
Dragonfly Algorithm for Benchmark
Mathematical Functions Optimization

Hector M. Guajardo, Fevrier Valdez*

Tecnológico Nacional de México, Campus Tijuana,
Mexico

fevrier@tectijuana.mx

Abstract. In this paper, we study the dragonfly
algorithm, an optimization method derived from the
observation of nature and mathematical modeled after
the swarming behavior of dragonflies. Xin-She Yang
devised this approach, which has been applied to
various optimization challenges. [1]. The algorithm
effectively explores the search space by imitating
dragonfly behaviors like hunting for prey, fleeing from
predators, and swarming. The method consists in apply
Type-1 Fuzzy Logic to some of the parameters of the
algorithm, in this case, W and Betha to analyze the
results applied to the mathematical functions F1 through
F10 included in this paper, once that we have applied
the adaptation of parameters, we will review the results
compared with the rest of the papers that implement the
same mathematical functions, so we can have a general
idea if this method can be reliable.

Keywords: Optimization, dragonfly algorithm, bio-
inspired, type-1 fuzzy logic.

1 Introduction

Search and optimization algorithms such as
Particle Swarm Optimization (PSO), Differential
Evolution (DE), Genetic Algorithm (GA), Firefly
Algorithm (FA), and Dragonfly Algorithm (DA) have
proven to be efficient in terms of speed and
convergence for certain types of problems, so we
expect the optimization algorithm to work efficiently
applied to intelligent computing optimization
problems. These algorithms are based on
bioinspired principles and have been extensively
studied and tested in scientific literature.

The choice of a specific algorithm depends on
the optimization problem in question and its
characteristics. However, combining different

search and optimization algorithms in an algorithm
can further improve efficiency in terms of
convergence speed and the quality of the solution
obtained. Algorithms that combine different search
and optimization strategies can take advantage of
the strengths of each of the algorithms and
overcome their limitations.

In summary, an optimization algorithm
combining PSO, DE, GA, and FA are expected to
perform efficiently when applied to optimization
problems due to its proven effectiveness in terms
of speed of convergence in solving optimization
problems. Where there are insects like dragonflies,
fireflies, and damselflies, there are many more
insects with the same similarities for hunting,
reproduction, or in matters of movement on the
entire ecosystem.

Observing the behaviors and structures of
organisms in nature often suggests they perform
their functions exceptionally well. Numerous
studies have been conducted on this subject,
including one by Xin-She Yang that began with
publications pertaining to the firefly algorithm. The
classification of many species of related insects will
be reviewed in the following study [2].

Metaheuristics encompass broad strategies
that skillfully blend different methodologies to
navigate through the solution space. In design of
optimization, the design objective can be as simple
as maximizing production efficiency or minimizing
production costs. An optimization algorithm is a
technique that compares several solutions
repeatedly until an ideal or feasible answer is
identified. Currently, two types of optimization
methods are frequently employed.

To transition from one solution to the next,
deterministic algorithms employ a set of rules.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 769–782
doi: 10.13053/CyS-28-2-5022

ISSN 2007-9737

These algorithms have been effectively
employed to solve a variety of engineering design
challenges [3].

Since stochastic algorithms include
probabilistic translation rules and a random nature,
they may execute in a different sequence or
produce a different outcome each time they are run
with the same input.

The layout of this article is outlined as follows:
1. Introduction, where we provide a summary of the
article's content; 2. Nature Inspiration the new
optimization technique we offer is based on
organic inspiration; 3. Literature review, which
includes all the studies relevant to the topics of this
article; 4. The presentation and implementation of
the Dragonfly Algorithm (DA); 5. Type-1 fuzzy logic
explanation, 6. Results, analysis, and comparison
of the experiments performed; 7. Analytical
conclusions and a summary of the investigation
are described in this article.

2 Nature Inspiration

In some cultures, dragonflies were called kachi-
mushi (victorious insects) because they only fly
forward, which gave them the character of those
who never retreat and always move forward,
whatever the circumstances.

Thus, it became a symbol of strength, courage
and determination. About 5,000 species of
dragonflies are known and the algorithm is inspired
by static behavior and dynamic behavior all
dragonflies can move together to the same place
for example a migration.

In the following, we can review the life cycle of
the dragonfly.

The adult dragonfly starts to mate, after that,
they will lay their eggs in or around the water eggs
in the water, after the eggs will become a larva and
after that the dragonfly will emerge. This can be
appreciated in Fig 1.

Based on these factors, it was suggested an
algorithm that follows the model of insects and how
they adjust to physiological changes by sharing
resources and communicating to survive and grow.
This algorithm was called "dragonfly".

Natural optimization methods have proven to
be adaptable, flexible, and efficient in handling
practical problems.

Fig. 1. The dragonfly cycle represents the steps the
dragonfly must go through to become an
adult dragonfly

Fig. 2. The dragonfly patterns between individuals in
the swarm

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 769–782
doi: 10.13053/CyS-28-2-5022

Hector M. Guajardo, Fevrier Valdez770

ISSN 2007-9737

Algorithm 1 Dragonfly algorithm pseudocode

Initialize Dragonfly population randomly
Initialize Step vector/Size for dragonfly

While (current iteration < maximum iteration)
Calculate fitness values for each dragonfly.
Update food sources and enemy.
Update parameters �, �, �, �, � and �.
Calculate �, �, 	 and
.
Update the neighboring radius.

if dragonfly has at least one neighboring dragonfly.
Update velocity and position.

else
Update position vector

else if

Check and correct the new positions based on the
boundaries of variables.

End While

The fact that there is currently no optimization
technique that can handle all problems is well
recognized [5]. There are everyday issues that can
be solved in business, economics, research, and
other fields. There is a wide variety of optimization
techniques, and some are more effective than
others in solving specific problems. There are
various metaheuristic optimization techniques, for
example, Particle Swarm Optimization (PSO) [10],
Artificial Colony Optimization (ACO) [8, 11],
Artificial Bee Algorithm (ABC) [9], Firefly Algorithm
(FA) [12], as well as other algorithms based on Hill
climbing swarms [13], genetic algorithms (GA) [6],
and different techniques based on trajectories.
Differential evolution (DE) [14] and genetic
programming (GP) [16] are examples of
evolutionary algorithms.

3 Study of Literature

There are several social behaviors used in nature
to carry out various tasks. Although survival is the
goal of all individuals and collective actions,
organisms collaborate and interact in groups for a
variety of purposes, including hunting, defending,
navigating, and foraging.

Wolf packs, for example, have some of the
best-structured social interactions for hunting.
Wolves often follow a social hierarchy to pursue
prey in various ways: chasing, circling, tormenting,

and attacking. [17]. Holland authored a book
detailing the development of genetic algorithms
(GAs). De Jong concluded his research by
showcasing the considerable potential and
robustness of evolutionary algorithms across
various objective functions, including those that are
noisy, multimodal, or discontinuous [6]. To
minimize their learning and prediction errors
through iterative trial and error, artificial neural
networks, support vector machines, and other
machine learning approaches are genetic
algorithms and can be considered a heuristic
optimization methodology.

In 1961 Van Bergeijk, W. A, Harmon, L. D. and
Levinson, J. Z., and Harmon, L. D. proposed
artificial neurons as simple information processing
units [19, 20, 21].

Particle Swarm Optimization (PSO), an
optimization method inspired by the collective
intelligence of fish, birds, and even human beings,
was created in 1995 by James Kennedy and
Russell C. Eberhart [22, 23].

Table 1. Description of the algorithm parameters

Parameter Description Values

Population Population size 40

Boundaries Number of boundaries 2

Dimensions Dimension’s size
8, 10, 16,

32

Iterations Iterations size 500 � Separation weight � Alignment weight 	 Cohesion
 Food factor � Enemy factor � Inertia weight �� Separation of the
i=th individual

�� Alignment of the
i=th individual

	� Cohesion of the
i=th individual

� Food source of the
i=th individual

�� Enemy position of the
i=th individual

t Current iteration

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 769–782
doi: 10.13053/CyS-28-2-5022

Dragonfly Algorithm for Benchmark Mathematical Functions Optimization 771

ISSN 2007-9737

Table 2. CEC2013 math functions

Fun Name Range Nature

F1 Sphere [-5.12, 5.12] U

F2 Rosenbrock [-5, 10] U

F3 Griewank [-600, 600] M

F4 Rastrigin [-5.12, 5.12] M

F5 Ackley [-32.768, 32.768] M

Fun Graph Equation

1

��� � � ���
�

���

2

��� � � �100����� � ����� � �� � 1�� �!�
���

3

��� � � ���4000�
��� � # cos '��√)* � 1�

���

4

��� � 10+ � �,��� � 10 cos2.���/�
���

5

��� � �� exp ⎝⎛�561+ � ���
�

��� ⎠⎞ � exp ⎝⎛
1+ 6� cos�����

��� ⎠⎞ � � � exp1�

Fig. 4. Plots of five CEC2013 mathematical functions

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 769–782
doi: 10.13053/CyS-28-2-5022

Hector M. Guajardo, Fevrier Valdez772

ISSN 2007-9737

With time, the PSO method has demonstrated
its superiority over conventional algorithms and
genetic algorithms in specific problem domains,
though it may not be suitable for every scenario.
There isn't a universal algorithm that excels in all
optimization problems; hence, current research
aims to identify the most effective and efficient
algorithm(s) for particular tasks. D. H. Wolpert
and W. G.

Macready introduced the No-Free Lunch
theorems to caution the scientific community that if
algorithm A outperforms algorithm B for certain
optimization functions, then B is likely to
outperform A for other functions. [24]. Over time,
researchers S. Nakrani and C. Tovey suggested
the honey bee algorithm and its use as a foraging
algorithm for problems including multimodal and
dynamic optimization. [25].

Fig. 5 Type-1 fuzzy inference systems w parameter

Fig. 6 Type-1 fuzzy inference systems beta parameter

Fig. 7. Type-1 fuzzy inference systems beta parameter

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 769–782
doi: 10.13053/CyS-28-2-5022

Dragonfly Algorithm for Benchmark Mathematical Functions Optimization 773

ISSN 2007-9737

The techniques were inspired by how actual
bees feed in the nature. To identify spreaders
utilizing a variety of targets, Amir S. and Ahman Z.
developed the artificial bee colony (ABC) algorithm
in 2020. [9]. Particle Swarm Optimization (PSO)
and the Fire-fly Algorithm (FA), inspired by the
flashing patterns of fireflies, were combined in a
practical project undertaken by Khennak, I., Drias,
H., and Drias, Y. [12].

Seyedali Mirjalili et al. proposed the Grey Wolf
Optimizer (GWO) in 2013 [25], Inspired by grey
wolves (Canis lupus), it imitates the natural
leadership structure and hunting strategy of these
canines. The Coyote Optimization Algorithm,
which Juliano Pierezan and Leandro dos Santos
Coelho created in 2018, is a population-based
metaheuristic for optimization that draws
inspiration from the canis latrans species [26].

In 2020, Abdolkarim Mohammadi-Balani and
his team introduced their innovative Golden Eagle
Optimizer algorithm, designed to adjust speed at
different points along a spiral trajectory, mimicking
the hunting behavior of golden eagles. [27].

Additionally, new metaheuristic algorithms that
are better than others at solving a particular kind of
problem will continue to be developed.

4 Dragonfly Algorithm (DA)

In nature, practically all other little insects are
preyed upon by dragonflies, which are thought of
as small predators. Additionally, nymph dragonflies
eat other maritime insects and even small fish. The
intriguing characteristic of dragonflies is their
uncommon and unusual swarming behavior.

Table 3. Comparison results for 30 dimensions of CMOA, DA and DA with Type-1

Fun
DA CMOA DA Type-1

Mean Std dev Mean Std dev Mean Std dev

F1 2.85E-18 7.16E-01 8.11E-09 4.79E-09 1.25E+00 2.88E+0
F2 7.60E+00 6.79E+0 6.58E-09 3.32E-09 4.41E-01 4.79E-01
F3 1.03E-02 4.69E-03 1.64E-09 1.39E-09 1.00E+01 5.15E+01
F4 1.60E+01 9.48E+0 8.13E-09 4.42E-09 1.25E+00 1.55E+0
F5 2.31E-01 4.87E-01 1.44E-09 1.21E-09 2.11E+02 3.21E+02

Fig. 8. Display and convergence for function 1

Table 4. Results for function 1 experiments

500 Iterations

40 Dragonflies

Exp 8 Dim 10 Dim 16 Dim 32 Dim

Ave 1.25E+00 4.09E+00 1.30E+02 1.53E+03

Std 2.88E+00 1.19E+01 1.70E+02 6.96E+02

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 769–782
doi: 10.13053/CyS-28-2-5022

Hector M. Guajardo, Fevrier Valdez774

ISSN 2007-9737

Only two things cause dragonflies to swarm:
migration and hunting. Both are referred to as
swarms—the former as a static (feeding) swarm
and the latter as a dynamic (migratory) swarm.

As already mentioned, the DA is an optimization
technique that draws inspiration from the same-
named bug [28]. The static and dynamic
characteristics of swarms serve as the primary
source of inspiration for the DA algorithm.

These two are extremely like the exploration
and exploitation phases of metaheuristic
optimization. The main goal of the exploration
phase is for dragonflies to organize into sub-
swarms and fly in a static swarm over
numerous locations.

Certainly, during times of static swarming, it is
observed that dragonflies tend to fly together in
larger groups, all aligning their flight paths—a
behavior that is notably advantageous, particularly
during the exploitation phase.

The primary goal of any swarm is survival,
every member should be drawn to food sources
and vigilant against external threats.

As demonstrated on Fig. 2 the five essential
factors that affect how individuals in swarms
update their positions considering these two
behaviors. Swarm behavior follows three
important principles:

1. Separation: Individual avoid static collision
with neighbor:

�9   � � <=
9�� � <9. (1)

2. Alignment: Individual velocity matched with
neighbor individuals:

��  �   � ?9.
=

9�� (2)

3. Cohesion: Individual tendency toward center
of the herd:

	�   �   ∑ <9=9��  A �  <. (3)

< : This represents the position of an individual,
which typically denotes its current location or
coordinates in each space.

Fig. 9. Display and convergence for function 2

Table 5. Results for function 2 experiments

500 Iterations

40 Dragonflies

Exp 8 Dim 10 Dim 16 Dim 32 Dim

Ave 4.43E-01 1.00E-07 3.79E+00 1.48E+01

Std 4.71E-01 1.00E-07 1.55E+00 7.64E+00

Fig. 10. Display and convergence for function 3

Table 6. Results for function 3 experiments

500 Iterations

40 Dragonflies

Exp 8 Dim 10 Dim 16 Dim 32 Dim

Ave 2.69E+01 1.80E+02 1.46E+03 1.30E+04

Std 5.08E+01 2.43E+02 1.70E+03 9.96E+03

Fig. 11. Display and convergence for function 4

Table 7. Results for function 4 experiments

500 Iterations

40 Dragonflies

Exp 8 Dim 10 Dim 16 Dim 32 Dim

Ave 1.24E+00 1.85E+00 9.17E+00 2.93E+01

Std 1.52E+00 1.36E+00 5.81E+00 1.06E+01

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 769–782
doi: 10.13053/CyS-28-2-5022

Dragonfly Algorithm for Benchmark Mathematical Functions Optimization 775

ISSN 2007-9737

?9 : This represents the velocity of an individual,

which typically refers to the speed and direction at
which it is moving. A: This represents the number of neighborhoods
or groups of individuals in your system. It is
essentially a parameter that determines how
individuals are grouped or organized
into neighborhoods. Attraction to food source
is calculated:

�  �  <�  �  <, (4)

where:

< : Is the position of the current individual,

<�: Is the area of the food.

Distraction from enemy is calculated:

��  �  <!  �  <, (5)

where:

< : Is the position of the current individual,

<!: Is the area of the enemy.

In this research, dragonfly behavior is
supposed to be a combination of these five
corrective patterns. Two vectors are used to
update the position of artificial dragonflies in a
search space and replicate their movements: step
(∆<) and position (<). The step vector represents
the direction of the dragonfly movement and is
described as follows:

∆<D��  �  ��� � ��� � �	� � �
� � ���� � �∆<� , (6)

where � is the separation weight �� representing
) � Eℎ individual's separation, � represents the
alignment weight, � represents) � Eℎ the
individual’s alignment, and � represents the
cohesion weight. 	� is the) � Eℎ individual's
cohesiveness, � is the food factor, and
� is the
) � Eℎ individual's food supply, � is the enemy
factor, �� is the) � Eℎ individual's position of
enemy, � is the inertia weight, and E is the
iteration timer, in Algorithm 1 we can see with more
detail the pseudocode from dragonfly algorithm.

Table 1 presents the names and concise
descriptions of all the parameters applied in the
Dragonfly algorithm. In the subsequent section of
this paper, we provide the outcomes of the
experimentation conducted in this study.

Fig. 12. Display and convergence for function 5

Table 8. Results for function 5 experiments

500 Iterations

40 Dragonflies

Exp 8 Dim 10 Dim 16 Dim 32 Dim

Ave 2.05E+02 3.51E+03 1.25E+04 1.88E+05

Std 3.17E+02 1.67E+04 2.86E+04 1.88E+05

Fig. 13. Display and convergence for function 6

Table 9. Results for function 6 experiments

500 Iterations

40 Dragonflies

Exp 8 Dim 10 Dim 16 Dim 32 Dim

Ave 1.25E+00 2.76E+00 7.44E+01 1.50E+03

Std 5.38E+00 4.87E+00 1.17E+02 1.22E+03

Fig. 14. Display and convergence for function 7

Table 10. Results for function 7 experiments

500 Iterations

40 Dragonflies

Exp 8 Dim 10 Dim 16 Dim 32 Dim

Ave 1.39E-02 2.73E-02 6.21E-02 5.83E-01

Std 1.13E-02 2.13E-02 5.26E-02 3.27E-01

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 769–782
doi: 10.13053/CyS-28-2-5022

Hector M. Guajardo, Fevrier Valdez776

ISSN 2007-9737

Table 2 outlines the titles of five mathematical
functions from the CEC2013 dataset, along with
their corresponding scopes and characteristics,
which were utilized in our investigation. The Fig. 4
presents graphical representations and
mathematical equations for five out of the ten
mathematical functions utilized in this study.

5 Type-1 Fuzzy Logic

Fuzzy logic, alternatively referred to as fuzzy sets
theory, provides a mathematical framework for
addressing reasoning and decision-making in
scenarios characterized by uncertainty and
imprecision. Unlike traditional binary logic where

statements are either true or false, fuzzy logic
allows for degrees of truth between 0 and 1,
representing degrees of membership
or truthfulness.

This allows for more nuanced modeling and
analysis, particularly in areas where precise
boundaries are difficult to define. [29] Key
Concepts of Fuzzy Logic: Fuzzy Sets: Fuzzy sets
are a fundamental concept in fuzzy logic,
introduced by Lotfi Zadeh in 1965. Unlike classical
sets where an element either belongs to a set or
does not, fuzzy sets allow for degrees
of membership.

In a fuzzy set, each element has a membership
value that represents the degree to which the
element belongs to the set. These membership
values range between 0 and 1, where 0 indicates
no membership, 1 indicates full membership, and
values in between represent degrees of
partial membership.

Fuzzy sets are especially useful for modeling
uncertainties and vagueness present in many real-
world systems. Membership Functions:
Membership functions are mathematical functions
that define the degree of membership of each
element in a fuzzy set.

These functions map each element from the
universal set to a real number in the interval [0, 1].
There are various types of membership functions,
such as triangular, trapezoidal, Gaussian, and
sigmoidal, each suited for different applications
and interpretations.

The choice of membership function depends on
the specific characteristics of the problem domain
and the preferences of the modeler. Membership
functions play a crucial role in fuzzy logic systems
as they determine the degree to which fuzzy sets
represent real-world phenomena. Fuzzy
Operators: Fuzzy operators are mathematical
operations defined on fuzzy sets that allow for
combining and manipulating fuzzy information.

These operators extend classical set operations
such as union, intersection, and complement to
accommodate the degrees of membership
associated with fuzzy sets. The basic fuzzy
operators include union (OR), intersection (AND),
and complement (NOT). Additionally, there are
other operators like algebraic product, bounded
sum, and drastic sum, each serving different
purposes in fuzzy logic systems.

Fig. 15. Display and convergence for function 8

Table 11. Results for function 8 experiments

500 Iterations

40 Dragonflies

Exp 8 Dim 10 Dim 16 Dim 32 Dim

Ave -2.48E+03 -2.89E+03 -3.78E+03 -5.78E+03

Std 3.47E+02 3.19E+02 4.74E+02 7.51E+02

Fig. 16. Display and convergence for function 9

Table 12. Results for function 9 experiments

500 Iterations

40 Dragonflies

Exp 8 Dim 10 Dim 16 Dim 32 Dim

Ave 1.86E+01 2.77E+01 5.79E+01 1.56E+02

Std 1.03E+01 1.29E+01 2.05E+01 3.53E+01

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 769–782
doi: 10.13053/CyS-28-2-5022

Dragonfly Algorithm for Benchmark Mathematical Functions Optimization 777

ISSN 2007-9737

Fuzzy operators are essential for performing
reasoning and making decisions in fuzzy logic-
based control systems, pattern recognition, and
other applications. [32, 33, 34]. Example: Consider
the concept of "temperature" in a room. Instead of
categorizing it simply as "hot" or "cold," fuzzy logic
allows for a more nuanced approach.

We might define a fuzzy set for "comfortable
temperature" with a membership function that
peaks around 22 degrees Celsius. Then, if the
room is at 20 degrees, it might have a membership
value of 0.8 in the "comfortable temperature" set,
indicating it is somewhat comfortable but
not perfect.

Adaptation of Type-1 Fuzzy Logic

We will present Type-1 fuzzy inference systems
implemented for the parameters w and beta of the
Dragonfly algorithm in the following table. Here, in
Fig. 5, we can observe the inference functions with
the iteration parameter as input and the parameter
was output, with their three fuzzy rules:

Fuzzy Rules for the Parameter w:

1. If iteration is low, then w is high.

2. If iteration is medium, then w is medium.

3. If iteration is high, then w is low.

Here, in Fig. 6 we can observe the inference
functions with the iteration parameter as input and
the beta parameter as output, with their three
fuzzy rules.

Fuzzy Rules for the Parameter Beta:

1. If iteration is low, then beta is high.

2. If iteration is medium, then beta is medium.

3. If iteration is high, then beta is low.

In Fig. 7, we can observe the inference
functions with the iteration parameter as input and
the parameter was output, with its five fuzzy rules:

Fuzzy Rules for the Parameter w:

1. If iteration is low, then w is high.

2. If iteration is low, then w is medium.

3. If iteration is medium, then w is medium.

4. If iteration is high, then w is medium.

5. If iteration is high, then w is high.

6 Results and Comparison

In Table 3, we present a comparison of outcomes
derived from two distinct algorithms: The Dragonfly
Algorithm (DA), where the Dragonfly algorithm is
integrated with type-1 application to parameters
such as Beta and w, and the Continuous
Mycorrhiza Optimization Algorithm (CMOA). The
table showcases the most favorable mean values
and standard deviations obtained from each
experiment across different functions.

The bio-inspired Dragonfly Algorithm serves as
a remarkable example of how nature's
mechanisms can provide creative and effective
solutions to modern technological obstacles. Table
4 showcases the best results acquired from 30
experiments conducted across dimensions of 8,
10, 16, and 32.

These experiments employed a population of 40
dragonflies and a maximum of 500 iterations,
tailored specifically for Function 1. Fig 8 depicts the
graphical representation and convergence curve
for Function 1.

Table 5 displays the best results achieved from
30 experiments carried out across dimensions of 8,
10, 16, and 32. These experiments employed a
population of 40 dragonflies and a maximum of 500
iterations, all tailored for Function 2. Fig 9 visually

Fig. 17. Display and convergence for function 10

Table 13. Results for function 10 experiments

500 Iterations

40 Dragonflies

Exp 8 Dim 10 Dim 16 Dim 32 Dim

Ave 1.52E+00 2.57E+00 4.42E+00 9.53E+00

Std 1.14E+00 1.54E+00 1.41E+00 1.72E+00

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 769–782
doi: 10.13053/CyS-28-2-5022

Hector M. Guajardo, Fevrier Valdez778

ISSN 2007-9737

represents the performance and convergence
curve for Function 2.

Table 6 presents the optimal values obtained
from 30 experiments conducted across dimensions
of 8, 10, 16, and 32.

These experiments utilized a population of 40
dragonflies and a maximum number of 500
iterations, all specifically designed for Function 3.
In Fig. 10, it is illustrated the display and
convergence curve for Function 3. Table 7
presents the optimal values obtained from 30
experiments conducted across dimensions of 8,
10, 16, and 32.

These experiments utilized a population of 40
dragonflies and a maximum number of 500
iterations, all specifically designed for Function 4.
In Fig. 11, we illustrate the display and
convergence curve for Function 4.

Table 8 presents the optimal values obtained
from 30 experiments conducted across dimensions
of 8, 10, 16, and 32. These experiments utilized a
population of 40 dragonflies and a maximum
number of 500 iterations, all specifically designed
for Function 5. In Fig. 12, we illustrate the display
and convergence curve for Function 5.

Table 9 presents the optimal values obtained
from 30 experiments conducted across dimensions
of 8, 10, 16, and 32. These experiments utilized a
population of 40 dragonflies and a maximum
number of 500 iterations, all specifically designed
for Function 6.

In Fig. 13, it is illustrated the display and
convergence curve for Function 6. Table 10
presents the optimal values obtained from 30
experiments conducted across dimensions of 8,
10, 16, and 32. These experiments utilized a
population of 40 dragonflies and a maximum
number of 500 iterations, all specifically designed
for Function 7.

In Fig. 14, we illustrate the display and
convergence curve for Function 7. Table 11
presents the optimal values obtained from 30
experiments conducted across dimensions of 8,
10, 16, and 32. These experiments utilized a
population of 40 dragonflies and a maximum

number of 500 iterations, all specifically designed
for Function 8.

In Fig. 15, we illustrate the display and
convergence curve for Function 8. Table 12
presents the optimal values obtained from 30
experiments conducted across dimensions of 8,
10, 16, and 32.

These experiments utilized a population of 40
dragonflies and a maximum number of 500
iterations, all specifically designed for Function 9.
In Fig. 16, it is illustrated the display and
convergence curve for Function 9.

Table 13 presents the optimal values obtained
from 30 experiments conducted across dimensions
of 8, 10, 16, and 32. These experiments utilized a
population of 40 dragonflies and a maximum
number of 500 iterations, all specifically designed
for Function 10. Fig. 17 illustrates the display and
convergence curve for Function 10.

7 Conclusions

In conclusion, when comparing the Dragonfly
method with itself, utilizing a population of 40
Dragonflies and an iteration value of 500, but with
the incorporation of Type-1 fuzzy logic adaptation
for parameters w and beta, we can confidently
state that much better results are obtained.

Furthermore, when compared to the CMOA
algorithm in 50 dimensions, the Dragonfly method
continues to yield superior outcomes, as
evidenced in more detail in Table 3, significantly
enhancing the results when mean and standard
deviation are applied across all
experiments conducted.

We will continue to generate results, with future
work focusing on adapting Type-2 fuzzy logic to
further compare outcomes with other algorithms.
The findings will be shared with the community to
support fellow researchers.

It is worth mentioning that while the DA method
may not represent the ultimate optimization
technique presently accessible, it does
demonstrate potential and can be beneficial in
particular optimization problem contexts.

As future work, we will consider other
metaheuristics for the same approach, like in [35-
40]. Later, we expect to utilize type-2 fuzzy logic

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 769–782
doi: 10.13053/CyS-28-2-5022

Dragonfly Algorithm for Benchmark Mathematical Functions Optimization 779

ISSN 2007-9737

[41-44] for parameter adaptation in the dragon fly
algorithm, as in [45-46].

References

1. Yang, X. (2010). A new metaheuristic bat-
inspired algorithm. Studies in Computational
Intelligence, Vol. 284, pp. 65–74. DOI:
10.1007/978-3-642-12538-6_6.

2. Bybee, S. M., Kalkman, V. J., Erickson, R.
J., Frandsen, P. B., Breinholt, J. W.,
Suvorov, A., Dijkstra, K. B., Cordero-Rivera,
A., Skevington, J. H., Abbott, J. C., Herrera,
M. S., Lemmon, A. R., Lemmon, E. M., Ware,
J. L. (2021). Phylogeny and classification of
odonata using targeted genomics. Molecular
Phylogenetics and Evolution, Vol. 160, pp.
107115. DOI: 10.1016/j.ympev.2021.107115.

3. Osman, I. H., Kelly, J. P. (1996). Meta-
heuristics: An overview. Meta-Heuristics, pp.
1–21. DOI: 10.1007/978-1-4613-1361-8_1.

4. Glover, F., Mulvey, J. M., Hoyland, K. (1996).
Solving dynamic stochastic control problems in
finance using tabu search with variable
scaling. Meta-Heuristics, pp. 429–448. DOI:
10.1007/978-1-4613-1361-8_26.

5. Carreres-Prieto, D., Ybarra-Moreno, J.,
García, J. T., Cerdán-Cartagena, J. F.
(2023). A comparative analysis of neural
networks and genetic algorithms to
characterize wastewater from led
spectrophotometry. Journal of Environmental
Chemical Engineering, Vol. 11, No. 3, pp.
110219. DOI: 10.1016/j.jece.2023.110219.

6. Holland, J. H. (1992). Adaptation in natural
and artificial systems: An introductory analysis
with applications to biology, control, and
artificial intelligence. MIT Press. DOI:
10.7551/mitpress/1090.001.0001.

7. Dorigo, M., Gambardella, L. C., Birattari, M.,
Martinoli, A., Poli, R., Stützle, T. (2006). Ant
colony optimization and swarm intelligence.
5th international workshop, ANTS 2006,
Brussels, Springer.

8. Gutjahr, W. J. (2002). Aco algorithms with
guaranteed convergence to the optimal

solution. Information Processing Letters, Vol.
82, No. 3, pp. 145–153. DOI: 10.1016/s0020-
0190(01)00258-7.

9. Sheikhahmadi, A., Zareie, A. (2020).
Identifying influential spreaders using multi-
objective artificial bee colony optimization.
Applied Soft Computing, Vol. 94, pp. 106436.
DOI: 10.1016/j.asoc.2020.106436.

10. Khennak, I., Drias, H., Drias, Y., Bendakir,
F., Hamdi, S. (2022). I/f-race tuned firefly
algorithm and particle swarm optimization for
k-medoids-based clustering. Evolutionary
Intelligence, Vol. 16, No. 1, pp. 351–373. DOI:
10.1007/s12065-022-00794-z.

11. Yang, X. (2013). Cuckoo search and firefly
algorithm: overview and analysis. Studies in
Computational Intelligence, Vol. 516, pp. 1–26.
DOI: 10.1007/978-3-319-02141-6_1.

12. Jacobson, S. H., Yücesan, E. (2004).
Analyzing the performance of generalized hill
climbing algorithms. Journal of Heuristics, Vol.
10, No. 4, pp. 387–405. DOI: 10.1023/b:heur.
0000034712.48917.a9.

13. Storn, R., Price, K. (1997). Differential
evolution – a simple and efficient heuristic for
global optimization over continuous spaces.
Journal of Global Optimization, Vol. 11, No. 4,
pp. 341–359. DOI: 10.1023/a:1008202
821328.

14. Cordes, K., Rosenhahn, B., Ostermann, J.
(2011). Increasing the accuracy of feature
evaluation benchmarks using differential
evolution. IEEE Symposium on Differential
Evolution, pp. 1–8 DOI: 10.1109/sde.2011.
5952056.

15. Nicolau, M., Krawiec, K., Heywood, M. I.,
Castelli, M., García-Sánchez, P., Merelo, J.
J., Rivas-Santos, V. M., Sim, K. (2014).
Genetic Programming. Lecture Notes in
Computer Science, 17th European
Conference, EuroGP 2014, Granada, Spain.

16. Saif, F. A., Latip, R., Hanapi, Z. M., Shafinah,
K. (2023). Multi-objective grey wolf optimizer
algorithm for task scheduling in cloud-fog
computing. IEEE Access, Vol. 11, pp. 20635–
20646. DOI: 10.1109/access.2023.3241240.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 769–782
doi: 10.13053/CyS-28-2-5022

Hector M. Guajardo, Fevrier Valdez780

ISSN 2007-9737

17. Saophan, P., Pannakkong, W.,
Singhaphandu, R., Huynh, V. (2023). Rapid
production rescheduling for flow shop under
machine failure disturbance using hybrid
perturbation population genetic algorithm-
artificial neural networks (PPGA-ANNS). IEEE
Access, Vol. 11, pp. 75794–75817. DOI:
10.1109/access.2023.3294573.

18. Bergeijk, W. A. V. (1961). Studies with
artificial neurons, II: analog of the external
spiral innervation of the cochlea. Kybernetik,
Vol. 1, No. 3, pp. 102–107. DOI: 10.1007/bf00
290180.

19. Harmon, L. D. (1961). Studies with artificial
neurons, I: properties and functions of an
artificial neuron. Kybernetik, Vol. 1, No. 3, pp.
89–101. DOI: 10.1007/bf00290179.

20. Levinson, J., Harmon, L. D. (1961). Studies
with artificial neurons, III: Mechanisms of
flicker-fusion. Kybernetik, Vol. 1, No. 3, pp.
107–117. DOI: 10.1007/bf00290181.

21. Kennedy, J., Eberhart, R. (1995). Particle
swarm optimization. Proceedings of the
International Conference on Neural Networks,
Vol. 4, pp. 1942-1948. DOI: 10.1109/ICNN.
1995.488968.

22. Sengupta, S., Basak, S., Peters, R. (2018).
Particle swarm optimization: a survey of
historical and recent developments with
hybridization perspectives. Machine Learning
and Knowledge Extraction, Vol. 1, No. 1, pp.
157–191. DOI: 10.3390/make1010010.

23. Wolpert, D., Macready, W. (1997). No free
lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation,
Vol. 1, No. 1, pp. 67–82. DOI: 10.1109/4235.
585893.

24. Baig, A. R., Rashid, M. (2007). Honey bee
foraging algorithm for multimodal and dynamic
optimization problems. Proceedings of the 9th
annual conference on Genetic and
evolutionary computation pp. 169. DOI: 10.11
45/1276958.1276983.

25. Pierezan, J., Coelho, L. D. S. (2018). Coyote
optimization algorithm: A new metaheuristic for
global optimization problems. IEEE Congress

on Evolutionary Computation, pp. 1-8. DOI:
10.1109/CEC.2018.8477769.

26. Mohammadi-Balani, A., Nayeri, M. D., Azar,
A., Taghizadeh-Yazdi, M. (2021). Golden
eagle optimizer: a nature-inspired
metaheuristic algorithm. Computers and
Industrial Engineering, Vol. 152, pp. 107050.
DOI: 10.1016/j.cie.2020.107050.

27. Wikelski, M., Moskowitz, D., Adelman, J. S.,
Cochran, J., Wilcove, D. S., May, M. L.
(2006). Simple rules guide dragonfly migration.
Biology Letters, Vol. 2, No. 3, pp. 325–329.
DOI: 10.1098/rsbl.2006.0487.

28. Zadeh, L. (1965). Fuzzy sets. Information and
Control, Vol. 8, No. 3, pp. 338–353. DOI:
10.1016/s0019-9958(65)90241-x.

29. Kosko, B. (1992). Neural networks and fuzzy
systems: A dynamical systems approach to
machine intelligence. Prentice-Hall.

30. Klir, G. J., Yuan, B. (1995). Fuzzy sets and
fuzzy logic: Theory and applications. Prentice
Hall P T R.

31. Roger-Jang, J. S., Sun, C. T., Mizutani, E.
(1997). Neuro-fuzzy and soft computing: A
computational approach to learning and
machine intelligence. Prentice Hall.

32. Yager, R. R., Filev, D. P. (1994). Essentials of
fuzzy modeling and control. 1st Edition, Wiley.

33. Dubois, D., Prade, H. (1980). Fuzzy sets and
systems: Theory and applications. Academic
Press, Vol. 144, pp. 1–393.

34. Amador-Angulo, L., Ochoa, P., Peraza, C.,
Castillo, O. (2023). Fuzzy dynamic adaptation
of an artificial fish swarm algorithm for the
optimization of benchmark functions. Studies
in Computational Intelligence, pp. 99–114.
DOI: 10.1007/978-3-031-28999-6_6.

35. Castillo, O., Lizárraga, E., Soria, J., Melin,
P., Valdez, F. (2015). New approach using ant
colony optimization with ant set partition for
fuzzy control design applied to the ball and
beam system. Information Sciences, Vol. 294,
pp. 203–215. DOI: 10.1016/j.ins.2014.09.040.

36. Amador-Angulo, L., Mendoza, O., Castro,
J., Rodríguez-Díaz, A., Melin, P., Castillo, O.
(2016). Fuzzy sets in dynamic adaptation of

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 769–782
doi: 10.13053/CyS-28-2-5022

Dragonfly Algorithm for Benchmark Mathematical Functions Optimization 781

ISSN 2007-9737

parameters of a bee colony optimization for
controlling the trajectory of an autonomous
mobile robot. Sensors, Vol. 16, No. 9, pp.
1458. DOI: 10.3390/s16091458.

37. Valdez, F., Vazquez, J. C., Melin, P., Castillo,
O. (2017). Comparative study of the use of
fuzzy logic in improving particle swarm
optimization variants for mathematical
functions using co-evolution. Applied Soft
Computing, Vol. 52, pp. 1070–1083. DOI:
10.1016/j.asoc.2016.09.024.

38. Sánchez, D., Melin, P., Castillo, O. (2017). A
grey wolf optimizer for modular granular neural
networks for human recognition.
Computational Intelligence and Neuroscience,
Vol. 2017, pp. 1–26. DOI: 10.1155/2017/
4180510.

39. González, B., Valdez, F., Melin, P., Prado-
Arechiga, G. (2015). Fuzzy logic in the
gravitational search algorithm for the
optimization of modular neural networks in
pattern recognition. Expert Systems with
Applications, Vol. 42, No. 14, pp. 5839–5847.
DOI: 10.1016/j.eswa.2015.03.034.

40. Tai, K., El-Sayed, A., Biglarbegian, M.,
Gonzalez, C., Castillo, O., Mahmud, S.
(2016). Review of recent type-2 fuzzy
controller applications. Algorithms, Vol. 9, No.
2, pp. 39. DOI: 10.3390/a9020039.

41. Ontiveros, E., Melin, P., Castillo, O. (2020).
Comparative study of interval type-2 and

general type-2 fuzzy systems in medical
diagnosis. Information Sciences, Vol. 525, pp.
37–53. DOI: 10.1016/j.ins.2020.03.059.

42. Melin, P., Castillo, O. (2004). A new method
for adaptive control of non-linear plants using
type-2 fuzzy logic and neural networks.
International Journal of General Systems, Vol.
33, No. 2-3, pp. 289–304. DOI: 10.1080/03081
070310001633608.

43. Moreno, J. E., Sanchez, M. A., Mendoza, O.,
Rodríguez-Díaz, A., Castillo, O., Melin, P.,
Castro, J. R. (2020). Design of an interval
type-2 fuzzy model with justifiable uncertainty.
Information Sciences, Vol. 513, pp. 206–221.
DOI: 10.1016/j.ins.2019.10.042.

44. Guerrero, M., Valdez, F., Castillo, O. (2022).
Comparative study between type-1 and
interval type-2 fuzzy systems in parameter
adaptation for the cuckoo search algorithm.
Symmetry, Vol. 14, No. 11, pp. 2289. DOI:
10.3390/sym14112289.

45. Cuevas, F., Castillo, O., Cortés-Antonio, P.
(2022). Generalized type-2 fuzzy parameter
adaptation in the marine predator algorithm for
fuzzy controller parameterization in mobile
robots. Symmetry, Vol. 14, No. 5, pp. 859. DOI:
10.3390/sym14050859.

Article received on 02/02/2024; accepted on 23/04/2024.
*Corresponding author is Fevrier Valdez.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 769–782
doi: 10.13053/CyS-28-2-5022

Hector M. Guajardo, Fevrier Valdez782

ISSN 2007-9737

