
Quantum Classifier for Natural Language Processing Applications

Shyambabu Pandey1, Partha Pakray1,*, Riyanka Manna2

1 National Institute of Technology Silchar, Assam, Silchar,
India

2 Amrita Vishwa Vidyapeetham, Amaravati, Ettimadai,
India

{babushyampandey, parthapakray, riyankamanna16}@gmail.com

Abstract. A deep neural network is a branch of machine
learning that is capable of learning and representing
complex patterns from a dataset through interconnected
multiple layers of neurons. This capability makes it
applicable in various fields, such as natural language
processing, image processing, and computer vision.
Deep learning models show effective performance but
face challenges such as complexity and resource
demands. On the other hand, quantum machine learning
algorithms offer an alternative with potential efficiency
compared to their classical counterparts. This paper
proposes a Quantum Recurrent Neural Network (QRNN)
for natural language processing tasks, which classify text
data such as parts of speech, named entity recognition,
and sentiment analysis. The proposed method utilizes
parameterized quantum circuits that contain the tunable
parameters. Our approach uses amplitude encoding
to represent classical data into quantum states, partial
measurement for label determination, and ancilla qubits
to transfer the information from the current state to
the next.
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1 Introduction

Machine learning [1] is a branch of artificial
intelligence [22] that allows computers to learn
patterns in a dataset without using explicit
programs. The main goal of machine learning
algorithms is to be applied in engineering and
science fields, with the primary objective of
identifying patterns and making decisions
according to those patterns. Introducing

deep neural networks [23] enhances the
performance and capability of machine learning
algorithms, which can find more complex patterns
from datasets.

Over the past few years, machine learning
algorithms have applied deep learning models
to enhance the performance of natural language
processing (NLP) applications [24]. Specifically,
transformer-based models perform better than
traditional neural network models, such as
recurrent neural network variants.

However, this superior performance poses
different challenges, such as complexity in the
model, demands extensive dataset, and raises a
considerable amount of computational power, time,
and resources [10].

An alternate path is obtaining notice in
recent times from quantum computing, which can
perform efficient computation for specific problems.
Quantum computing [11] is a computing paradigm
that follows the law of quantum theory and applies
qubits (quantum bits) as processing components.

Qubit is analogous to classical bits capable of
exciting in the superposition of all the possible
states. Additionally, entanglement, a quantum
principle, can exploit the correlation between
multiple qubits, even if they are physically
separated. Such unique characteristics of
quantum phenomena make quantum computing
solve specific problems faster than their classical
solutions. This hope allows us to solve some
computational issues efficiently, such as machine
learning algorithms.
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Fig. 1. Architecture of the proposed system

Quantum machine learning (QML) [18], a
combination of quantum computing and machine
learning to utilize powerful features taken from
quantum theory to enhance the computational
power of traditional machine learning algorithms.
Some quantum machine learning algorithms
show remarkable improvement compared to their
classical counterparts.

Quantum neural network (QNN) [12] is a
subfield of QML algorithms with more learning
capabilities than classical neural networks. In
recent times, researchers have endeavored to
apply a quantum version of classical machine
learning algorithms to NLP applications to
improve performance.

Most NLP applications classify text data
into different labels, such as part-of-speech
(POS) tagging, named-entity recognition (NER),
and sentimental analysis (SA). To enhance the
performance of such NLP tasks, we propose a
quantum recurrent neural network (QRNN) as a
quantum classifier for the text data.

The proposed system is based on a
parameterized quantum circuit consisting of
tunable parameters to train the model and employ
amplitude embedding to convert each word’s word
embedding into quantum states.

2 Related Work

Some QML algorithms show exponential speedup
compared to their classical counterparts, such

as learning algorithms like quantum principle
component analysis [15], and quantum support
vector machine [21]. However, these algorithms
cannot run on current quantum computers because
of the lack of quantum RAM to execute.

To take advantage of current quantum
hardware, variational quantum circuits [5]
are employed, which consist of a series of
parameterized quantum gates. Quantum
approximation optimization algorithm [8],
hybrid quantum-classical algorithms [3], and
QNN are examples of variational quantum
algorithms. These algorithms are implemented
on current quantum hardware systems, which use
parameterized quantum circuits in short-depth.

Researchers are trying to implement hybrid
quantum-classical QNN models using quantum
computing principles and classical neural network
architectures. For example, Liu et al. [14]
have introduced a quantum convolutional
neural network (QCNN) based on hybrid
quantum-classical methodology.

Ceschini et al. [4] proposed a hybrid
quantum-classical recurrent neural network to
predict time series data of renewable energy. Chen
et al. [6] introduced a hybrid model for quantum
long short-term memory (QLSTM) that can apply
to NISQ devices to handle sequential data. QNN
models can applied in NLP applications to enhance
their performance.

Sipio et al. [7] introduced a QLSTM hybrid
model and employed it to perform POS tagging.
This model demonstrates an attempt to employ
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Fig. 2. Circuit for data encoding. Initially, all quantum
states are present in default state |0⟩

NLP applications by using QNN. However, this
model does not show any significant advantage
for POS tagging. Pandey et al. [19] implements
a quantum LSTM (QLSTM) for POS tagging of a
low-resource Indian language, Mizo.

The authors experimented with different
numbers of qubits and performed hyperparameter
tuning. However, their experiment’s result could
be better, showing that current quantum devices
do not apply to large datasets. Pandey et al. [18]
propose a hybrid quantum-classical QLSTM for
POS tagging on code-mixed languages.

This model converts gates of classical LSTM
into variational quantum layers. However, the
proposed is not able to process large datasets.
So, the authors split entire datasets into batches
of hundred sentences for the experiments.

The code-mixed dataset consists of nine
datasets collected from three social media
platforms: Facebook, Twitter, and WhatsApp.
The authors [13] propose QRNN to handle
sequential data.

The proposed model is employed to predict
stock prices and classify the text data that
show significant improvements. However, this
model applies to small datasets. Quantum
natural language processing (QNLP) [16] is
another research area to utilize near-term quantum
computers for NLP applications. It employs
compositional distributional semantics (DisCoCat)
that apply the compositional structure of the
Pregroup grammars.

It represents the grammatical structure of
sentences as a string diagram, encoding a specific
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Fig. 3. Circuit for VQC

interaction of words according to the grammar.
The DiscoCat converts these string diagrams into
quantum circuits to process NLP applications.
Various NLP applications have been implemented
by the QNLP framework, like question answering
[17], grammar-aware classification [17], and
sentiment analysis [9]. QNLP demands a massive
amount of computational resources, which makes
it time-consuming to process NLP applications.

3 System Architecture

We propose a QRNN that presents a quantum
counterpart of classical RNN architecture. The
QRNN employs variational quantum circuits (VQC)
consisting of parameterized quantum gates. These
gates imply tunable parameters, which provide
flexibility during the model training. In QRNN, each
cell of traditional RNN is substituted by VQC. Our
main objective is to perform the classification of text
into different labels.

So, we perform a measurement of each circuit
that provides labels for each input. The structure
of the QRNN is divided into three submodules:
data encoding, VQC, and measurement. Figure
1 represents the architecture of the proposed
system, where AE represents amplitude encoding,
and VQC represents a variational quantum circuit.

The given circuit is quantum analogous to
classical RNN, where each VQC represent the
cells of RNNs. Each time instance, data Xt must
be encoded and applied to a VQC to process
the data. In the end, partial measurements are
employed to determine the labels of corresponding
text data.
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Again, we initialize the quantum circuit as the
initial state and pass the next data instance. We
use one ancilla qubit that passes the previous
information to the current state, which serves as
the hidden state of RNN.

3.1 Encoding Method

We must convert classical information to quantum
states to process classical data using the quantum
framework. The process of transforming classical
data into quantum state is known as data encoding.
Various data encoding methods exist, such as
basis, amplitude, and angle encoding. In our study,
we use amplitude encoding due to its compatibility
with our quantum classifier.

Amplitude encoding encodes classical data
into the amplitudes of quantum states. It uses
the principle of superposition and allows multiple
information to be represented in a single quantum
state. The choice of amplitude encoding is
because it requires fewer qubits to describe the
sizeable dimensional dataset. Suppose an N
qubit employs amplitude encoding; then it holds
2n quantum states. Moreover, our systems mainly
focus on NLP applications, which always deal with
large dimensional datasets.

State-of-the-art (SOTA) QNN models utilize
angle encoding for data encoding, where each
qubit generates a single quantum state. Handling
extensive dimensional data requires more qubits,
while current quantum hardware limitations prevent
handling large numbers of qubits. As a result,
SOTA QNNS can not manage large datasets.
Meanwhile, word embedding of each word
generates high-dimensional word vectors.

So, our novel approach uses amplitude
encoding in QRNN to handle large dimensional
word vectors.

3.2 Variational Quantum Circuit

After encoding classical information, the next step
applies VQCs to process quantum states. Figure 3
represents a VQC of the proposed system, which
consists of Y and X rotational and controlled-not
gates. The processing unit of the neural network is
a combination of linear and non-linear operations.

So, our proposed system contains rotational
gates X and Y, which have parameterized gates
consisting of adjustable parameters, where the
Y gate can represent non-linear operation [2].
The X gate is a cable that represents linear
operations. A controlled-not gate is applied to
generate entanglement between different qubits,
which increases the circuit’s entangling capability.

It helps to identify the patterns between data.
The parameters w1, w2, ..., w15 are adjustable
to train the model. Our goal is to use fewer
parameters to learn the model, thereby reducing
the overload of many parameters during training.
Classical deep learning models demonstrate good
performances but require a substantial number of
parameters to train the models, which makes them
complex models.

On the other hand, quantum computers can
find patterns from fewer parameters [20]. This
unique property of quantum computers makes
them applicable for identifying the patterns in
datasets. However, current quantum hardware is
limited in handling many parameters. Therefore,
our proposed model uses fewer parameters for
training, enabling it to be compatible with existing
quantum hardware.

3.3 Measurement

Finally, the circuit is measured, generating
classical information that will give a label of
an observation. The proposed uses partial
measurement, which measures all the quantum
states except the ancilla qubit. The use of
ancilla qubit passes the previous information to the
current state.

Tila qubits serve as a hidden state of classical
RNN, which maintains the flow of information from
the prior state to the current state. The result of
the measurement assigns labels of corresponding
words. Various measurement methods exist to
measure the quantum circuits. However, we
use expectation measurement that provides the
expected value of each observation.
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4 Conclusion & Future Work

We introduce a QRNN as a quantum classifier
to perform classification tasks on text data. The
proposed system uses quantum mechanics
principles to enhance the performance of NLP
tasks. The present architecture is a novel
approach, applying amplitude encoding to encode
classical information and employing partial
measurement to determine the label of text data,
with an ancilla qubit that passes the previous state
information to the current state.

We designed our proposed QRNN to
accommodate sizeable dimensional word vectors,
maintaining each word’s integrity and requiring
fewer parameters to train the model, making it
compatible with current quantum computers. Our
future work will apply the proposed model as a
quantum classifier to classify texts such as POS
tagging, NER, and text classification.
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