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México

santiago.mendez.moreno@gmail.com, {jacosta, ovital, espinosr}@uaslp.mx

Abstract. This study evaluates the efficiency
of computational segmentation methods in
electromyographic (EMG) signal analysis across
two distinct exercise sets. Twenty participants were
engaged, performing a series of isometric and isotonic
exercises. The first set included four isometric handgrip
exercises, while the second set consisted of four
isometric exercises with measured weights and two
isotonic exercises with weights. Out of the total, 15
registries from the first set and 18 from the second
set were considered valid. The segmentation methods
assessed were RMS, Integral, Variance, Mean, and
Entropy. Entropy, with a beta factor of 5, demonstrated
the highest segmentation efficiency of 0.88 for the first
set and 0.75 for the second. The findings highlight
the potential of the Entropy method in enhancing the
accuracy of EMG signal segmentation, which is crucial
for the development of biomechanical models and
rehabilitation protocols.

Keywords. Electromyography, signal segmentation,
spectral entropy, spectral analysis.

1 Introduction

Surface electromyography (sEMG) has emerged
as an invaluable instrument in biomechanics
and rehabilitation, offering unique insights into
muscular function that elude other methods [18, 4].

This technology, however, is often viewed
through a lens of assumed efficacy, overlooking
the intricate and varied challenges it presents in
signal segmentation.

The prevalent application of sEMG belies the
nuanced complexity inherent in interpreting muscle
contractions, noise interference, and the need for
precise temporal resolution.

This oversight has led to a lack of
comprehensive comparative studies on
segmentation methodologies. Contrary to
the conventional perception of sEMG as a
straightforward diagnostic tool, the segmentation
of its signals is a multifaceted challenge.
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Different methodologies, such as windowing
techniques and overlap rates, crucially
influence the accuracy and efficiency of signal
processing [41, 29, 6]. Our study intends to bridge
this gap by presenting a comparative analysis
of computational approaches for sEMG signal
segmentation. We evaluate these methods not
only in terms of their efficiency but also their
accuracy in various conditions.

Through this exploration, we aim to shed light
on the subtleties of signal behavior and refine the
techniques for dissecting these intricate biological
signals. Such advancements are imperative to
solidify the reliability of sEMG as both a diagnostic
and interactive modality, moving beyond the realm
of assumed effectiveness to a domain of proven
efficacy and precision [16].

1.1 Challenges in sEMG Signal Segmentation

Surface Electromyography (sEMG) has been a
pivotal tool in various fields such as medical
diagnostics, sports science, and rehabilitation.
The technique offers a non-invasive approach
to measure muscle activation, providing valuable
insights into neuromuscular functioning.

However, one of the significant challenges in
sEMG data analysis is the segmentation of the
recorded signals. Proper segmentation is crucial
for accurate feature extraction and subsequent
data interpretation. Various methods have been
proposed to tackle this issue, each with its own set
of advantages and limitations [21, 3, 2, 1].

Traditional methods for sEMG segmentation
have been widely studied and implemented.
Techniques such as Root Mean Square (RMS)
have been popular for their computational
efficiency [28, 12].

However, these methods often come with
limitations. Moving Average and Mean Frequency
are other commonly used methods, but they too
require manual tuning of parameters, making them
less robust for automated analysis [26]. To
address these limitations, methods that doesn’t
rely in the amplitude of the signal, such as
non-linear methods, have been proposed for
sEMG segmentation.

One such promising approach is the use of
Shannon Entropy, a measure of the information
content in signals [5]. Unlike traditional methods,
Shannon Entropy does not rely solely on the
amplitude of the signal, thereby offering a
more comprehensive analysis [5]. This makes
it particularly useful for detecting muscle
activations that may otherwise be overlooked
by amplitude-based methods [13]. The standard
procedure for determining the threshold for these
methods often involves calculating the mean and
standard deviation of the baseline noise in the
sEMG signal [39]. Typically, the threshold is set as
the mean plus two standard deviations.

However, this approach may not be robust
enough to capture all the relevant activities in the
signal, especially those with low amplitude [8].
Shannon Entropy, being a nonlinear method, offers
an alternative that does not rely solely on the
amplitude of the signal, potentially capturing more
nuanced activities [19]. In this study, we aim
to compare the efficacy of Shannon Entropy
with other commonly used methods for sEMG
segmentation, such as Root Mean Square (RMS),
Moving Average, Mean Frequency, Skewness,
Kurtosis, and Integration [28].

Each of these methods has its own set of
advantages and limitations.Root Mean Square
(RMS) is commonly employed in EMG analysis
due to its effectiveness in steady-state conditions,
yet it may not fully capture the dynamic changes
inherent in non-stationary signal behaviors as seen
in [28]. On the other hand, methods like Mean
Frequency can be computationally expensive and
may not be suitable for real-time applications [14].
Therefore, a comprehensive comparison is
essential to identify the most effective and efficient
method for sEMG segmentation.

2 Background

In surface electromyography (sEMG),
segmentation techniques are crucial for isolating
specific muscle activities or exercises from
continuous recordings. One of the most common
approaches is threshold-based segmentation,
which is often cited for its simplicity and
computational efficiency.
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A study by Phinyomark et al. [28] specifically
addresses the use of threshold-based methods
in sEMG, highlighting its effectiveness in
various applications. Despite the widespread
acknowledgment of threshold-based methods in
practice, it is somewhat surprising to find a limited
number of research papers that focus solely on
this technique within the sEMG context.

This discrepancy between practical usage and
academic documentation could be attributed to
several factors. One possibility is that the method
is so fundamental that it is often included as a
component in broader studies rather than being the
focus of the research itself.

Another explanation could be that researchers
in the sEMG field are more inclined to explore novel
or complex methods, thereby sidelining the more
straightforward threshold-based techniques.

Given this gap in the literature, it becomes
pertinent to consider methodologies from other
domains that also employ threshold-based
segmentation techniques. For instance, a study by
[7] discusses a fast video segmentation algorithm
that employs shadow cancellation, global motion
compensation, and adaptive threshold techniques.

Although the context is different, the underlying
principles of threshold-based segmentation remain
consistent and could potentially be adapted for
sEMG applications.

Similarly, another study by [31] explores the
use of seed growth and threshold techniques for
skull stripping and automatic segmentation of brain
MRI. While the application is far removed from
sEMG, the segmentation techniques employed
could offer valuable insights for similar challenges
in sEMG data processing.

The lack of extensive research specifically
tailored to sEMG segmentation necessitates
a broader look into other fields where
threshold-based techniques have proven effective.
This interdisciplinary approach could pave the
way for innovative methodologies in sEMG
segmentation, filling the existing research gap.

3 Methodology

3.1 Registry Obtention

3.1.1 Participant Demographics

The study involved a cohort of 20 individuals,
comprising 8 women and 12 men aged between
18 and 25. The average Body Mass Index (BMI) of
the participants was 23.29, falling within the normal
range. Out of these, 15 registries from the first
set of exercises and 18 from the second set were
deemed valid for analysis.

3.1.2 Experimental Setup

Each participant was subjected to two series
of exercises. The first series included four
isometric maximum strength exercises, and the
second series comprised four isometric measured
weight exercises and two isotonic measured
weight exercises. Data was collected using
a superficial electromyography (sEMG) system
(MP36R Biopac), sampled at a rate of 2 kHz using
Biopac software.

3.1.3 Data Collection Procedure

For the first set, participants were seated on a
school chair, blindfolded, with their dominant arm
supine on the school chair’s palette. Electrodes
were strategically placed and restraints were
applied at the carpal and antebrachial heights.
For the second set, electrodes were strategically
placed, participants stood up, blindfolded, with their
dominant arm flexed at a 90° elbow angle.

3.1.4 Exercise Protocol

For the first series, the subjects were instructed to
exert maximum force by closing their hand around
a ball four times for 2 seconds with 2 second
interval between excertions. For the second series,
the exercises involved holding weights of 2, 4,
and 8 Kg exceting isometric force, followed by
two isotonic exercises with 2 and 4 Kg weights.
Each recording session commenced 2 seconds
before the force exertion and included a minimum
of 2-second intervals between exercises.
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Upon completion, participants were given
candy to replenish glucose levels.

3.1.5 Data Integrity and Recording

Registries were selectively excluded due to
anomalies or deviations from the prescribed
exercise protocol. These deviations included
channel saturation, extended duration of exercises
beyond the specified time, or the absence of
designated resting periods between exercises.

3.2 Signal Processing

The raw sEMG signals undergo two primary types
of analyses: time-domain and frequency-domain.

3.2.1 Time-Domain Analysis

Root Mean Square (RMS). The Root Mean
Square (RMS) is a measure of the magnitude of
a varying quantity. It is commonly used in sEMG
analysis to quantify muscle activity [15, 28]. The
RMS is mathematically defined as:

RMS =

√√√√ 1

N

N−1∑
n=0

x[n]2, (1)

where N is the number of samples and x[n] is
the nth sample. The RMS is particularly useful for
capturing the power content of the signal [8, 39].

Moving Average (MAV). The Moving Average
(MAV) is not used in this study due to its inherent
limitations. While MAV is a simple method
for smoothing signals, it is highly dependent
on the amplitude of the signal. When applied
directly to the raw sEMG signal, the result is
essentially polar in nature, making it unsuitable for
threshold-based segmentation.

Furthermore, MAV often requires the output of
another process, such as the integral of the signal,
to be meaningful. Due to these limitations, MAV
does not provide additional information useful for
sEMG segmentation.

MAVt =
1

n

t∑
i=t−n+1

xi. (2)

Integral. The Integral of the signal is used to
find the area under the curve of the sEMG signal
within a specific time window. It is defined in the
discrete form as:

Integral =
b∑

i=a

x[i], (3)

where a and b define the sample range within the
time window. The integral method is commonly
used in various fields of mathematical analysis and
has been applied in different contexts, such as
solving non-linear differential equations [38] and
fluid flow models [37].

In the context of sEMG, the integral method can
be useful for motion estimation [36]. However, it
is worth noting that the integral method alone may
not be sufficient for sEMG segmentation and often
requires additional processing or feature extraction
methods to be effective.

3.2.2 Frequency-Domain Analysis

Short-Time Fourier Transform (STFT). The
Short-Time Fourier Transform (STFT) is employed
to analyze the frequency content of the sEMG
signals within small time intervals. This provides
a time-frequency representation of the signal,
allowing for a more detailed analysis. The STFT
is mathematically defined as:

STFT(x(t)) =

∞∑
n=−∞

x(n)w(n−m)e−jωn, (4)

where w(n) is the window function, m is the time
index, and ω is the angular frequency. The STFT
has been widely used in sEMG analysis for various
applications such as muscle fatigue assessment
and gait analysis [33, 17, 10].

Variance. In the frequency-domain analysis
of sEMG signals, Variance is another commonly
used feature. Variance measures the dispersion
of the signal amplitude from its mean value.
Mathematically, the variance σ2 of a discrete signal
x[n] with N samples is given by:

σ2 =
1

N

N∑
n=1

(x[n]− µ)2, (5)
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First Set
RMS Integral Variance Mean Entropy

TS RS TS RS TS RS TS RS TS RS
1 4 4 4 4 5 4 4 4 4 4
2 0 0 0 0 27 3 4 4 4 4
3 2 0 2 0 4 4 3 3 3 2
4 18 2 1 0 0 0 1 0 5 4
5 3 2 4 4 7 3 4 4 4 4
6 4 4 4 4 6 3 4 4 4 4
7 4 4 4 4 21 3 4 4 4 4
8 4 4 11 3 0 0 10 3 8 3
9 4 4 4 4 8 3 4 4 4 4
10 1 0 1 0 0 0 4 4 5 4
11 2 0 4 4 6 3 3 2 2 1
12 4 4 4 4 17 3 4 4 4 4
13 5 3 7 3 0 0 8 3 11 3
14 5 3 5 4 4 4 5 3 5 4
15 0 0 0 0 0 0 7 3 6 4

Second Set
RMS Integral Variance Mean Entropy

TS RS TS RS TS RS TS RS TS RS
1 5 4 5 4 2 0 7 6 7 6
2 7 3 5 4 1 0 6 6 7 6
3 9 3 5 4 1 0 7 6 7 6
4 6 6 5 4 4 2 6 6 6 6
5 5 4 5 4 0 0 5 4 7 6
6 5 4 5 4 3 0 5 4 5 4
7 6 6 5 4 3 0 6 6 5 4
8 5 4 5 4 0 0 5 4 5 4
9 6 6 6 6 1 0 6 6 6 6
10 5 4 5 4 0 0 5 4 5 4
11 3 0 3 0 0 0 3 0 3 0
12 4 2 4 2 0 0 4 2 4 2
13 5 4 4 2 1 0 5 4 6 6
14 4 2 4 2 1 0 5 4 5 4
15 5 4 4 2 1 0 5 4 6 6
16 5 4 4 2 1 0 5 4 5 4
17 5 4 5 4 0 0 5 4 5 4
18 5 4 5 4 0 0 5 4 5 4

Fig. 1. On the left, the raw results for the first set
of excercises (4 total expected). On the right, for the
second set (6 total expected)

where µ is the mean of the signal. Variance
is particularly useful in capturing the signal’s
amplitude fluctuations. However, it’s worth
noting that variance alone may not provide a
comprehensive understanding of the muscle’s
condition and is often used in conjunction with
other time and frequency domain features for a
more robust analysis [13, 33].

Mean. The Mean is another feature commonly
used in the frequency-domain analysis of sEMG
signals. Mathematically, it is calculated as:

Mean =
1

N

N∑
i=1

xi, (6)

where N is the number of frequency components
and xi is the ith frequency component. The Mean
is often used in conjunction with other features
to provide a comprehensive understanding of the
signal characteristics. For instance, [11] utilized
the Mean along with time-domain features like root
mean square ratio and autoregressive model for
gesture recognition using sEMG signals.

[34] also incorporated the Mean in a feature
set that included both time and frequency domain
features for motion intention detection . [13] used
the Mean as part of a multiple feature combination
approach, which also included time-domain,
wavelet, and fuzzy entropy features, for human
gait recognition.

Skewness and Kurtosis. Skewness and
kurtosis are statistical measures often used to
describe the distribution of a dataset. However,
these measures are not utilized in this study for
the segmentation of sEMG signals. One reason
could be that skewness and kurtosis can yield polar
or chaotic results that may not be conducive to
effective segmentation. While skewness measures
the asymmetry of the data distribution, and kurtosis
quantifies the “tailedness” of the distribution,
their applicability in sEMG segmentation remains
questionable. Therefore, this study omits these
measures to focus on more reliable metrics for
sEMG signal segmentation:

Skewness =
n

(n− 1)(n− 2)

n∑
i=1

(
xi − x̄

s

)3

, (7)

Kurtosis =
n(n+ 1)

(n− 1)(n− 2)(n− 3)
, (8)

n∑
i=1

(
xi − x̄

s

)4

− 3(n− 1)2

(n− 2)(n− 3)
, (9)

where:
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Fig. 2. On the left, the mean and dispersion for every
method in the first set of exercises (4 total expected),
where mean and entropy showed the least dispersion
and more accuracy in segmentation. On the right, for
the second set (6 total expected), with similar results for
mean and entropy

n Number of observations in the dataset.=
xi Each individual observation in the dataset.=

x̄ The sample mean, calculated as
1

n

n∑
i=1

xi.=

s The sample standard deviation, which is the
square root of the sample variance.

=

Mean Frequency. Mean Frequency is excluded
from this study as it provides results that are too
constant to be useful for segmentation purposes.
The method’s output does not vary significantly
across different muscle activities, making it
unsuitable for isolating specific muscle activities in
the continuous sEMG recordings:

MF =

N∑
f=1

f · P (f)

N∑
f=1

P (f)

, (10)

where:
f Frequency component within the signal.=

P (f) Power spectral density of the frequency
component f .

=

N Total number of discrete frequency
components in the signal.

=

Shannon’s Entropy. Shannon’s Entropy is
used to measure the information content in the
signal. It is particularly useful for the segmentation
of sEMG signals due to its ability to capture the
complexity and randomness in the data. The
mathematical definition is given by:

H(X) = −
n∑

i=1

p(xi) logn p(xi), (11)

where p(xi) is the probability mass function of the
signal. This method is based on the foundational
work on information theory by [30].

3.3 Threshold Segmentation Algorithm

The algorithm reads the first 500 samples,
presumed to be basal noise, to calculate the mean
(µ). This mean is then multiplied by a β factor to
determine the threshold (T ):

T = µ× β. (12)

The β factor is found through iteration, the factor
that yields better results is the one selected for
every method.

3.4 Comparative Analysis

The final step involves comparing the
segmentation results from each method to
evaluate their efficacy and efficiency in isolating
specific muscle activities from the continuous
sEMG recordings.
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Fig. 3. Efficiency comparison of sEMG signal segmentation methods. The bar graph illustrates the segmentation
efficiency for various computational methods, including Entropy, Mean, Variance, Integral, and RMS, comparing
measured efficiency values against their respective maximum potentials. Entropy demonstrated the highest efficiency
(0.88), confirming its robustness across different exercise sets, while Variance had the lowest performance, indicating
inconsistencies in diverse exercise scenarios. The findings support the effectiveness of non-linear methods, particularly
Entropy, in enhancing EMG signal segmentation accuracy

4 Results

The initial analysis of the segmentation results is
illustrated in Figures 1 and 2, which present tables
summarizing the outcomes of the computational
techniques applied to sEMG datasets. “TS”
represents ’Total Segments’, indicating the
segments that were longer than one second—this
duration is considered the minimum expected
for an exercise. “RS” denotes ’Real Segments’,
referring to the segments that accurately match
the expected results.

To quantify these, each segment was visually
evaluated against the sEMG activity; a segment
was classified as ’real’ if it aligned with the
observable sEMG activity. Subsequently, the
aggregate data were subjected to statistical
analysis to calculate the average number of
segments produced by each technique, as well
as the deviation of the total results from the
expected outcomes, in terms of mean and
standard deviation. Finally, the obtained results
were compared to the total expected segments
(the total exercises recorded), thus determining the
efficiency of each method employed.

4.1 Comparative Analysis of
Segmentation Methods

Root Mean Square (RMS). The RMS method
demonstrated a moderate level of segmentation
success across both exercise sets with β = 3 . In
the first set, it achieved an average of 4 successful
segmentations with a higher variability indicated by
a standard deviation of 4.07.

The second set saw an improvement in both
the mean number of successful segmentations, at
5.28, and a reduced standard deviation of 1.21.
This suggests that the RMS method may be more
suited to the conditions presented in the second
set of exercises.

Integral. The Integral method showed a
consistent performance with a mean of 3.67
successful segmentations in the first set and a
slight improvement to 4.67 in the second set
with β = 4. The low standard deviations of
2.72 and 0.65, respectively, indicate a reliable
performance across different exercise protocols.
This method’s stability is evident in the results, as
seen in Figure 2.
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(a) (b)

(c) (d)

(e)

Fig. 4. Visual comparison of sEMG signal segments obtained using different methods. In (a) the segments obtained
for a random registry with RMS; in (b), with Integral; in (c), Variance;(d), Mean; and (e), Entropy. Thoug the registry is
random, the results shown are all for the same registry. Not all the registry is shown for practical purposes and axis
informations is ignored due to the subjectivity of the comparison

Variance. Variance had the most significant
discrepancy between the two sets with β =
10000. It recorded a high mean of 7 successful
segmentations in the first set but a substantial
standard deviation of 8.02, suggesting inconsistent
results. Conversely, the second set showed a
mean of only 1.06 with a slightly improved standard
deviation of 1.15, indicating a general lack of
reliability for this method across both sets.

Mean. The Mean method’s performance was
consistent with an average of 4.6 successful
segmentations in the first set and a comparable
mean of 5.28 in the second set with β = 7. The
standard deviations of 2.12 and 0.91, respectively,
reflect a stable performance with slightly better
consistency in the second set. The Mean method’s
reliable detection across both sets is depicted
in Figure 2.
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(a) (b)

(c) (d)

Fig. 5. Comparative results previous to segmenting using various methods on sEMG signals. Graph (a) illustrates
the Moving Average method, which shows excessive smoothing of the signal, obscuring vital transient information.
Graph (b) depicts the Mean Frequency method, lacking clear segmentation cues due to uniform frequency content.
Graph (c) demonstrates the Skewness method, resulting in erratic segmentation not aligned with physiological events.
Graph (d) presents the Kurtosis method, which overemphasizes outliers, failing to capture the overall muscle activity
pattern. These methods were ultimately not selected for the final analysis due to their limitations in accurately delineating
muscle contractions

Entropy. Entropy stood out as the most efficient
method in both sets with β = 5. It not only
had the highest mean of successful segmentations
at 4.8 and 5.5 for the first and second sets,
respectively, but also maintained a low standard
deviation, especially in the second set with a value
of 1.04. This method’s superior performance and
consistency highlight its potential as a robust tool
for EMG signal segmentation, as illustrated in
Figure 2.

4.2 Efficiency of Segmentation Methods

The efficiency of each segmentation method was
further analyzed through a clustered bar graph, as
depicted in Figure 3.

This graph illustrates the proportion of
successful segmentations compared to the
total expected segments for each method,
encompassing both sets of exercises.

The efficiency of every method is scaled from
0 to 1, where 1 represents 100% accuracy in
detection. However, this does not necessarily
mean that only the expected segments were
identified; instead, it indicates that all segments of
interest were detected as anticipated.

Root Mean Square (RMS). For the RMS
method, the first set of exercises showed an
efficiency rate of 0.567, which slightly improved in
the second set to 0.630.
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This incremental increase suggests a better
adaptation of the RMS method to the varied
conditions of the second exercise set.

Integral. The Integral method’s efficiency
decreased from the first to the second set, moving
from 0.633 to 0.556. This suggests that while the
Integral method was relatively efficient in the first
set, it did not adapt as well to the conditions of the
second set of exercises.

Variance. The Variance method showed a
significant drop in efficiency, from 0.550 in the first
set to a mere 0.019 in the second set. This drastic
decrease indicates that the Variance method may
not be suitable for the type of exercises included in
the second set.

Mean. The Mean method exhibited a high
efficiency in the first set at 0.817, which decreased
to 0.722 in the second set. Despite the drop,
the Mean method still maintained a relatively high
efficiency across both sets.

Entropy. Entropy proved to be the most
efficient method in the first set with an efficiency
rate of 0.883. It experienced a slight decrease
in the second set to 0.759, yet it remained the
most efficient method overall. The consistent
performance of the Entropy method underscores
its robustness in segmenting EMG signals across
different exercise protocols.

These results, depicted in the clustered
bar graph of Figure 3, highlight the varying
levels of efficiency across different segmentation
methods and exercise sets. The Entropy method
consistently outperformed the others, affirming its
potential as a reliable tool for EMG signal analysis.

5 Discussion

5.1 Electrode Placement on Biceps Brachii and
Long Hand Flexor

Electrode placement for electromyographic
(EMG) studies is a crucial step in ensuring the
accuracy of muscle activity recordings. For
the biceps brachii and the long hand flexor,
electrodes are strategically positioned away from
the neuromuscular junction (NMJ) to mitigate the
complex interference patterns that can obscure
signal interpretation.

Particularly for the biceps brachii, the NMJ is
located near the center of the muscle belly; hence,
electrodes are placed along the muscle fibers to
more effectively capture the propagation of action
potentials, avoiding the dense motor endplates that
generate interference [23].

Likewise, for the long hand flexor—a deeper
muscle with a more intricate structure—the
challenge and discomfort of NMJ placement, along
with the risk of signal attenuation, necessitate
a strategic electrode positioning. This approach
ensures a clear recording of muscle activity, devoid
of the interference that NMJ placement might
introduce [20, 9].

The judicious placement of electrodes not
only enhances comfort for participants but also
yields a standardized data collection process that
enhances the comparability of EMG data across
various studies and sessions [27].

Significantly, it reduces the incidence of
movement artifacts, a vital consideration during the
dynamic exercises that engage the biceps brachii
and long hand flexor, thereby ensuring that the
sEMG signal segmentation methods evaluated in
this study are based on the most accurate and
artifact-free data possible [24].

5.2 Segment Quality

The segmentation of sEMG signals is pivotal
for accurate analysis, yet it is fraught with
challenges due to the inherent variability in
muscle contraction initiation and the presence of
crosstalk. The onset of muscle contraction, marked
by membrane polarization, is not always captured
at the beginning of the sEMG segments.

Ideally, segments should begin with the
onset of muscle polarization rather than during
the summation of waves. In this context,
entropy-based segmentation appears to provide
segments of higher ’quality,’ initiating prior to the
apparent wave summation and concluding post the
evident cessation of sEMG activity [25].

The operative term ’evident’ is subjective, given
the current lack of a definitive method to pinpoint
the exact moment of membrane polarization
across the motor units within a muscle, particularly
when considering the impact of crosstalk.
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A visual inspection of segmented sEMG
signals, as depicted in Figure 4, suggests that
entropy and RMS-based methods may offer
superior segmentation quality. However, this
observation is specific to the data set and
may not generalize.

Despite the suboptimal segment quality across
different methods, a segment is considered
successful if it captures the essence of the sEMG
activity relevant to the study’s objectives, which
may not necessarily include the ascending and
descending tails of the signal, especially in event
characterization [25].

If segment quality were a more significant
factor, the efficiency rates for each method would
vary considerably, with only entropy and mean
potentially remaining as acceptable segmentation
approaches. This is supported by the findings of
Makaram and Ramakrishnan, who demonstrated
the efficacy of multiscale features in distinguishing
sEMG signals under various conditions, which
could be particularly relevant when considering
segment quality in relation to muscle fatigue [25].

5.3 Threshold Determination

The selection of an appropriate threshold for sEMG
signal segmentation is a delicate process that
significantly influences the quality of the resulting
signal analysis. Generally, there are two prevalent
techniques for threshold determination. The first,
which is utilized in this study, involves setting the
threshold based on the noise characteristics within
the signal, allowing for a dynamic adaptation to the
signal’s inherent variability [40].

The second, a more rudimentary technique,
calculates the average value of the entire signal
rather than isolating the noise component. This
average, or percentage of it, is then used as a
static threshold for segmenting the signal. While
this method may be straightforward, its reliability
is contingent upon the uniformity of the muscle
contractions being analyzed.

It is most effective when the contractions are
similar in nature and exhibit minimal variation
in amplitude [22]. This method is particularly
advantageous when the objective is to identify
periods of peak sEMG activity, albeit at the

risk of neglecting the subtler aspects of the
signal’s initiation and termination phases. The
efficacy of the segmentation process is thus closely
tied to the chosen thresholding technique. A
nuanced approach, such as the one adopted in
this study, can discern the intricate details of
muscle activation patterns, which is essential for a
comprehensive analysis of sEMG signals [40].

Conversely, the average-based method might
suffice in scenarios where the detection of
high-activity periods is the sole concern, despite its
limitations in capturing the full spectrum of muscle
activity [22].

5.4 Used Methods

The analysis of sEMG signals in this study
necessitated a preprocessing step that could
provide both temporal and frequency resolution
with sufficient precision. For this purpose,
the Short-Time Fourier Transform (STFT) was
employed. The STFT was chosen for its ability to
offer a detailed time-frequency distribution, which
is essential for the accurate extraction of signal
characteristics and subsequent segmentation [35].

While the Wavelet Transform (WT) was
considered as a potential alternative due to its
computational efficiency and ability to provide
a similar frequency distribution, it was not
utilized. The primary focus of this research
was not on computational speed but rather on
the segmentation efficiency and precision of
temporal and frequency definition, which the STFT
adequately provided [32].

Figure 5 presents the results of segmentation
using other methods that were explored but
ultimately not selected for the final analysis. These
methods, which include Moving Average, Mean
Frequency, Skewness, and Kurtosis, are depicted
in the figure through four separate graphs, each
illustrating the limitations that led to their exclusion.

The shortcomings of these methods rendered
them unsuitable for the objectives of this study.
The chosen segmentation approach required a
method that could accurately delineate muscle
activity while being robust against the inherent
noise and variability of sEMG signals.
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Consequently, despite the computational allure
of the aforementioned methods, they were not
adopted in favor of the STFT, which provided the
necessary resolution for effective segmentation.

6 Conclusion

The comparative analysis of EMG signal
segmentation methods in this study revealed
the Entropy method as the most efficient for both
sets of exercises. With an efficiency rate of 0.88
for the first set and 0.7592 for the second, Entropy
consistently provided the highest rate of valid
segment detection. This underscores its potential
utility in biomechanical signal analysis, particularly
in exercises varying in type and intensity.

While the RMS and Mean methods displayed
commendable efficiency, the Mean method’s
performance notably declined in the second set
of exercises. The Integral method maintained
moderate efficiency across both sets, but its
performance was not as consistent as that of the
Entropy method. The Variance method, on the
other hand, showed a significant drop in efficiency
in the second set, indicating its potential limitations
in diverse exercise scenarios.

These results highlight the critical role of
method selection in EMG signal analysis. The
Entropy method’s robustness across different
exercise modalities suggests its suitability for
accurate and reliable EMG signal segmentation,
which is crucial for biomechanical assessments
and rehabilitation protocols. The study thus
contributes valuable insights into the optimization
of EMG analysis, enhancing the precision of
biomechanical evaluations.

7 Ethical Statement

This study was performed in accordance with the
Nurenberg Code. This human study was approved
by Ethics Committee from Universidad Autonoma
de San Luis Potosı́ - approval: CEI-2020-001.
All adult participants provided written informed
consent to participate in this study.
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