
methods are frequently employed. 

To transition from one solution to the next, 
deterministic algorithms employ a set of rules. 
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These algorithms have been effectively 
employed to solve a variety of engineering design 
challenges [3].  

Since stochastic algorithms include 
probabilistic translation rules and a random nature, 
they may execute in a different sequence or 
produce a different outcome each time they are run 
with the same input. 

The layout of this article is outlined as follows: 
1. Introduction, where we provide a summary of the 
article's content; 2. Nature Inspiration the new 
optimization technique we offer is based on 
organic inspiration; 3. Literature review, which 
includes all the studies relevant to the topics of this 
article; 4. The presentation and implementation of 
the Dragonfly Algorithm (DA); 5. Type-1 fuzzy logic 
explanation, 6. Results, analysis, and comparison 
of the experiments performed; 7. Analytical 
conclusions and a summary of the investigation 
are described in this article. 

2 Nature Inspiration 

In some cultures, dragonflies were called kachi-
mushi (victorious insects) because they only fly 
forward, which gave them the character of those 
who never retreat and always move forward, 
whatever the circumstances.  

Thus, it became a symbol of strength, courage 
and determination. About 5,000 species of 
dragonflies are known and the algorithm is inspired 
by static behavior and dynamic behavior all 
dragonflies can move together to the same place 
for example a migration.  

In the following, we can review the life cycle of 
the dragonfly. 

The adult dragonfly starts to mate, after that, 
they will lay their eggs in or around the water eggs 
in the water, after the eggs will become a larva and 
after that the dragonfly will emerge. This can be 
appreciated in Fig 1.  

Based on these factors, it was suggested an 
algorithm that follows the model of insects and how 
they adjust to physiological changes by sharing 
resources and communicating to survive and grow. 
This algorithm was called "dragonfly". 

Natural optimization methods have proven to 
be adaptable, flexible, and efficient in handling 
practical problems. 

 

Fig. 1. The dragonfly cycle represents the steps the 
dragonfly must go through to become an 
adult dragonfly 

 

Fig. 2. The dragonfly patterns between individuals in 
the swarm 
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Algorithm 1 Dragonfly algorithm pseudocode 

Initialize Dragonfly population randomly 
Initialize Step vector/Size for dragonfly 

While (current iteration < maximum iteration) 
Calculate fitness values for each dragonfly. 
Update food sources and enemy. 
Update parameters �, �, �, �, � and �. 
Calculate �, �, 	 and 
. 
Update the neighboring radius. 

if dragonfly has at least one neighboring dragonfly. 
Update velocity and position. 

else 
Update position vector 

else if 

Check and correct the new positions based on the 
boundaries of variables. 

End While 

The fact that there is currently no optimization 
technique that can handle all problems is well 
recognized [5]. There are everyday issues that can 
be solved in business, economics, research, and 
other fields. There is a wide variety of optimization 
techniques, and some are more effective than 
others in solving specific problems. There are 
various metaheuristic optimization techniques, for 
example, Particle Swarm Optimization (PSO) [10], 
Artificial Colony Optimization (ACO) [8, 11], 
Artificial Bee Algorithm (ABC) [9], Firefly Algorithm 
(FA) [12], as well as other algorithms based on Hill 
climbing swarms [13], genetic algorithms (GA) [6], 
and different techniques based on trajectories. 
Differential evolution (DE) [14] and genetic 
programming (GP) [16] are examples of 
evolutionary algorithms. 

3 Study of Literature 

There are several social behaviors used in nature 
to carry out various tasks. Although survival is the 
goal of all individuals and collective actions, 
organisms collaborate and interact in groups for a 
variety of purposes, including hunting, defending, 
navigating, and foraging. 

Wolf packs, for example, have some of the 
best-structured social interactions for hunting. 
Wolves often follow a social hierarchy to pursue 
prey in various ways: chasing, circling, tormenting, 

and attacking. [17]. Holland authored a book 
detailing the development of genetic algorithms 
(GAs). De Jong concluded his research by 
showcasing the considerable potential and 
robustness of evolutionary algorithms across 
various objective functions, including those that are 
noisy, multimodal, or discontinuous [6]. To 
minimize their learning and prediction errors 
through iterative trial and error, artificial neural 
networks, support vector machines, and other 
machine learning approaches are genetic 
algorithms and can be considered a heuristic 
optimization methodology. 

In 1961 Van Bergeijk, W. A, Harmon, L. D. and 
Levinson, J. Z., and Harmon, L. D. proposed 
artificial neurons as simple information processing 
units [19, 20, 21]. 

Particle Swarm Optimization (PSO), an 
optimization method inspired by the collective 
intelligence of fish, birds, and even human beings, 
was created in 1995 by James Kennedy and 
Russell C. Eberhart [22, 23]. 

Table 1. Description of the algorithm parameters 

Parameter Description Values 

Population Population size 40 

Boundaries Number of boundaries 2 

Dimensions Dimension’s size 
8, 10, 16, 

32 

Iterations Iterations size 500 � Separation weight  � Alignment weight  	 Cohesion  
 Food factor  � Enemy factor  � Inertia weight  ��  Separation of the 
i=th individual 

 

�� Alignment of the 
i=th individual 

 

	� Cohesion of the 
i=th individual 

 


� Food source of the 
i=th individual 

 

�� Enemy position of the 
i=th individual 

 

t Current iteration  
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Table 2. CEC2013 math functions 

Fun Name Range Nature 

F1 Sphere [-5.12, 5.12] U 

F2 Rosenbrock [-5, 10] U 

F3 Griewank [-600, 600] M 

F4 Rastrigin [-5.12, 5.12] M 

F5 Ackley [-32.768, 32.768] M 

 
Fun Graph Equation 

1 

 

��� � � ���
�

���  

2 

 

��� � � �100����� � ����� � �� � 1�� �!�
���  

3 

 

��� � � ���4000�
��� � # cos '��√)* � 1�

���  

4 

 

��� � 10+ � �,��� � 10 cos2.���/�
���  

5 

 

��� � �� exp ⎝⎛�561+ � ���
�

��� ⎠⎞ � exp ⎝⎛
1+ 6� cos�����

��� ⎠⎞ � � � exp1� 

Fig. 4. Plots of five CEC2013 mathematical functions 
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With time, the PSO method has demonstrated 
its superiority over conventional algorithms and 
genetic algorithms in specific problem domains, 
though it may not be suitable for every scenario. 
There isn't a universal algorithm that excels in all 
optimization problems; hence, current research 
aims to identify the most effective and efficient 
algorithm(s) for particular tasks. D. H. Wolpert 
and W. G. 

Macready introduced the No-Free Lunch 
theorems to caution the scientific community that if 
algorithm A outperforms algorithm B for certain 
optimization functions, then B is likely to 
outperform A for other functions. [24]. Over time, 
researchers S. Nakrani and C. Tovey suggested 
the honey bee algorithm and its use as a foraging 
algorithm for problems including multimodal and 
dynamic optimization. [25]. 

 

Fig. 5 Type-1 fuzzy inference systems w parameter 

 

Fig. 6 Type-1 fuzzy inference systems beta parameter 

 

Fig. 7. Type-1 fuzzy inference systems beta parameter 
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The techniques were inspired by how actual 
bees feed in the nature. To identify spreaders 
utilizing a variety of targets, Amir S. and Ahman Z. 
developed the artificial bee colony (ABC) algorithm 
in 2020. [9]. Particle Swarm Optimization (PSO) 
and the Fire-fly Algorithm (FA), inspired by the 
flashing patterns of fireflies, were combined in a 
practical project undertaken by Khennak, I., Drias, 
H., and Drias, Y. [12]. 

Seyedali Mirjalili et al. proposed the Grey Wolf 
Optimizer (GWO) in 2013 [25], Inspired by grey 
wolves (Canis lupus), it imitates the natural 
leadership structure and hunting strategy of these 
canines. The Coyote Optimization Algorithm, 
which Juliano Pierezan and Leandro dos Santos 
Coelho created in 2018, is a population-based 
metaheuristic for optimization that draws 
inspiration from the canis latrans species [26]. 

In 2020, Abdolkarim Mohammadi-Balani and 
his team introduced their innovative Golden Eagle 
Optimizer algorithm, designed to adjust speed at 
different points along a spiral trajectory, mimicking 
the hunting behavior of golden eagles. [27]. 

Additionally, new metaheuristic algorithms that 
are better than others at solving a particular kind of 
problem will continue to be developed. 

4 Dragonfly Algorithm (DA) 

In nature, practically all other little insects are 
preyed upon by dragonflies, which are thought of 
as small predators. Additionally, nymph dragonflies 
eat other maritime insects and even small fish. The 
intriguing characteristic of dragonflies is their 
uncommon and unusual swarming behavior. 

Table 3. Comparison results for 30 dimensions of CMOA, DA and DA with Type-1 

Fun 
DA CMOA DA Type-1 

Mean Std dev Mean Std dev Mean Std dev 

F1 2.85E-18 7.16E-01 8.11E-09 4.79E-09 1.25E+00 2.88E+0 
F2 7.60E+00 6.79E+0 6.58E-09 3.32E-09 4.41E-01 4.79E-01 
F3 1.03E-02 4.69E-03 1.64E-09 1.39E-09 1.00E+01 5.15E+01 
F4 1.60E+01 9.48E+0 8.13E-09 4.42E-09 1.25E+00 1.55E+0 
F5 2.31E-01 4.87E-01 1.44E-09 1.21E-09 2.11E+02 3.21E+02 

 

Fig. 8. Display and convergence for function 1 

Table 4. Results for function 1 experiments 

500 Iterations 

40 Dragonflies 

Exp 8 Dim 10 Dim 16 Dim 32 Dim 

Ave 1.25E+00 4.09E+00 1.30E+02 1.53E+03 

Std 2.88E+00 1.19E+01 1.70E+02 6.96E+02 
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Only two things cause dragonflies to swarm: 
migration and hunting. Both are referred to as 
swarms—the former as a static (feeding) swarm 
and the latter as a dynamic (migratory) swarm. 

As already mentioned, the DA is an optimization 
technique that draws inspiration from the same-
named bug [28]. The static and dynamic 
characteristics of swarms serve as the primary 
source of inspiration for the DA algorithm. 

These two are extremely like the exploration 
and exploitation phases of metaheuristic 
optimization. The main goal of the exploration 
phase is for dragonflies to organize into sub-
swarms and fly in a static swarm over 
numerous locations. 

Certainly, during times of static swarming, it is 
observed that dragonflies tend to fly together in 
larger groups, all aligning their flight paths—a 
behavior that is notably advantageous, particularly 
during the exploitation phase. 

The primary goal of any swarm is survival, 
every member should be drawn to food sources 
and vigilant against external threats. 

As demonstrated on Fig. 2 the five essential 
factors that affect how individuals in swarms 
update their positions considering these two 
behaviors. Swarm behavior follows three 
important principles: 

1. Separation: Individual avoid static collision 
with neighbor: 

�9   �  � <=
9�� � <9. (1) 

2. Alignment: Individual velocity matched with 
neighbor individuals: 

��  �   � ?9.
=

9��  (2) 

3. Cohesion: Individual tendency toward center 
of the herd: 

	�   �   ∑ <9=9��  A �  <. (3) 

< : This represents the position of an individual, 
which typically denotes its current location or 
coordinates in each space. 

 

Fig. 9. Display and convergence for function 2 

Table 5. Results for function 2 experiments 

500 Iterations 

40 Dragonflies 

Exp 8 Dim 10 Dim 16 Dim 32 Dim 

Ave 4.43E-01 1.00E-07 3.79E+00 1.48E+01 

Std 4.71E-01 1.00E-07 1.55E+00 7.64E+00 

 

Fig. 10. Display and convergence for function 3 

Table 6. Results for function 3 experiments 

500 Iterations 

40 Dragonflies 

Exp 8 Dim 10 Dim 16 Dim 32 Dim 

Ave 2.69E+01 1.80E+02 1.46E+03 1.30E+04 

Std 5.08E+01 2.43E+02 1.70E+03 9.96E+03 

 

Fig. 11. Display and convergence for function 4 

Table 7. Results for function 4 experiments 

500 Iterations 

40 Dragonflies 

Exp 8 Dim 10 Dim 16 Dim 32 Dim 

Ave 1.24E+00 1.85E+00 9.17E+00 2.93E+01 

Std 1.52E+00 1.36E+00 5.81E+00 1.06E+01 
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?9 : This represents the velocity of an individual, 

which typically refers to the speed and direction at 
which it is moving. A: This represents the number of neighborhoods 
or groups of individuals in your system. It is 
essentially a parameter that determines how 
individuals are grouped or organized 
into neighborhoods. Attraction to food source 
is calculated: 


�  �  <�  �  <, (4) 

where: 

< : Is the position of the current individual, 

<�: Is the area of the food. 

Distraction from enemy is calculated: 

��  �  <!  �  <, (5) 

where:  

< : Is the position of the current individual, 

<!: Is the area of the enemy. 

In this research, dragonfly behavior is 
supposed to be a combination of these five 
corrective patterns. Two vectors are used to 
update the position of artificial dragonflies in a 
search space and replicate their movements: step 
(∆< )  and position (< ). The step vector represents 
the direction of the dragonfly movement and is 
described as follows: 

∆<D��  �  ��� � ��� � �	� � �
� � ���� � �∆<� , (6) 

where �  is the separation weight ��  representing 
) � Eℎ  individual's separation, �  represents the 
alignment weight, � represents ) � Eℎ the 
individual’s alignment, and �  represents the 
cohesion weight. 	�  is the ) � Eℎ  individual's 
cohesiveness, �  is the food factor, and 
�  is the 
) � Eℎ  individual's food supply, �  is the enemy 
factor, ��  is the ) � Eℎ  individual's position of 
enemy, �  is the inertia weight, and E  is the 
iteration timer, in Algorithm 1 we can see with more 
detail the pseudocode from dragonfly algorithm. 

Table 1 presents the names and concise 
descriptions of all the parameters applied in the 
Dragonfly algorithm. In the subsequent section of 
this paper, we provide the outcomes of the 
experimentation conducted in this study. 

 

Fig. 12. Display and convergence for function 5 

Table 8. Results for function 5 experiments 

500 Iterations 

40 Dragonflies 

Exp 8 Dim 10 Dim 16 Dim 32 Dim 

Ave 2.05E+02 3.51E+03 1.25E+04 1.88E+05 

Std 3.17E+02 1.67E+04 2.86E+04 1.88E+05 

 

Fig. 13. Display and convergence for function 6 

Table 9. Results for function 6 experiments 

500 Iterations 

40 Dragonflies 

Exp 8 Dim 10 Dim 16 Dim 32 Dim 

Ave 1.25E+00 2.76E+00 7.44E+01 1.50E+03 

Std 5.38E+00 4.87E+00 1.17E+02 1.22E+03 

 

Fig. 14. Display and convergence for function 7 

Table 10. Results for function 7 experiments 

500 Iterations 

40 Dragonflies 

Exp 8 Dim 10 Dim 16 Dim 32 Dim 

Ave 1.39E-02 2.73E-02 6.21E-02 5.83E-01 

Std 1.13E-02 2.13E-02 5.26E-02 3.27E-01 
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Table 2 outlines the titles of five mathematical 
functions from the CEC2013 dataset, along with 
their corresponding scopes and characteristics, 
which were utilized in our investigation. The Fig. 4 
presents graphical representations and 
mathematical equations for five out of the ten 
mathematical functions utilized in this study. 

5 Type-1 Fuzzy Logic 

Fuzzy logic, alternatively referred to as fuzzy sets 
theory, provides a mathematical framework for 
addressing reasoning and decision-making in 
scenarios characterized by uncertainty and 
imprecision. Unlike traditional binary logic where 

statements are either true or false, fuzzy logic 
allows for degrees of truth between 0 and 1, 
representing degrees of membership 
or truthfulness. 

This allows for more nuanced modeling and 
analysis, particularly in areas where precise 
boundaries are difficult to define. [29] Key 
Concepts of Fuzzy Logic: Fuzzy Sets: Fuzzy sets 
are a fundamental concept in fuzzy logic, 
introduced by Lotfi Zadeh in 1965. Unlike classical 
sets where an element either belongs to a set or 
does not, fuzzy sets allow for degrees 
of membership. 

In a fuzzy set, each element has a membership 
value that represents the degree to which the 
element belongs to the set. These membership 
values range between 0 and 1, where 0 indicates 
no membership, 1 indicates full membership, and 
values in between represent degrees of 
partial membership. 

Fuzzy sets are especially useful for modeling 
uncertainties and vagueness present in many real-
world systems. Membership Functions: 
Membership functions are mathematical functions 
that define the degree of membership of each 
element in a fuzzy set. 

These functions map each element from the 
universal set to a real number in the interval [0, 1]. 
There are various types of membership functions, 
such as triangular, trapezoidal, Gaussian, and 
sigmoidal, each suited for different applications 
and interpretations. 

The choice of membership function depends on 
the specific characteristics of the problem domain 
and the preferences of the modeler. Membership 
functions play a crucial role in fuzzy logic systems 
as they determine the degree to which fuzzy sets 
represent real-world phenomena. Fuzzy 
Operators: Fuzzy operators are mathematical 
operations defined on fuzzy sets that allow for 
combining and manipulating fuzzy information. 

These operators extend classical set operations 
such as union, intersection, and complement to 
accommodate the degrees of membership 
associated with fuzzy sets. The basic fuzzy 
operators include union (OR), intersection (AND), 
and complement (NOT). Additionally, there are 
other operators like algebraic product, bounded 
sum, and drastic sum, each serving different 
purposes in fuzzy logic systems. 

 

Fig. 15. Display and convergence for function 8 

Table 11. Results for function 8 experiments 

500 Iterations 

40 Dragonflies 

Exp 8 Dim 10 Dim 16 Dim 32 Dim 

Ave -2.48E+03 -2.89E+03 -3.78E+03 -5.78E+03 

Std 3.47E+02 3.19E+02 4.74E+02 7.51E+02 

 

Fig. 16. Display and convergence for function 9 

Table 12. Results for function 9 experiments 

500 Iterations 

40 Dragonflies 

Exp 8 Dim 10 Dim 16 Dim 32 Dim 

Ave 1.86E+01 2.77E+01 5.79E+01 1.56E+02 

Std 1.03E+01 1.29E+01 2.05E+01 3.53E+01 
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Fuzzy operators are essential for performing 
reasoning and making decisions in fuzzy logic-
based control systems, pattern recognition, and 
other applications. [32, 33, 34]. Example: Consider 
the concept of "temperature" in a room. Instead of 
categorizing it simply as "hot" or "cold," fuzzy logic 
allows for a more nuanced approach. 

We might define a fuzzy set for "comfortable 
temperature" with a membership function that 
peaks around 22 degrees Celsius. Then, if the 
room is at 20 degrees, it might have a membership 
value of 0.8 in the "comfortable temperature" set, 
indicating it is somewhat comfortable but 
not perfect. 

Adaptation of Type-1 Fuzzy Logic 

We will present Type-1 fuzzy inference systems 
implemented for the parameters w and beta of the 
Dragonfly algorithm in the following table. Here, in 
Fig. 5, we can observe the inference functions with 
the iteration parameter as input and the parameter 
was output, with their three fuzzy rules: 

Fuzzy Rules for the Parameter w: 

1. If iteration is low, then w is high. 

2. If iteration is medium, then w is medium. 

3. If iteration is high, then w is low. 

Here, in Fig. 6 we can observe the inference 
functions with the iteration parameter as input and 
the beta parameter as output, with their three 
fuzzy rules. 

Fuzzy Rules for the Parameter Beta: 

1. If iteration is low, then beta is high. 

2. If iteration is medium, then beta is medium. 

3. If iteration is high, then beta is low. 

In Fig. 7, we can observe the inference 
functions with the iteration parameter as input and 
the parameter was output, with its five fuzzy rules: 

Fuzzy Rules for the Parameter w: 

1. If iteration is low, then w is high. 

2. If iteration is low, then w is medium. 

3. If iteration is medium, then w is medium. 

4. If iteration is high, then w is medium. 

5. If iteration is high, then w is high. 

6 Results and Comparison  

In Table 3, we present a comparison of outcomes 
derived from two distinct algorithms: The Dragonfly 
Algorithm (DA), where the Dragonfly algorithm is 
integrated with type-1 application to parameters 
such as Beta and w, and the Continuous 
Mycorrhiza Optimization Algorithm (CMOA). The 
table showcases the most favorable mean values 
and standard deviations obtained from each 
experiment across different functions. 

The bio-inspired Dragonfly Algorithm serves as 
a remarkable example of how nature's 
mechanisms can provide creative and effective 
solutions to modern technological obstacles. Table 
4 showcases the best results acquired from 30 
experiments conducted across dimensions of 8, 
10, 16, and 32. 

These experiments employed a population of 40 
dragonflies and a maximum of 500 iterations, 
tailored specifically for Function 1. Fig 8 depicts the 
graphical representation and convergence curve 
for Function 1. 

Table 5 displays the best results achieved from 
30 experiments carried out across dimensions of 8, 
10, 16, and 32. These experiments employed a 
population of 40 dragonflies and a maximum of 500 
iterations, all tailored for Function 2. Fig 9 visually 

 

Fig. 17. Display and convergence for function 10 

Table 13. Results for function 10 experiments 

500 Iterations 

40 Dragonflies 

Exp 8 Dim 10 Dim 16 Dim 32 Dim 

Ave 1.52E+00 2.57E+00 4.42E+00 9.53E+00 

Std 1.14E+00 1.54E+00 1.41E+00 1.72E+00 
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represents the performance and convergence 
curve for Function 2. 

Table 6 presents the optimal values obtained 
from 30 experiments conducted across dimensions 
of 8, 10, 16, and 32. 

These experiments utilized a population of 40 
dragonflies and a maximum number of 500 
iterations, all specifically designed for Function 3. 
In Fig. 10, it is illustrated the display and 
convergence curve for Function 3. Table 7 
presents the optimal values obtained from 30 
experiments conducted across dimensions of 8, 
10, 16, and 32. 

These experiments utilized a population of 40 
dragonflies and a maximum number of 500 
iterations, all specifically designed for Function 4. 
In Fig. 11, we illustrate the display and 
convergence curve for Function 4. 

Table 8 presents the optimal values obtained 
from 30 experiments conducted across dimensions 
of 8, 10, 16, and 32. These experiments utilized a 
population of 40 dragonflies and a maximum 
number of 500 iterations, all specifically designed 
for Function 5. In Fig. 12, we illustrate the display 
and convergence curve for Function 5. 

Table 9 presents the optimal values obtained 
from 30 experiments conducted across dimensions 
of 8, 10, 16, and 32. These experiments utilized a 
population of 40 dragonflies and a maximum 
number of 500 iterations, all specifically designed 
for Function 6. 

In Fig. 13, it is illustrated the display and 
convergence curve for Function 6. Table 10 
presents the optimal values obtained from 30 
experiments conducted across dimensions of 8, 
10, 16, and 32. These experiments utilized a 
population of 40 dragonflies and a maximum 
number of 500 iterations, all specifically designed 
for Function 7. 

In Fig. 14, we illustrate the display and 
convergence curve for Function 7. Table 11 
presents the optimal values obtained from 30 
experiments conducted across dimensions of 8, 
10, 16, and 32. These experiments utilized a 
population of 40 dragonflies and a maximum 

number of 500 iterations, all specifically designed 
for Function 8. 

In Fig. 15, we illustrate the display and 
convergence curve for Function 8. Table 12 
presents the optimal values obtained from 30 
experiments conducted across dimensions of 8, 
10, 16, and 32. 

These experiments utilized a population of 40 
dragonflies and a maximum number of 500 
iterations, all specifically designed for Function 9. 
In Fig. 16, it is illustrated the display and 
convergence curve for Function 9. 

Table 13 presents the optimal values obtained 
from 30 experiments conducted across dimensions 
of 8, 10, 16, and 32. These experiments utilized a 
population of 40 dragonflies and a maximum 
number of 500 iterations, all specifically designed 
for Function 10. Fig. 17 illustrates the display and 
convergence curve for Function 10. 

7 Conclusions 

In conclusion, when comparing the Dragonfly 
method with itself, utilizing a population of 40 
Dragonflies and an iteration value of 500, but with 
the incorporation of Type-1 fuzzy logic adaptation 
for parameters w and beta, we can confidently 
state that much better results are obtained. 

Furthermore, when compared to the CMOA 
algorithm in 50 dimensions, the Dragonfly method 
continues to yield superior outcomes, as 
evidenced in more detail in Table 3, significantly 
enhancing the results when mean and standard 
deviation are applied across all 
experiments conducted. 

We will continue to generate results, with future 
work focusing on adapting Type-2 fuzzy logic to 
further compare outcomes with other algorithms. 
The findings will be shared with the community to 
support fellow researchers. 

It is worth mentioning that while the DA method 
may not represent the ultimate optimization 
technique presently accessible, it does 
demonstrate potential and can be beneficial in 
particular optimization problem contexts.  

As future work, we will consider other 
metaheuristics for the same approach, like in [35-
40]. Later, we expect to utilize type-2 fuzzy logic 
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[41-44] for parameter adaptation in the dragon fly 
algorithm, as in [45-46]. 
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