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Abstract. Feature selection is a widely used
technique to boost the efficiency of machine learning
models, particularly when working with high-dimensional
datasets. However, after reducing the feature space,
we must retrain the model to measure the impact
of the removed features. This can be inconvenient,
especially when dealing with large datasets of thousands
or millions of instances, as it leads to computationally
expensive processes. To avoid the costly procedure of
retraining, this study evaluates the impact of predicting
using neural networks that have not been retrained
after feature selection. We used two architectures that
allow feature removal without affecting the architectural
structure: FT-Transformers, which are capable of
generating predictions even when certain features are
excluded from the input, and Multi-layer Perceptrons, by
pruning unused weights. These methods are compared
against XGBoost, which requires retraining, on various
tabular datasets. Our experiments demonstrate that the
proposed approaches achieve competitive performance
compared to retrained models, especially when the
removal percentage is up to 20%. Notably, the
proposed methods exhibit significantly faster evaluation
times, particularly on large datasets. These methods
offer a promising solution for efficiently applying feature
removals, providing a favorable trade-off between
performance and computational costs.

Keywords. Feature selection, transformers, pruning
models, neural networks.

1 Introduction

Collecting data is an extensive process that
corporations employ to extract knowledge and
enhance process efficiency [15]. This has
resulted in the creation of large databases,
presenting an opportunity to apply machine
learning and deep learning techniques, which
thrive on substantial amounts of data for achieving
remarkable results. Nevertheless, the collected
data may contain several variables, causing the
creation of high-dimensional datasets.

When dealing with high-dimensional
information, many challenges and complications
arise, such as an exponential increase in
computational effort, large waste of space,
poor visualization capabilities, and the inability
of machine learning algorithms to manage this
data [20, 18].

Even though including more variables may
theoretically allow for the storage of more
information, this may not be beneficial in practice.
This is due to the higher likelihood of encountering
noisy and redundant information in the dataset
[20, 14]. A straightforward approach for dealing
with high-dimensional data is to remove features
that have repeated information or constant values.

This type of data cleansing is a natural part
of the process. However, we may also need
to reduce features that are still important to the
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Table 1. Hyperparameter search space for models
selected for comparison

Model Hyperparameter Search set

FT-Transformer

Embedding dimension {128, 256}

Number of heads {4, 8, 16, 32}

Number of layers {2, 3, 4, 5}

Attention dropout {0.3}

Point-wise neural
network dropout {0.1}

Learning rate {10-4}

Weight decay {10-4}

MLP

Hidden layers {3, 6}

Hidden units {512}

Attention dropout {0.3}

Dropout {0.2}

Learning rate {10-3}

Weight decay {0.1}

XGBoost
Maximum depth {5, 10, 15, 20}

Learning rate {0.1}

problem, but not as essential as others. To
achieve this, it is common to employ a feature
selection algorithm. These algorithms help us
reduce the number of features to a desired size,
but they use complex rules to determine which
features to remove. This allows us to streamline
the dataset while retaining the most relevant
information. Evaluating the quality of a feature
subset can be computationally expensive. The
process typically involves the following steps:

1. Train an initial model using all available features
to establish a baseline performance metric
(e.g., accuracy).

2. Apply a feature selection algorithm to create
a subset of the features. Once the relevant
features are selected.

3. Train a second model using this reduced feature
set, and finally.

4. Compare the performance of the two models.
If the performance degradation between the

two models is unacceptable, you must repeat
the process.

This may involve trying a different feature
selection algorithm or tuning the parameters
of the current feature selection algorithm (e.g.,
changing the size of the generated subset). This
iterative process of training models with different
feature subsets to evaluate their quality can be
computationally expensive.

The most prominent models for tabular data
are tree-based algorithms, such as XGBoost, and
neural networks [4, 9, 10, 13, 11, 7]. When
dealing with large datasets, these models can
take a significant amount of time to train. This
poses a challenge when evaluating feature subsets
generated by selection algorithms. Performing
multiple iterations of training models with different
feature subsets can be disadvantageous due to the
computational expense.

To address the challenge of the computationally
expensive process of evaluating feature subsets,
this study explores the use of two neural network
architectures as final predictive models. The
key advantage is that these models do not
require retraining when low-relevance features,
as identified by feature selection algorithms, are
removed. The first architecture is a multi-layer
perceptron (MLP), where the weights of the
removed features are pruned.

The second architecture is the FT-Transformer
[7], which allows the model to generate predictions
even when the embeddings of certain features
are excluded from the input. Our findings show
that these neural network models can perform
competitively even without the need for retraining.
When we removed up to 60% of low-relevance
features, we observed performance degradations
of less than 10%.

Crucially, by avoiding retraining, we were
able to speed up the decision-making process
by up to 300 times compared to the iterative
training approach, especially for large datasets.
Furthermore, we discovered that using up to 20%
of the low-relevance features, the non-retrained
neural networks could be employed as final
predictive models without significant performance
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Table 2. Properties of selected datasets. Datasets are
sorted by their number of features

Dataset # Features # Instances

volkert 181 58310

jasmine 145 2984

nomao 119 34465

kr-vs-kp 37 3196

sylvine 21 5124

australian 15 690

adult 15 48842

loss compared to retraining-based methods. The
main contributions of this study are as follows:

1. We introduce a straightforward pruning rule for
MLPs when removing features.

2. We conduct a comparison of the proposed
neural network architectures against retraining
XGBoost, one of the most prominent models
for tabular data. This comparison allowed
us to determine the degradation rate and the
evaluation speed when reducing the number of
features across seven datasets.

3. We show that non-retrained neural networks
remain competitive, achieving a degradation
rate of less than 10% even when features
are removed.

4. We demonstrate that pruned MLPs can be up to
300 times faster than tree-based methods when
evaluating the impact of feature reduction.

5. We show that decision trees as feature
selection algorithms generally achieve a small
degradation rate.

The remainder of this paper is organized
as follows: Section 2 provides background
on the feature selection techniques and their
considerations. In Section 3, we introduce the
pruning rule for the MLPs. Additionally, we explain
why the FT-Transformer has the ability to produce
predictions even when features are removed.

Section 4 details the models selected for
comparison and their optimization process. It
also describes the datasets employed and their
preprocessing. Finally, we outline the feature
selection procedure used. Section 5 presents
the performance degradations and execution times
achieved by each approach, demonstrating the
benefits of the proposed methods. Finally,
Section 6 summarizes the key findings.

2 Background

Feature selection refers to the process of
determining which features should be included in
a model. From a practical standpoint, a model with
fewer features can be more interpretable and less
expensive to operate [14]. For example, a neural
network with a lower number of features requires
fewer parameters. Similarly, a tree-based model
with fewer features requires fewer splits, resulting
in shallower trees.

These model reductions lead to faster training
and inference times, directly impacting the
computational costs, whether in terms of time or
monetary expense (e.g., when performed in a
cloud environment).

Another perspective is that if a variable requires
high-precision equipment to measure, and it is
not as relevant as other features, we can discard
its measurement, thereby saving costs. This
highlights how feature selection can optimize the
model complexity and the data collection process.
The feature selection methods are classified into
three types [17]:

1. Filter Methods. Rank the features based
on their scores in various statistical tests for
their correlation with the prediction target. The
top-ranked features are kept, while the others
are removed.

Some key benefits of filter methods are that
they are independent of the model used, are fast
and scalable, capture feature dependencies,
and reduce the overfitting risk.

A simple approach is to rank the features
based on their linear correlation with the
target variable. The features with the highest
correlation are placed at the top of the ranking.
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2. Wrapper Methods. Identify the best performing
set of features for a specific model by using
the model’s own performance as the metric
to guide the selection of the optimal feature
subset [8]. This is why wrapper methods
typically outperform filtering methods regarding
model performance, being its main advantage
[12, 2, 6]. One example of a wrapper feature
selection method is the F-Test.

This approach creates a candidate linear
model by removing a feature, and then
statistically compares the similarity between the
error means when using all features versus
when one feature is removed, using an F-score.
If the difference in error means is not statistically
significant, the removed feature is considered
non-relevant [22, 14].

3. Embedded Methods. Integrate the feature
selection process directly into the model.
During the training step, the model determines
the relevance of each feature through its
parameters or decision steps, to achieve the
best evaluation score.

Once the model is trained, the importance
of each feature can be recovered and ranked
to perform the feature selection. Embedded
methods are faster than wrapper methods, as
they only require a single training phase.

One example of an embedded method
is using a decision tree, where the feature
importance is computed as the normalized total
reduction in the Gini index brought about by that
feature [23]. Another approach is to use the
coefficients of a linear model, where a feature’s
importance is determined by its coefficient’s
magnitude, as long as the features are properly
normalized [22].

Each feature selection method has its own
benefits and drawbacks when compared to the
others. As a result, no single algorithm
can be considered universally optimal for all
problems. This is why exploring and utilizing
various feature selection methods is generally
encouraged. However, it’s important to carefully
consider the trade-offs between the effectiveness
and efficiency of each approach.

Table 3. Test balanced accuracy for each considered
method when training in the whole set of features

Dataset FT-Transformer MLP XGBoost

volkert 63.578 60.139 59.494

jasmine 80.477 77.255 80.560

nomao 94.813 94.010 96.217

kr-vs-kp 99.685 99.211 97.348

sylvine 94.123 92.955 94.689

australian 85.448 86.129 89.067

adult 79.187 78.774 76.816

3 Methodology

In this section, we outline the approaches taken
to avoid retraining neural networks when relevant
features are removed. We explain the pruning
rule applied to a Multi-layer Perceptron (MLP). This
approach allows us to efficiently update the model
when removing less relevant features, without the
need for full retraining.

Next, we briefly describe the FT-Transformer
architecture and its ability to generate predictions
even when the embeddings of certain features are
excluded from the input.

This property of the FT-Transformer enables
feature removals without any changes to the model
structure or the need for retraining. The key benefit
of these approaches is the ability to quickly assess
the impact of removing low-relevance features,
without the overhead of retraining the entire model
for each feature subset evaluation.

3.1 Pruned Multi-Layer Perceptron

The Multi-layer Perceptron (MLP) is a fundamental
approach for tabular data. It consists of a
composition of affine transformations, including
non-linearities, to create complex decision
boundaries or simulate complex behaviors. The
first layer of an MLP using a ReLU non-linearity
can be expressed as:

ReLU(Wx+ b) ∈ Rh, (1)
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Fig. 1. Mean and standard deviation of cross-validation balanced accuracy for the best-performing architecture in each
approach (left) and the elapsed time required to determine the balanced accuracies shown on the left (right), for the
volkert and adult datasets

where x ∈ Rm is the vector of input features,
W ∈ Rh×m is a matrix of trainable weights, and
b ∈ Rh is a vector of trainable biases. When
removing a feature, we can simply remove the
weights associated with those features, and the
output’s dimension will not change, keeping the
rest of the architecture invariant to the removals.

It is, for a subset of features F ⊂ {1, · · · ,m} we
index the matrix of weights and the features vector,
computing. When removing a feature, we can
remove the weights associated with that feature
from the weight matrix W.

This keeps the output dimension h unchanged,
and the rest of the architecture remains invariant
to the feature removals. For a subset of features
F ⊂ {1, · · · ,m}, we can index the weight matrix
and feature vector accordingly:

ReLU(W·,FxF + b) ∈ Rh. (2)

This pruning approach allows us to efficiently
update the MLP model when removing
less relevant features, without the need for
full retraining.

3.2 FT-Transformer

The FT-Transformer [7] is an approach that
combines a Feature Tokenizer with a Transformer
architecture for tabular data. It creates embeddings
for numerical and categorical variables (feature
tokenization process) processed by a Transformer
[19] variant. For numerical features, the
embedding process involves applying an
independent Multi-Layer Perceptron (MLP) to
each feature.

For categorical features, the embedding
process consists of applying an ordinal encoding
to each feature and creating a look-up table
for each one, similar to the approach used in
Natural Language Processing tasks [19, 5]. Once
tokenized, the embeddings are combined with
an additional classification token [CLS] [5] at the
beginning of the sequence.

This sequence is then processed by a
Transformer encoder variant, which includes
a PreNorm layer [21] and removes the first
normalization from the first Transformer layer.
Finally, the output embedding corresponding to the
[CLS] token is passed through layer normalization
[1], a ReLU activation function, and a single-layer
perceptron with an identity activation function to
make predictions.

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1063–1075
doi: 10.13053/CyS-28-3-4951

Evaluating the Impact of Removing Low-relevance Features in Non-retrained Neural Networks 1067

ISSN 2007-9737



Fig. 2. Mean and standard deviation of cross-validation balanced accuracy for the best-performing architecture in each
approach (left) and the elapsed time required to determine the balanced accuracies shown on the left (right), for the
jasmine, nomao, kr-vs-kp, sylvine, and australian datasets

The FT-Transformer’s capacity to generate
predictions even when the embeddings of certain
features are excluded from the input is enabled by
its Multi-head Self-Attention (MHSA) mechanism
as follows:

Let’s consider the input to the FT-Transformer
as a matrix of embedded features E ∈ R(m+1)×d,
where m + 1 represents the number of features
plus the additional [CLS] token, and d is the
embedding dimension.
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Table 4. Test balanced accuracy for each considered method when training using the 80% of the features selected
using the decision-tree-based algorithm

Dataset FT-Transformer MLP + Pruning XGBoost XGBoost + HS

volkert 63.611 60.178 60.126 60.126

jasmine 80.606 77.602 80.848 80.848

nomao 94.189 94.639 96.320 96.215

kr-vs-kp 99.369 98.429 97.190 99.687

sylvine 93.931 93.051 95.370 95.466

australian 87.428 82.063 89.067 89.067

adult 75.731 74.390 73.676 73.676

The MHSA computation for a single layer of the
FT-Transformer can be expressed as:

Softmax

(
(EWQ)(EWK)T

√
d

)
(EWV ) ∈ R(m+1)×d, (3)

where usually, WQ ∈ Rd×d, WK ∈ Rd×d,
and WV ∈ Rd×d are matrices of trainable
parameters for the queries, keys, and values
respectively. Whether we remove features from
the input embedding matrix E, the MHSA and
subsequent operations can be computed in the
same way, without affecting the overall architecture
structure and then avoid the retraining procedure.

However, the output of the MHSA and the
output of the Transformer encoder will now have
a dimension of (F + 1) × d, where |F| is the
cardinality of the subset of retained features.
In this study, we employed a modified version
of the FT-Transformer. In contrast to the
original architecture, we retained the first layer
normalization step, and we did not apply layer
normalization to the [CLS] token representation.

4 Experiments

This section outlines the experimental setup used
to evaluate the impact of removing low-relevant
features on non-retrained neural networks. We
begin by describing the approaches taken for the
model evaluation and optimization processes.

Next, we provide details on the datasets used in
the study, as well as the data preprocessing steps
applied. Finally, we outline the feature selection
procedure that was followed, including the specific
algorithms employed.

4.1 Compared Approaches

To compare the performance degradation of the
Pruned MLP and FT-Transformer models when
removing low-relevance features without retraining,
we employed the XGBoost [4] algorithm as a
baseline. The comparisons were made by
removing features in increments of 10%, from
100% of the features down to 40%.

For the neural network models, we first
performed a hyperparameter search using the full
set of features, employing a grid search strategy.
We then kept the architecture with the highest
balanced accuracy fixed, and applied the pruning
rules described in Section 3 for each feature
removal scenario.

For the XGBoost models we took two
approaches. The first (XGBoost) perform an
initial grid search using the full feature set, then
keep the highest performing architecture fixed for
each feature removal, retraining the model.

The second approach (XGBoost + HS)
performs the hyperparameter search for each
subset of features tested. All models were
optimized using the cross-entropy loss. The neural
networks used the AdamW optimizer for 150
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Table 5. Mean degradation percentages for each dataset, considering features percentages ranging from 100% to 40%

Dataset FT-Transformer MLP XGBoost + HS XGBoost

volkert 6.330± 7.541 9.604± 11.250 0.525± 0.499 0.553± 0.504

jasmine 2.418± 1.660 0.872± 0.681 0.608± 0.416 1.065± 0.695

nomao 5.438± 4.538 3.865± 3.422 0.125± 0.131 0.206± 0.139

kr-vs-kp 2.439± 2.432 1.065± 0.804 0.376± 0.547 0.436± 0.544

sylvine 0.540± 0.287 0.166± 0.197 −0.392± 0.318 −0.292± 0.266

australian 1.790± 2.168 1.259± 1.887 1.570± 2.493 1.576± 2.504

adult 5.426± 5.646 8.303± 9.424 5.820± 4.348 5.834± 4.383

epochs with 30 early stopping patience steps. The
XGBoost models were trained over 150 estimators
with 30 early stopping patience steps. The
hyperparameter search spaces for each model are
described in Table 1.

4.2 Datasets and Preprocessing

We selected seven datasets from the OpenML
repository [3]. The selected datasets were: volkert,
jasmine, nomao, kr-vs-kp, sylvine, australian, and
adult. The properties of these datasets are
summarized in Table 2.

The datasets were split into 80% for training
and 20% for testing. The training partition was
further divided into five stratified folds to perform
cross-validation (CV). Numerical features were
normalized to have a mean of 0 and a standard
deviation of 1. Missing values were imputed
using the KNNImputer from scikit-learn [16] with
k = 10 nearest neighbors.

For the FT-Transformer and XGBoost models,
categorical features were encoded using an ordinal
encoder, where the zero code was reserved for null
values. In contrast, the MLP model used one-hot
encoding for the categorical features.

4.3 Feature Selection

We considered three approaches for feature
selection: the F-test, the decision tree, and linear
model embedded methods. While embedded
methods are particularly well-suited when applying
feature reduction directly to the model that embeds
the feature relevance, their feature ranking can

still be leveraged and applied to other models as
well. We used a specific methodology to perform
the feature selection. First, we standardized the
numerical features to have a mean of 0 and a
standard deviation of 1, and one-hot encoded
the categorical features. All missing values were
replaced with zeros. Next, we performed feature
selection using each of the three algorithms.

When a feature was selected among the top
k features by a given algorithm, we marked
the corresponding original feature (before one-hot
encoding) as one of the top k features.

This selection process continued until k
features from the original dataset were marked.
In the cross-validation setup, the feature selection
was performed independently for each fold. For the
final testing, the feature selection was done using
the training partition.

5 Results

5.1 General Performance

We verify that every proposed method achieves
similar results for every dataset when training using
the entire set of features. This is because if
the proposed methods were not competitive in
the first instance, they would be discarded as
an initial model. Table 3 shows the balanced
accuracy in the test set for the fixed architectures
from the cross-validation scores. Due to the
selection methodology, the XGboost and XGBoost
+ HS models are the same when training using
all characteristics.
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Table 6. Speed ratios for each approach and dataset, considering feature percentages from 100% to 40%. The MLP
was omitted since it was the base for the comparison

Dataset FT-Transformer XGBoost + HS XGBoost

volkert ×7.6−×18.2 ×905.6−×1533.5 ×366.8−×621.4

jasmine ×3.4−×7.3 ×25.5−×36.8 ×7.7−×10.7

nomao ×3.5−×7.2 ×23.0−×41.3 ×7.7−×13.3

kr-vs-kp ×4.4−×5.0 ×23.8−×29.5 ×5.2−×6.1

sylvine ×5.0−×6.1 ×21.6−×30.8 ×5.8−×8.3

australian ×4.1−×4.5 ×26.0−×30.6 ×5.3−×7.0

adult ×5.1−×5.4 ×4.9−×8.2 ×1.2−×1.5

5.2 Performance and Efficency

The removal of low-relevant features can affect
the models in two ways. First, the information
reduction may impact the models’ performance.
Second, the models may become more efficient,
as they require fewer parameters and operations.

To evaluate these trade-offs, we assess the
benefits and disadvantages of using non-retrained
networks in both aspects. Figure 1 presents two
cases of study: the volkert and adult datasets,
which have the highest and lowest number of
features, respectively.

The plots include the mean and standard
deviations of the cross-validation balanced
accuracy against the time required to obtain the
balanced accuracies for each evaluation method
when using the decision-tree-based feature
selection algorithm.

As will be shown in Section 5.3, the
decision-tree-based algorithm was the best
method for reducing the number of features. The
volkert dataset demonstrates a case where the
proposed methods excel in efficiency, requiring
significantly less time compared to methods that
require retraining. However, the effectiveness is
only maintained when the removal of low-relevance
features is up to 20%.

Conversely, in the adult dataset, the required
time for the FT-Transformer, even without
retraining, is higher than the time required for
XGBoost. Regarding the balanced accuracy
degradation, both methods achieve similar results.

The adult dataset represents a poor case for
the application of the proposed methods. Figure 2
presents the cross-validation balanced accuracies
and the required time for the other datasets.
Across all datasets, the time needed to evaluate
the low-relevance feature removals is lower than
the time required for methods that need retraining.

Notably, for every dataset, the degradation in
the balanced accuracy of at least one of the
proposed methods is very similar to the methods
requiring retraining, when the number of selected
features ranges between 100% and 80%.

Table 4 shows the balanced accuracies in
the test set when using 80% of the features.
These results are comparable to those presented
in Table 3. The key observation is that for
every dataset, the results of every method remain
competitive, and even for the volkert, jasmine,
sylvine, and australian datasets, the balanced
accuracy is higher when using a lower number
of features. This highlights the importance
of performing feature selection for removing
redundant or noisy variables.

To quantify and summarize the observed
performance results, we computed the degradation
percentage with respect to the balanced accuracy
achieved when using 100% of the features for
a specific dataset and every method. Given
a specific dataset D, a subset of features F ,
and a method’s space H (e.g., all considered
architectures in the XGBoost + HS space), the
degradation percentage d is calculated as:
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Fig. 3. Percentage of features selected versus the degradation ratio for each algorithm used for feature selection

d(D,H,F) =

1− max
h∈H

B(DF ,h)

max
h∈H

B(D,h)

 · 100, (4)

where DF is the dataset containing only the
selected features in F and B is the mean
cross-validation balanced accuracy.

Table 5 shows the mean and standard deviation
of the degradation percentages, averaged across
all subsets of features generated, ranging from
100% to 40% for each dataset.

Negative degradations indicate an improvement
over the models trained with the entire feature set.
As expected, the highest degradation percentages
correspond to methods that were not retrained.

However, the mean degradation percentage for
the proposed methods remains below 10%. In
contrast to the degradation, the models that do
not require retraining exhibit significantly shorter
required times.

To compare and summarize the required time
for each method, we considered the ratio between
every method and the fastest method, which is the
MLP approach. Let DF the dataset containing only
the features in F , H the compared method’s space,
HMLP the MLP space, and T the time required to
complete the experiment for a given dataset and a
given method, the speed ratio s is calculated as:

s(DF ,H) =
T (DF ,H)

T (DF ,HMLP )
. (5)
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Table 6 presents the minimum and maximum
speed ratios of all subsets of features generated,
ranging from 100% to 40% for each dataset.
As observed, the FT-Transformer is generally the
fastest method, excluding the MLP approach, while
the XGBoost + HS is the slowest. Even when the
XGBoost + HS is the correct way to perform the
tests, the XGBoost was a heuristic method that
could work but invested less time.

In this case, the proposed methods outperform
the efficiency, showing to be up to 300 times faster.
It is important to note that the speed ratios of these
approaches are closer when using small datasets.
However, as the number of instances and features
increases, the difference in speed ratios becomes
more significant.

5.3 Feature Selection Algorithms Performance

To determine the best feature selection algorithm,
we analyze the distributions of the degradation
percentages for each feature selection algorithm.
Figure 3 shows the distribution of the degradation
ratio, computed as in Equation 4, for each feature
selection algorithm and percentage of features
selected, across all datasets.

As observed, the decision tree algorithm
generally shows the lowest degradation median
and the smallest interquartile range. This indicates
that the concentration of the degradations tends
to be the smallest among all feature selection
algorithms considered, making it the most suitable
option for feature removal.

6 Conclusions

In this study, we have evaluated the impact
of removing low-relevance features using
non-retrained networks. To select low-relevant
features, we employed three feature selection
algorithms: The embedded decision tree, the
F-test, and the embedded linear model. To
avoid the retraining procedure, we proposed the
use of two architectures: a pruned MLP and
the FT-Transformer, leveraging their abilities to
create predictions even when certain features
are removed.

Our results demonstrate the viability of this
approach. When removing up to 60% of
low-relevance features, we achieved performance
degradations lower than 10%. Crucially, by
avoiding retraining, we were able to speed up
the decision-making process by up to 300 times,
especially for large datasets.

Moreover, we found that using up to 20% of
the low-relevant features, the non-retrained neural
networks could be employed as final predictive
models without sacrificing significant performance
compared to retraining-based methods. This last
finding is particularly noteworthy.

When working with large datasets, the high
costs associated with retraining models as features
are removed can be prohibitive. However, by
leveraging our proposed non-retrained techniques,
these expenses can be largely avoided.

Furthermore, our analysis of the degradation
distributions revealed that the embedded
decision-tree-based feature selection algorithm
outperformed both linear model coefficients and
the F-test in identifying the most appropriate
low-relevant features to remove.
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Corona-Bermúdez thanks CONAHCyT for
the scholarship granted towards pursuing his
graduate studies.

References

1. Ba, J. L., Kiros, J. R., Hinton, G. E. (2016).
Layer normalization. arXiv. DOI: 10.48550/
arxiv.1607.06450.

2. Bee-Wah, Y., Ibrahim, N., Abdul-Hamid,
H., Abdul-Rahman, S., Simon, F. (2018).
Feature selection methods: Case of filter
and wrapper approaches for maximising
classification accuracy. Pertanika Journal of
Science and Technology, Vol. 26, No. 1,
pp. 329–340.

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1063–1075
doi: 10.13053/CyS-28-3-4951

Evaluating the Impact of Removing Low-relevance Features in Non-retrained Neural Networks 1073

ISSN 2007-9737



3. Casalicchio, G., Bossek, J., Lang,
M., Kirchhoff, D., Kerschke, P.,
Hofner, B., Seibold, H., Vanschoren,
J., Bischl, B. (2017). OpenML: An R
package to connect to the machine
learning platform OpenML. Computational
Statistics, Vol. 34, No. 3, pp. 977–991.
DOI: 10.1007/s00180-017-0742-2.

4. Chen, T., Guestrin, C. (2016). XGBoost: A
scalable tree boosting system. Proceedings
of the 22nd Association for Computing
Machinery’s Special Interest Group on
Knowledge Discovery and Data Mining
International Conference on Knowledge
Discovery and Data Mining, Association
for Computing Machinery, pp. 785–794.
DOI: 10.1145/2939672.2939785.

5. Devlin, J., Chang, M. W., Lee, K.,
Toutanova, K. (2018). BERT: Pre-training of
deep bidirectional transformers for language
understanding. Proceedings of the Conference
of the North American Chapter of the
Association for Computational Linguistics:
Human Language Technologies, Vol. 1,
pp. 4171–4186. DOI: 10.18653/v1/n19-1423.

6. Ghosh, M., Guha, R., Sarkar, R., Abraham,
A. (2019). A wrapper-filter feature selection
technique based on ant colony optimization.
Neural Computing and Applications, Vol. 32,
No. 12, pp. 7839–7857. DOI: 10.1007/
s00521-019-04171-3.

7. Gorishniy, Y., Rubachev, I., Khrulkov, V.,
Babenko, A. (2021). Revisiting deep learning
models for tabular data. 35th Conference
on Neural Information Processing System,
pp. 1–25. DOI: 10.48550/arXiv.2106.11959.

8. Guyon, I., Elisseeff, A. (2003). An
introduction of variable and feature selection.
The Journal of Machine Learning Research,
Vol. 3, pp. 1157–1182.

9. Ho, T. K. (1995). Random decision forests.
Proceedings of 3rd International Conference
on Document Analysis and Recognition,
Vol. 1, pp. 278–282. DOI: 10.1109/ICDAR.
1995.598994.

10. Hollmann, N., Müller, S., Eggensperger, K.,
Hutter, F. (2022). TabPFN: A transformer that
solves small tabular classification problems
in a second. International Conference on
Learning Representations, pp. 1–37. DOI: 10.
48550/arXiv.2207.01848.

11. Huang, X., Khetan, A., Cvitkovic, M.,
Karnin, Z. (2020). TabTransformer: Tabular
data modeling using contextual embeddings.
arXiv. DOI: 10.48550/ARXIV.2012.06678.
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