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Abstract. Sorting is an essential operation in
many real-time applications, and choosing the right
architecture to perform sorting tasks can significantly
impact performance. This study aims to provide a
comprehensive literature review on the implementation
of several sorting algorithms on Intel i7 and FPGA
architectures. On these architectures, we analyze
and compare the performance and temporal stability of
five different sorting algorithms: quick-sort, heap-sort,
shell-sort, merge-sort, and tim-sort. Their performance
are evaluated in terms of average and standard deviation
of computational times on different numbers of elements
ranging from 8 to 4096. The maximum number of
elements to be sorted is set to 4096, as this is
the number provided for a real-time decision support
system as solutions to be sorted. However, our study
provides insights into the performance of different sorting
algorithms on different architectures, which can be useful
for selecting the appropriate architecture for real-time
computing applications in decision support systems.

Keywords. Field programmable gate array (FPGA),
computational times, sorting algorithm.

1 Introduction

Nowadays, Embedded electronic systems have
become ubiquitous in various sectors of activity,
from transportation to healthcare, from consumer
electronics to industrial automation.

One of the primary objectives of designing
embedded electronic systems is to ensure their
reliability and cost-effectiveness while performing

complex tasks that meet the constraints of time,
energy consumption, and manufacturing cost.
Focusing on the scope of this paper, it is
possible to mention as an example that flight
plan planning algorithms used to find the shortest
route or propose real-time avoidance trajectories
incorporate sorting algorithms.

Indeed, sorting algorithms [29, 43, 1, 2]
(sorts for short) play a vital role in the design
and performance of embedded systems. In
these systems, sorts are designed to meet the
constraints of time and energy consumption. The
choice of a sort depends on the nature of the data,
the constraints, and the desired performance.

For example, bubble-sort or insertion-sort
algorithms are easy to implement but are not
suitable for large datasets or real-time applications.
Conversely, quick-sort [37, 19], heap-sort [39],
tim-sort [6, 22] and merge-sort [31, 19] algorithms
are more complex and require more processing
power but can handle large datasets and real-time
applications. As technology continues to evolve,
the demand for efficient and reliable embedded
systems will only increase, and sorts will continue
to play a vital role in meeting these demands.

Among these systems, FPGAs
(Field-Programmable Gate Array) have emerged
as an interesting alternative to accelerate software
applications. FPGAs are integrated circuits that
can be programmed to perform specific functions.
They offer high performance and energy efficiency,
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making them suitable for real-time computing
applications. Considering sorting operations, one
approach is to use the FPGA’s built-in hardware
resources to implement the sorts directly.

These algorithms can be optimized for the
FPGA architecture, resulting in faster and more
efficient sorting. Another approach is to use the
FPGA to offload sorting operations from the CPU.
In this approach, the CPU sends the data to be
sorted to the FPGA, which sorts and returns the
sorted data to the CPU.

This approach can significantly reduce the
processing time required for sorting, as the FPGA
can handle large data sets in parallel. One
challenge in using FPGAs is the programming
complexity since FPGA programming requires
specialized knowledge in HDLs (Hardware
Description Languages) such as Verilog and
VHDL (very-high-speed integrated circuit hardware
description language).

However, available tools and libraries can
ease the programming process, making it more
accessible to software developers. Moreover,
CPUs can certainly be used in embedded systems.
In many cases, embedded systems require a
combination of processing power and low power
consumption, which can be challenging to achieve
with CPUs alone. To meet these requirements,
CPUs are often used in conjunction with other
components, such as FPGA’s microcontrollers,
memories, communication interfaces, sensors, and
other peripherals.

These components are integrated into a
complete embedded system, which is designed to
meet the specific needs of the application. The
choice between CPUs and FPGAs really depends
on the specific needs of the application. CPUs
are great for applications that require flexibility and
versatility, as they can be programmed to handle a
wide range of tasks. On the other hand, FPGAs
are designed for specific tasks, and are optimized
for performance in those tasks.

This makes them ideal for applications that
require high performance. While they may be more
expensive to produce and harder to program than
CPUs, their performance benefits can make them
the best choice for some applications.

The objective of this paper is to compare
optimized hardware and software implementations
of heap-sort, shell-sort, quick-sort, tim-sort and
merge-sort on FPGA and Intel i7 architectures
using a limited number of elements ranging from 8
to 4096. Indeed, contrary to most of related works
in the literature, there are 4096 elements at most
because they are provided to a real-time decision
support system as solutions to be sorted.

This is highlighted by the work of K.
Nikolajevic [35], whose thesis aims to tackle
the challenging problem of reducing operational
accidents in avionics systems. As part of the
collision avoidance alarm system, sorting these
solutions efficiently is crucial for real-time decision
making in avionics systems to select the best
actions to avoid accidents.

To be more precise, each solution (i.e. a
short-term path to follow in an avionics application)
is identified by a unique 32-bit integer, so-called
index, and evaluated on the basis of various
performance criteria (such as distance...).
Consequently, index-sorts are used in the
real-life application. However, sorted elements
constitute permutations of integers in this paper to
simplify the problem. In general terms, the main
contributions of this paper are as follows:

– Analysis and comparisons of the performance
of five sorts: quick-sort, heap-sort, shell-sort,
merge-sort, and tim-sort. Their performances
are evaluated in terms of average and standard
deviation of computational times on Intel i7 and
FPGA architectures. These measurements are
refined by statistical tests.

– Temporal stability analysis of the sorts: In
addition to ranking the performance of the sorts
on each platform, a statistical analysis is carried
out on the basis of “boxplot-like” statistical
measurements to assess the temporal stability
of these algorithms.

The paper is structured as follows: Section 2
presents a state of the art on various sorts and
several applications using different platforms (CPU,
FPGA). Section 3 shows our experimental results.
Section 4 gathers our conclusions and some of our
future works.
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2 Related Works

Over the past few decades, there has been a
significant amount of research conducted on sorts.
While many of these studies have focused on
accelerating sorts in heterogeneous computing
systems, there has also been a focus on reducing
computational time, power consumption, and
hardware resources. This literature review section
provides an overview of numerous studies on both
FPGA-based and CPU-based sorts that aim to
improve acceleration performance.

2.1 Hardware Acceleration Methods for
Embedded Systems (FPGA)

FPGAs are greatly flexible and customizable
to meet the specific requirements of different
applications. This flexibility allows FPGAs to be
optimized either to perform high-performance
parallel processing and data streaming in
applications that require high throughput, or
for fast response times in applications that require
low latency, or finally for energy efficiency in
applications that require low-power consumption.

The traditional development of FPGA-based
applications has been mainly based on highly
specialized register transfer level (RTL) designs
[44, 18, 42, 5, 13, 34, 20]. High-Level Synthesis
(HLS) allows increasing design productivity and
detaching the algorithm from architecture [16]. In
our case, the vivado HLS tool is used to generate
hardware accelerators from C language.

Ben Jmaa et al. [9] proposed an efficient
hardware implementation for different sorts
using high-level descriptions in a zynq-7000
platform. The authors compared the performance
of the algorithms in terms of computational
time, standard deviation and resource utilization.
The results showed that the selection-sort was
1.01-1.23 times faster than other algorithms for
less than 64 elements; otherwise, tim-sort was the
best algorithm. Kobayashi et al. [26, 27] detailed
a new approach to reducing FPGA programming
costs while maintaining high levels of performance.

Their sorting library can use OpenCL for
FPGA. This approach consumed at least twice
the hardware resources of the merge-sort method

restructured for the OpenCL programming model
for FPGA. However, it operated at a frequency 1.08
times higher and had a sorting throughput three
orders of magnitude greater than the baseline.

Chen et al. [14] proposed a sample-sort
algorithm on a server with a PCIe-connected FPGA
to sort large data sets. The prototype system was
implemented using Verilog HDL on Amazon Web
Services (AWS) FPGA instances equipped with
Xilinx Virtex UltraScale+ FPGAs.

The authors demonstrated that this system
can sort 230 key-value records 37.4 times faster
than GNU parallel sort running on a CPU with
8 threads. However, their method assumed
collaboration between the CPU and FPGA, and the
sorting performance was ultimately limited by the
PCIe bandwidth, which was 7.2 GB/s as reported
in [14]. Moreover, their method was not suitable
for implementing FPGA-centric applications that
require sorting due to its structure.

Shinyamada et al. [38] evaluated the impact
of various sorts on high-level synthesized image
processing hardware. The results showed that
bubble-sort and odd-even-merge-sort were the
fastest algorithms, as they were able to achieve
pipeline processing. Conversely, selection-sort
was not able to achieve ideal pipeline processing,
and its performance was not as good as the former
two algorithms. Concludingly, optimizing sorts
can have a significant impact on overall image
processing performance.

Moghaddamfar et al. [32] conducted a
comparative analysis of OpenCL and RTL-based
implementations of a heap-sort that merges
sorted runs. The results showed that while
both implementations required comparable
development effort, their RTL implementations
of critical primitives achieved four times
better performance and used only half as
much FPGA resources compared to the
OpenCL implementation.

This highlighted the importance of carefully
selecting the programming language and
implementation approach when developing
algorithms for FPGA-based systems. The study
suggested that RTL-based implementations can
provide significant performance benefits and
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resource efficiency compared to higher-level
language implementations like OpenCL.

Chen et al. [15] proposed a novel hybrid
pipelined sorting architecture based on a
bitonic-sorter and several cascaded sorting
units. This sorting architecture achieved a
balanced trade-off between resource utilization
and throughput, as well as between throughput
and power consumption.

Specifically, the architecture was both
resource and energy efficient in terms of
the throughput-to-resource ratio and the
throughput-to-power ratio. This study highlighted
the importance of designing sorting architectures
that maximize data parallelism to achieve
increased throughput and reduced latency.

Montesdeoca et al. [33] monitored by a network
of 40 CO2 sensors and performed real-time sorting
of all the data via bubble-sort and insertion-sort
on FPGA. The results showed that insertion-sort
was faster than bubble-sort, but it consumed
more hardware resources in the FPGA, illustrating
the importance of the trade-off between speed
and resource utilization when selecting a sort for
real-time applications.

In [3], the authors evaluated multithreaded
sorts on a 32-core reconfigurable architecture
with embedded real-time Linux support. The
architecture consisted of NIOS II/f soft cores
and was implemented on an FPGA. The authors
proposed a new approach for performance
evaluation of a soft multithreaded multicore
architecture conducted in real-time.

This approach was based on the recursive
generation and execution of sorts such as
merge-sort and quick-sort. The architecture
was capable of achieving high parallelism and
throughput while maintaining low latency. The
architecture outperformed the others in terms
of speed and scalability. In [1], the authors
focused on hardware implementing bubble-sort,
selection-sort, insertion-sort, merge-sort,
bitonic-sort and odd-even-merge-sort using
FPGA in synchronous and pipelined architectures.
The authors compared these implementations in
terms of computational time and area.

They showed that non-pipelined bitonic-sort
and non-pipelined odd-even-merge-sort had the

best performance in terms of computational
time, while the non-pipelined selection-sort and
non-pipelined insertion-sort had the lowest area of
synchronous architecture.

For pipelined architectures, bitonic-sort
and odd-even-merge-sort had much lower
computational time when implemented in
hardware. Additionally, odd-even-merge-sort
was found to be the smallest in terms of area.
While bitonic-merge-sort was slightly larger in area
and slower in execution than odd-even-merge-sort.

Lobo et al. [31] compared five merge-sorts
(serial-merge-sort, parallel-merge-sort,
bitonic-merge-sort, odd-even-merge-sort and
the modified-merge-sort) in terms of resource
utilization, delay and area on FPGA. The results
showed that the serial and parallel merge use
the highest amount of resource utilization
compared to bitonic-merge, odd-even-merge
and modified-merge.

Also, the parallel-merge algorithm was much
faster than a serial-merge algorithm. In addition,
the odd-even and modified-merge had a very close
value of the area used while bitonic-merge had as
slightly higher value.

Abdelrasoul et al. [2] proposed an index and
sort algorithm (IaSA) based on an FPGA (vertex-5
series) in a pipelined sequential structure using
Verilog HDL. The results showed that, for various
data set sizes, IaSA performed best in terms of
computational time.

In [24], the authors presented a column-sort,
mapped on an HBM (High Bandwidth
Memory)-enabled FPGA. The approach utilized
computational pipelines, hardware-efficient
interconnection networks and several optimizations
to achieve high-throughput sorting. The results
showed that their optimized design yields
14.8×, 4.73× and 2.18× speedup compared
with state-of-the-art implementations on CPU.

– Lines 5 to 8: First step of the algorithm,
check for external variations from the
computational environment.

– Line 8: badRSDR[s] ← true if unstable
computational environment (let’s try to
continue anyway).
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Table 1. Review of sorting algorithms on different platforms

Approach Platforms Algorithms
HLS Optimization Application domain

Ref FPGA Intel CPU ARM Sort-name Complexity Perf. criteria

[26, 27] Yes No No Library sorting O(n log(n)) Resources utilization Yes yes (openCL) Sorting data

[9] Yes No No

bubble, selection O(n2̂)
Resources utilization,
computational times,
standard deviation

Yes Yes ITS
insertion, quick O(nˆ2)

shell O(nˆ(3/2))

merge,heap,tim O(n log(n)

[14] Yes No No sample O(n log(n)) Computational times No yes Amazon web server

[38] Yes No No
bubble, selection,

O(nˆ2) Computational times Yes Yes Image processing
odd-even-merge

[32] Yes No No heap, merge O(n log(n)) FPGA resource usage,
development effort No Yes (OpenCL) Sorting data

[15] Yes No No bitonic O(log(n)ˆ2) FPGA resource usage,
energy efficient No Yes (Pipeline) Real World

Application

[33] Yes No No bubble, insertion O(nˆ2) FPGA resource usage,
computational times No Yes Wireless sensor

network on IoT

[3] Yes No No
quick O(n2̂) Parallelization efficiency,

computational times RTL Yes (POSIX thread) -
merge O(n log(n))

[1] Yes Yes No

bubble, selection O(n2̂)
Computational times,

area No Yes Data processinginsertion O(nˆ2)

merge O(n log(n))

[31] Yes No No

serial merge, O(n log(n))

Resource utilization,
delay,
area

No No Particular application

parallel merge, O(log(n))

bitonic-merge, O(log(n)ˆ2)

odd-even-merge O(log(n)ˆ2)

modified merge O(log(n)ˆ2)

[2] Yes No No index Computational times No Yes (pipeline) -

[24] Yes No No hyper, column O(n log(n)) External memory (HBM) - Yes -

[11, 10] Yes No Yes

insertion, quick O(n2̂) Computational times,
energy consumption,

temporal stability
Yes Yes Intelligent systems (ITS)shell O(nˆ(3/2))

heap, merge, tim O(n log(n))

[7] Yes No Yes heap O(n log(n)) Power, Speedup No Yes Wavelet Based
Image Coder

[8] Yes No Yes heap O(n log(n)) Power, Speedup No Yes Image coding

[25] Yes No Yes heap O(n log(n)) Energy consumption No Yes Embedded System

[12] No No Yes network sorting O(log(n)ˆ2) Speedup No Yes Commercial microchips

[30] No Yes No

counting, O(n)

Computational times No Yes (parallelism) Sorting databucket, O(nˆ2)

merge, O(n log(n))

[21] No Yes No
bitonic, O(log(n)2̂) Computational times,

memory No Yes (OpenMp) Sorting data
merge, O( n log(n))

[4] No Yes No

insertion, quick O(n2̂) Time,
stability,

memory space
No No Data base, Network, AIbubble,selection O(nˆ2)

merge O(n log(n))

[28] No Yes No insertion, stl O(nˆ2) Time No Yes Computer science

Our work Yes Yes No

quick O(n2̂)
Computational times,

temporal stability Yes Yes (HLS directives) Intelligent systems (ITS)shell O(nˆ(3/2))

heap, merge, tim O(n log(n))
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Algorithm 1: Main steps of our DOE
Input : A given architecture (i7 or FPGA).

A list of sorts S.
A value of n ∈ N .
A set Pn of P permutations πn.

Output: A partial or total ranking of the sorts in
the ordered list S ′.
Temporal stability of sorts in stable[·].
Out of range RSDR(s,πn) in badRSDR[·].

1 S ′ ← ∅
2 foreach sort s ∈ S do
3 stable[s]← false
4 badRSDR[s]← false
5 foreach permutation πn ∈ Pn do
6 compute RSDR(s,πn)
7 if RSDR(s,πn) > 5% then
8 badRSDR[s]← true

9 compute µP (s), σP (s), RSDP (s) and CI(s)
10 if RSDP (s) ≤ 5% and Q2(s) ≈ µP (s) then
11 stable[s]← true
12 S ′ ← S ′ + s ▷ rank s according to its µP

13 else
14 compute IQR(s)
15 if s intersects with other sorts ∈ S ′ then
16 perform statistical tests
17 S ′ ← S ′ + s ▷ rank s via p-values

18 compute #+outliers(s) and %+outliers(s)
19 adjust stable[s] according to %+ outliers(s) if needed
20 adjust stable[s] according to badRSDR[s] if needed

– Lines 10 to 12: RSDP (s) is sufficiently low to
avoid using sophisticated statistical tests to rank
the sorts.

– Line 10: RSDP (s) ≤ 5% and Q2(s) ≈ µP (s)
suggest that the sort s is stable and can be
ranked via line 12.

– Line 12: RSDP (s) ≤ 5% is
considered as sufficient for µP (s) to be
statistically representative.

CI(s) is compared with those of previously
ranked sorts and used to assess whether a partial
or a total ranking of the sorts is possible when
inserting and ranking s in S ′.

– Lines 13 to 17: In this step, statistical tests are
required due to a high value of RSDP (s) or a
significant difference between Q2(s) and µP (s).

– Line 15: Current confidence interval CI(s) (resp.
IQR(s)) is compared with those of previously
ranked sorts in S ′.

– Line 16: Statistical tests are used to rank the
sorts if possible, temporal stability tests of s are
performed elsewhere.

– Line 17: At this point it is not always possible to
strictly rank s. In this case, S ′ contains a partial
ranking of the sorts.

– Lines 18 to 20: Check if sort s is compatible
with worst-case computational times (i.e. upper
outliers). With line 10, this last step
assesses/adjusts the stability of s in line 19.

– Line 19: Set stable[s] to false if
%+outliers(s) > 5%.

– Line 20: Set stable[s] to false if badRSDR[s] =
true to take unstable computational environment
into account.

2.2 Software Acceleration Methods for
Embedded Systems (ARM)

ARM processors offer advantages in terms
of flexibility and ease of reconfigurable
integration technology for a wide range of
applications, from embedded systems to
high-performance computing.

Compared to classical processors, soft-core
processors like ARM allow for greater
customization and adaptability because they
can be easily programmed and reconfigured to
meet the specific needs of a given application.

Additionally, soft-core processors can be
integrated into a variety of reconfigurable
technologies, such as FPGAs, allowing for even
greater flexibility and performance optimization.

In [11, 10], the authors proposed a software
implementation for insertion-sort, quick-sort,
heap-sort, shell-sort, merge-sort, and tim-sort
on an ARM Cortex A9. They compared the
performance of these algorithms in terms of
average and standard deviation of computational
times, energy consumption, and temporal stability.
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Table 2. Average and standard deviation of computational times on i7

size/ns tim-sort merge-sort heap-sort shell-sort quick-sort

8 28.3 (2.2) 83.7 (2.2) 53.0 (3.5) 38.2 (1.2) 47.2 (2.7)

16 49.6 (7.7) 164.5 (4.8) 121.3 (5.7) 73.6 (2.9) 87.0 (13.6)

32 127.2 (38.0) 346.1 (14.8) 307.0 (13.8) 168.1 (9.6) 198.0 (72.6)

64 565.4 (167.6) 752.4 (45.8) 682.2 (35.8) 406.7 (24.6) 507.8 (364.8)

128 1285.8 (405.9) 1685.4 (147.6) 1582.5 (76.3) 1031.2 (95.9) 1374.3 (1399.5)

256 3226.4 (1101.5) 3622.4 (316.8) 3954.4 (136.7) 3716.8 (732.3) 4003.8 (5396.8)

512 9222.3 (3192.9) 9374.1 (1355.0) 9833.0 (318.2) 15199.5 (4159.4) 14837.7 (20382.2)

1024 32528.8 (11768.7) 33140.8 (7954.5) 23720.2 (852.1) 40367.4 (11791.8) 53518.4 (80339.7)

2048 84812.9 (31077.6) 82910.9 (21840.3) 56650.7 (2792.7) 100684.9 (30593.3) 182912.0 (329092.6)

4096 189435.6 (69730.3) 183894.0 (49724.5) 129825.6 (7041.9) 235353.3 (72545.8) 641826.5 (1346751.2)

The results demonstrated that shell-sort was
the best algorithm, being 42.1% faster and even
reaching up to 72% faster when the number of
elements to be sorted is greater than 64.

However, when the number of elements is
smaller than 64, tim-sort was the best algorithm.
Additionally, shell-sort was the best algorithm in
terms of standard deviation of computational times
and energy consumption.

In [7], the authors proposed a hardware
heap-sort implementation using FPGA of a wavelet
based image coder. Their architecture provided up
to 20.9% power reduction on the memories
compared to the baseline implementation.
Moreover, their architecture provided 13x speedup
compared to ARM Cortex A9.

In [8], the authors introduced an adaptive
heap-sort that was designed for an image coding
implementation on FPGA with high throughput
and scalable sorting. The authors compared its
performance to an embedded ARM Cortex A9
running at 666 MHz.

Their architecture, running at 100 MHz,
provided around 13 times the speedup while
consuming 242 mW of average core dynamic
power. In [12], the authors adapted a hybrid
sort based on quick-sort and bitonic-sort.
They employed bitonic-sort to handle small
partitions/arrays with a vectorized partitioning
implementation to divide these partitions.

Their approach required only an array of size
O(log n) for recursive calls in the partitioning phase.
They evaluated the performance on an ARM v8.2
(A64FX) and assessed their implementation by
sorting/partitioning integers, double floating-point
numbers, and key/value pairs of integers. The
results showed an average speedup factor of four
compared to the GNU C++ sort algorithm.

In [25], the performance and energy efficiency
of hardware and software implementations of
the heap-sort are compared. The results
showed that the hardware implementation (Digilent
Basys 3 Artix-7 FPGA) was more energy
efficient, but slower than software implementation
(ARM Cortex A72) due to a low clock frequency.

2.3 Software Acceleration Methods for Non
Embedded CPU

In “standard” workstations, Central Processing
Units (CPUs) can drastically increase the number
of instructions processed per second, allowing the
computer to perform more complex tasks or run
more programs simultaneously. Indeed, recent
CPUs have a potential for higher performance
thanks to higher clock speeds, more cores, and
improved SIMD instructions. However, these
processors consume much more power than their
embedded counterparts.

In [30], the authors presented optimized serial
and parallel counting-sorts. They compared this
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Table 3. RSDP (s) of sorting algorithms on i7

size/% tim-sort merge-sort heap-sort shell-sort quick-sort

8 7.8 2.6 6.7 3.2 5.7

16 15.6 2.9 4.7 4.0 15.7

32 29.9 4.3 4.5 5.7 36.7

64 29.6 6.1 5.2 6.1 71.8

128 31.6 8.8 4.8 9.3 101.8

256 34.1 8.7 3.5 19.7 134.8

512 34.6 14.5 3.2 27.4 137.4

1024 36.2 24.0 3.6 29.2 150.1

2048 36.6 26.3 4.9 30.4 179.9

4096 36.8 27.0 5.4 30.8 209.8

sort to others such as bucket-sort and merge-sort,
implementing both counting-sort and merge-sort
on CPU and GPU. The results showed that the
optimized counting-sort took only 6 ms to sort
100 million integers, being 23 times faster than the
previous version.

In [21], the authors provided an analysis
of current host-GPU data transfer mechanisms
and explored methods for mitigating performance
bottlenecks. They developed a heterogeneous
CPU/GPU sort and demonstrated that while
out-of-place GPU sorting achieved the best
performance, an in-place sort further reduced
some host-side bottlenecks.

In [4], the authors compared the
grouping-comparison-sort (GCS) to selection-sort,
quick-sort, insertion-sort, merge-sort and
bubble-sort, using random input sequences.
On an Intel Core 2 Duo E8400 @ 3.00 GHz
(2 CPUs), the result revealed that for small input
sizes, the performance of all six algorithms was
almost comparable.

However, for larger input, quick-sort proved to
be the fastest, while selection-sort was the slowest.
GCS ranked as the third fastest for small input
size (10000 elements) and the fifth fastest for
large input size (30000 elements). In [28], the
authors introduced a distribution sorting method
that utilized a trained model of the empirical
Cumulative Distribution Function of the data.

Additionally, they applied a deterministic sort
that performed well on almost sorted arrays, such
as insertion-sort. The performance was measured
on an Intel Xeon Gold 6150 @ 2.70 GHz using
up to one billion double-precision keys following a
normal distribution.

Their approach achieved an average
performance improvement of 3.38 times compared
to the C++ STL-sort, which is an optimized
hybrid of quick-sort, a 1.49 times improvement
over sequential radix-sort, and a 5.54 times
improvement over a C++ implementation of
tim-sort, which is the default sorting function for
Java and Python.

2.4 Synthesis of Related Work

Table 1 summarizes a literature review focusing
on the use of several sorts on different platforms
(FPGA, Intel CPU, ARM). This summary shows
that the authors generally use sorts on FPGA to
improve performance in terms of computational
time and resource usage. Moreover, a majority
of authors do not use HLS except for [26, 27, 38,
9, 11, 10]. In addition, the number of elements
to sort is usually much larger than thousands of
items. Contrary to these studies, our work is based
on different implementations of sorts using HLS
and compare the sorts on FPGA and Intel i7 in
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Table 4. Ranking of sorts using µP (s) and CI(s) on i7

size S ′

8 tim ≺ shell ≺ quick ≺ heap ≺ merge

16 tim ≺ shell ≺ quick ≺ heap ≺ merge

32 tim ≺ shell ≺ quick ≺ heap ≺ merge

64 shell ? quick ? tim ≺ heap ≺ merge

128 shell ≺ tim ? quick ? heap ≺ merge

256 tim ? merge ? shell ? heap ? quick

512 tim ? merge ? heap ? quick ? shell

1024 heap ≺ tim ? merge ≺ shell ? quick

2048 heap ≺ merge ? tim ? shell ? quick

4096 heap ≺ merge ? tim ≺ shell ≺ quick

terms of computational time, resources utilization
and temporal stability.

It is worth noting that while many authors
are interested in the first two criteria, the
number of papers concerning the stability of
algorithms is much lower. Moreover, since
an avionics application is targeted, deterministic
sorting is required and the use recursive functions
or dynamic memory allocations are forbidden
contrary to many applications in the literature.

Similarly, parallel versions of sorts are not
allowed because it is not possible to certify such
algorithms on standard multicore architectures in
our target avionics application.

A finding from this synthesis is that beyond
its inherent complexity, the “best sort” depends
on the number of elements to be sorted, the
target architecture, the parallelization mode and
the considered key performance indicators. In
the following sections, we compare software and
hardware implementations of sorts on Intel i7
and FPGA.

3 Experimental Results

In this study, the performances of five sorts s ∈ S
are compared on Intel i7 and FPGA architectures:
S = {heap-sort, quick-sort, merge-sort, shell-sort,
tim-sort}. The number of sorts corresponds to the

cardinality of S and is denoted by Σ = |S|. The
sorts are evaluated in terms of computational times
and temporal stability.

Considering sorting algorithms, the usual
informal definition of the stability is the following:
A sort is ideally stable if it maintains the relative
order of elements with equal values. This means
that whenever there are two elements a and b with
the same value, the relative order of a and b is
preserved by the sort.

However, this study focuses on temporal
stability, defined as follows: A sort is temporally
stable if its computational time is independent of
the order of the elements to be sorted.

Although target application requires
deterministic sorts, there is no guaranty (and
no need) of usual stability in our implementations
of the sorts since the resulting relative order of a
and b (with the same value) will deterministically be
the same after the sort but this is not necessarily
the initial relative order of a and b (before the sort).
Now that we have defined the evaluation criteria,
next section describes our design of experiments.

3.1 Design of Experiments

In order to evaluate the performances of sorts,
the average and standard-deviation of their
computational times are studied using n = 8 to
4096 elements n ∈ N = {8, 16, 32, 64, 128, 256,
512, 1024, 2048, 4096}, via P =47 permutations
of n integers generated using Lehmer’s method
[17]. For each value of n, this set of permutations
Pn is used to characterize the temporal variations
due to a sort s in itself, i.e. its temporal stability.

For each permutation πn of size n, R = 1000
replications are used to identify the external
variations coming from the “computational
environment” (e.g., transmission error, operating
system noise, I/O buffering). To further evaluate
the stability of sorts, the Relative Standard
Deviation (RSD) is calculated by dividing
the standard deviation σ by the average
of computational times µ and expressed as
a percentage:

Relative Standard Deviation = 100× σ

µ
. (1)
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Table 5. Ranking of sorts using statistical tests on i7

size S ′

8 tim ≺ shell ≺ quick ≺ heap ≺ merge

16 tim ≺ shell ≺ quick ≺ heap ≺ merge

32 tim ≺ shell ⪯ quick ≺ heap ≺ merge

64 quick ≺ shell ≺ tim ≺ heap ≺ merge

128 quick ≺ shell ≺ tim ≺ heap ≺ merge

256 quick ≺ tim ≺ merge ≺ shell ⪯ heap

512 quick ≺ merge ⪯ heap ≺ tim ≺ shell

1024 heap ⪯ quick ≺ merge ≺ tim ≺ shell

2048 heap ≺ quick ≺ merge ≺ tim ≺ shell

4096 heap ≺ quick ≺ merge ≺ tim ≺ shell

It is a relative measure of the dispersion of
data around the average. Ultimately, this ratio
is used to compare the degree of variation from
one sample to another, even if the means are
different. For a sufficiently large number of items
in a population (empirically ≥ 30), an RSD of
less than 1% is considered “excellent” to make the
average representative.

From a practical point of view, an RSD of
5% is generally considered acceptable. However,
if RSD is greater than 5%, it is advisable to
use statistical tests, possibly supplemented by
graphical representations such as boxplots. Our
study relies on two measures of RSD:

For each permutation πn of size n, RSDR(s,πn)
is computed over the set of R replications of the
same computational time measurement (i.e. for a
given sort s, sorting the same permutation πn).

Then, for each sort s, RSDP (s) is computed
over the set Pn of P permutations, considering
– for each permutation πn – the average
computational time µR(s,πn) over R replications
of the same computational time measurement.
To reduce RSDR(s,πn), the operating system
(Debian Linux 12.4 with “processor affinity for
RT-tasks” based on kernel version 6.1.0-17)
has been configured to avoid most of the
OS’s noises, a disruption may however occur
due to potential non-maskable interruptions and

unavoidable waiting times for external events or
resource availability.

The values of RSDR(s, πn) are not detailed
for the sake of conciseness. R has been chosen
so that RSDR(s, πn) ≤ 5% in “almost all cases”
(i.e. for the large majority of the sorts and values
of n). However, due to above-mentioned external
variations, this target is not reached for all sorts
with n = 8 on i7 and FPGA as well as for quick-sort
and tim-sort with n = 16 on i7.

Nonetheless, it should be noted that the
average RSDR(s,πn) over all sorts s and all
permutations πn is approximately equal to 1.2%
which is far less than the expected limit of 5%. In
our design of experiments, RSDP (s) is computed
for each sort s to assess the representativeness of
its average computational time.

Actually, the stability of sorts in terms of
computational time is assumed significant if
RSDP (s) ≤ 5%, otherwise statistical tests are
performed. Moreover, in order to rank the sorts,
confidence intervals CI(s) are computed as follows:

CI(s) =
[
µP (s)− 1.96 ·

σP (s)
√
P

,µP (s) + 1.96 ·
σP (s)
√
P

]
. (2)

In addition to the focus on a single sort,
boxplots [41] are useful tools for visualizing
and comparing distributions of computational time
measurements on the same scale. Specifically,
boxplots allow us to compare and analyze the
stability of different algorithms.

Standard boxplots are usually based on five
values that summarize the data (Q0 (min), Q1 (first
quartile), Q2 (median), Q3 (third quartile), and
Q4 (max)) for the studied population (here, 47
permutations). As usual, IQR is also defined as
the difference between the third and first quartiles.
All observations above Q3 + 1.5 × IQR or below
Q1− 1.5× IQR are considered as outliers.

On the basis of the number of outliers # outliers,
this allows us to compute the percentage of outliers
as follows:

# outliers(s) = 100× #outliers(s)
P

. (3)

Upper outliers (denoted by #+) are defined
as all observations above Q3 + 1.5 × IQR.
Similarly, %+outliers is the percentage of upper
outliers. Each set of P experiments (on P distinct
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Table 6. Upper outliers percentages %+ outliers on i7

size tim-sort merge-sort heap-sort shell-sort quick-sort

8 2.13 0.00 0.00 0.00 6.38

16 4.26 8.51 0.00 0.00 10.64

32 8.51 2.13 2.13 8.51 12.77

64 0.00 0.00 6.38 4.26 12.77

128 6.38 0.00 6.38 8.51 12.77

256 6.38 0.00 6.38 2.13 12.77

512 0.00 0.00 0.00 6.38 12.77

1024 2.13 0.00 0.00 4.26 12.77

2048 2.13 0.00 0.00 0.00 12.77

4096 0.00 0.00 0.00 4.26 12.77

permutations) of a sort s may be represented by a
boxplot and summarized by Q0(s) to Q4(s).

Supplemented by the outliers, σP (s), µP (s) and
RSDP (s), it is possible to obtain a precise view of
the temporal stability of a sort. RSDP (s) < 5%
and/or a small value of IQR(s) suggest(s) that the
sort s is stable, this is usually confirmed by a small
value of %outliers(s).

On the contrary, RSDP (s) > 5% and/or a
large value of IQR(s) and/or a significant difference
between Q2(s) and µP (s) suggest(s) that the sort is
not stable. In the context of real-time applications,
particular attention should be payed to the
percentage of upper outliers (%+outliers) since it
provides information on worst-case computational
times of a given sort.

In other words, depending on input data this
sort may reach computational times that are not
compatible with the targeted time-constraints.

Moreover, by grouping several boxplots (one
per sort) in the same plot, it is possible to visually
compare the performance and temporal stability
of the sorts. In addition to µP (s) and RSDP (s),
a significant variation of Q2(s) between different
distributions (i.e. sets of P permutations, one set
per sort s), suggests that the sorting times vary and
it is possible to rank the sorts.

In contrast, if the medians are quite similar
across several distributions, σP (s), µP (s) and/or
boxplots are not sufficient to rank the sorts and

statistical tests are required. Consequently, it
should have been interesting to present boxplots
and statistical tests for all sorts on all target
architectures, however for the sake of conciseness,
numerical results have been reduced to µP (s),
σP (s), RSDP (s) and %outliers(s) when/where
sufficient. The results of statistical tests are also
summarized when needed.

In our design of experiments, the following
statistical tests are performed: First of all, to
assess the normality of the data distributions,
the Shapiro-Wilk test is conducted on each set
of P experiments and each value of n. As a
result of these tests, it appears that the data
deviate significantly from a normal distribution,
consequently nonparametric tests must be used.

So, in a second step, the Kruskal-Wallis test
is employed to examine the overall differences
in computational times among the five sorts on
each platform. Subsequently, to refine the results
and rank the sorts as far as statistically possible,
pairwise comparisons using Wilcoxon tests are
conducted to identify specific algorithm pairs that
exhibited significant differences.

For a given architecture, if all tests are
performed on the η = |N | values of n, this leads
to η × Σ Shapiro-Wilk tests, η Kruskal-Wallis tests
and η×(Σ×(Σ−1))/2 Wilcoxon tests. This makes a
total of – at most – 160 statistical tests (with η = 10
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Table 7. Average and standard deviation of computational times on FPGA

size/us tim-sort merge-sort heap-sort shell-sort quick-sort

8 18.12 (3.47) 18.93 (3.49) 17.99 (3.49) 17.88 (3.48) 18.68 (3.51)

16 22.07 (3.47) 23.60 (3.48) 21.85 (3.48) 22.25 (3.48) 23.22 (3.49)

32 31.18 (3.47) 34.48 (3.47) 31.10 (3.48) 33.25 (3.48) 34.30 (3.48)

64 50.89 (3.47) 58.46 (3.48) 52.78 (3.47) 60.24 (3.48) 62.80 (3.48)

128 94.50 (3.47) 111.88 (3.49) 102.67 (3.49) 126.30 (3.48) 137.90 (3.48)

256 189.00 (3.47) 231.30 (3.48) 228.57 (3.48) 293.55 (3.48) 351.20 (3.48)

512 393.17 (3.47) 482.50 (3.49) 466.05 (3.48) 668.20 (3.48) 1001.30 (3.48)

1024 832.85 (3.47) 1031.50 (3.48) 1015.50 (3.47) 1625.10 (3.56) 3121.00 (3.49)

2048 1769.50 (3.47) 2211.50 (3.47) 2227.10 (3.49) 4027.67 (3.48) 10660.00 (3.48)

4096 3756.00 (3.47) 4734.90 (3.48) 4848.50 (3.48) 9756.40 (3.48) 38507.00 (3.49)

and Σ = 5) performed via several scripts written in
R language [23].

The effective number of pairwise comparisons
can be reduced if it is guided by the ranking of
sorts by µP . All p-values are adjusted using the
Bonferroni correction method so as to obtain an
overall α level set to 5%.

For a given architecture (i7 or FPGA) and
a value of n, our DOE follows several steps
described in a simplified way as a pseudo-code
in Algorithm 1, supplemented by some comments
about main lines of the algorithm.

As shown in previous paragraphs, some steps
of Algorithm 1 are dedicated to check the stability
of the computational environment while others
are used to assess the temporal stability of
each sort and the others deal with the total or
partial ranking of the sorts on the basis of their
computational times. Finally, it is important to note
that the resulting ranking in S ′ is not necessarily
the same when n varies.

3.2 Performances Study of Sorting Algorithms
on i7

This section illustrates our DOE to compare and
analyze the sorts on an Intel i7-9850H @ 2.60

GHz. All codes are written in C language
and compiled via gcc version 12.2.0-14 (on
Linux Debian 12.4) with the O3 optimization flag
turned on. The sorts are evaluated in terms of
computational times. They are then rated on the
basis of their temporal stability.

In more details, the first step of our DOE
computes RSDR(s) to check for external variations
from the computational environment (lines 5 to 8
of Algorithm 1). Then, subsection 3.2.1 illustrates
the second step of Algorithm 1 (lines 10 to 12).
In a similar way, subsection 3.2.2 follows the third
step of Algorithm 1 (lines 13 to 17). Finally,
subsection 3.2.3 is dedicated on the last step of
Algorithm 1 (lines 18 to 20).

We detail each of the steps 2 to 4 of Algorithm 1
in a separate subsection to illustrate how it works
and “its” results in several tables, but in reality
the steps follow one another in the algorithm to
lead if necessary to statistical tests and temporal
stability analysis.

3.2.1 Average and Standard-Deviation of
Computational Times on i7

To illustrate the second step of Algorithm 1
(lines 10 to 12) Table 2 displays the average and
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Table 8. RSDP (s) of sorting algorithms on FPGA

size% tim-sort merge-sort heap-sort shell-sort quick-sort

8 19.15 18.44 19.40 19.43 18.79

16 15.72 14.75 15.91 15.61 15.03

32 11.13 10.07 11.10 10.46 10.14

64 6.82 5.94 6.57 5.76 5.54

128 3.67 3.10 3.38 2.75 2.52

256 1.83 1.50 1.51 1.18 0.99

512 0.88 0.44 0.78 0.52 0.34

1024 0.42 0.34 0.40 0.22 0.11

2048 0.20 0.16 0.16 0.09 0.03

4096 0.09 0.07 0.07 0.04 0.00

standard deviation of computational times (µP (s)
and σP (s)) whereas Table 3 shows the relative
standard deviation RSDP (s). In this subsection,
the objective is to rank the sorts according to µP (s)
while considering RSDP (s) and CI(s) as in the
second step of Algorithm 1.

In this step, RSDP (s) and CI(s) are not used
to assess the temporal stability, but respectively
to check whether statistical tests are needed or
whether it is possible to obtain a total or partial
ranking of the sorts. On i7, these measurements
lead to the ranking of the sorts presented in
Table 4.

In this table, the sorts are ranked from left
(first/best/fastest sort) to right (last/worst/slowest
sort) according to their µP (s). The ≺ symbol
indicates a strict ranking, with no intersection of
confidence intervals whereas ? denotes that the
confidence intervals overlap.

At this second step of Algorithm 1, based on
µP (s) and CI(s), Table 2 and Table 4 show that for
n < 64, tim-sort outperforms other sorts in terms of
µP . Tim-sort, however, has a higher RSDP (s) than
merge-sort, heap-sort, and shell-sort, which is not
a good clue – at this step – of its temporal stability.

Similarly, for n > 512, heap-sort outperforms
other sorts in terms of µP . In between, the rankings
are not clearly established due to intersections
of the confidence intervals and it is challenging

to draw a significant conclusion regarding the
best algorithm.

For n ≥ 16, it should be noted in Table 3
that RSDP (s) for heap-sort is less than 5% (or
slightly greater than 5%) and Q2(S) ≈ µP (s) (the
maximum gap between Q2(S) and µP (s) is equal
to 2%) leading Algorithm 1 to line 12. However,
since other sorts have higher values of RSDP (s)
and a gap between Q2(S) and µP (s) greater
than 5%, statistical tests will be used for pairwise
comparisons in the next step.

As a detail of step 2 of Algorithm 1, we first
present a ranking based on the average and the
standard deviation of computational times because
this is what is conventionally used in the literature,
warning however about the intersections between
CI(s) that do not allow to establish a total ranking
of sorts.

At this step, the results of quick-sort should be
viewed with great caution because its RSDP (s) is
really high and there is a very large gap between
Q2(s) and µP (s). As for the other sorts, since
the RSDP (s) values are in large majority greater
than 5%, statistical tests are used in a next step to
confirm or refute the rankings.

With the previous conclusions in mind, we can
calculate the relative gains in terms of µP (s), even
if the values of RSDP (s) and CI(s) temper these
results. For n < 64, tim-sort is 63-70% faster
than merge-sort, 46-59% faster than heap-sort,
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Table 9. Ranking of sorts using µP (s) and CI(s) on FPGA

size S ′ RSDP

8 shell ? heap ? tim ? quick ? merge > 5%

16 heap ? tim ? shell ? quick ? merge > 5%

32 heap ? tim ⪯ shell ? quick ? merge > 5%

64 tim ? heap ≺ merge ? shell ⪯ quick > 5%

128 tim ≺ heap ≺ merge ≺ shell ≺ quick ≤ 5%

256 tim ≺ heap ⪯ merge ≺ shell ≺ quick ≤ 5%

512 tim ≺ heap ≺ merge ≺ shell ≺ quick ≤ 5%

1024 tim ≺ heap ≺ merge ≺ shell ≺ quick ≤ 5%

2048 tim ≺ merge ≺ heap ≺ shell ≺ quick ≤ 5%

4096 tim ≺ merge ≺ heap ≺ shell ≺ quick ≤ 5%

24-32% faster than shell-sort and 36-43% faster
than quick-sort.

Furthermore, for n = 64 and n = 128, shell-sort
is 39-46% faster than merge-sort, 35-40% faster
than heap-sort, 20-28% faster than tim-sort, and
20-25% faster than quick-sort.

Finally, if n > 1024, heap-sort is 56-80% faster
than quick-sort, 41-45% faster than shell-sort,
28-32% faster than merge-sort, and 27-33% faster
than tim-sort, as mentioned in Table 2. As a
conclusion of this step, the rankings of the sorts
– at least for n ≥ 64 – need validations through
statistical tests in next step.

3.2.2 Statistical-Tests-Based Ranking on i7

This subsection is based on the third step of
Algorithm 1 (lines 13 to 17) which leads to the
ranking presented in Table 5. This step is
based on nonparametric statistical tests that base
their ranking on medians (i.e. Q2(s)) and not on
averages (i.e. µP (s)), unlike the ranking presented
in Table 4. This can lead to different rankings if
there is a large gap between Q2(s) and µP (s).

This is the case, for example, with the
quick-sort, which is ranked first by statistical tests
while its results in terms of RSDP (s) are disastrous
as shown in Table 3, relating to previous step of
Algorithm 1.

In fact, the quick-sort is tagged as highly
unstable by the Algorithm 1 and excluded from the
ranking (since for n > 8, RSDP (s)≫ 5% and there
is a very large gap between Q2(s) and µP (s)). This
explains the use of RSDP (s) as early as step 2 of
the algorithm.

When considering tim-sort, merge-sort and
shell-sort, Table 3, shows that their RSDP (s) is also
greater than 5% but the gap between Q2(s) and
µP (s) is less that 12% (i.e. far less than the gap for
quick-sort) so these sorts are included in current
and next step of Algorithm 1.

The results of statistical tests summarized in
Table 5 confirm the rankings obtained in Table 4
for n = 8, n = 16 and n = 32. When
discarding quick-sort from the rankings, statistical
tests confirm the rankings obtained in Table 4 for
n = 64, n = 128, n = 256, n = 2048 and n = 4096
(i.e. respectively shell ≺ tim ≺ heap ≺ merge, shell
≺ tim ≺ heap ≺ merge, tim ≺ merge ≺ shell ⪯
heap, heap ≺ merge ≺ tim ≺ shell and heap ≺
merge ≺ tim ≺ shell). However, for n = 512
and n = 1024 the rankings are different when
comparing Table 5 to Table 4.

Nevertheless, heap-sort is ranked first for
n = 1024 in the two tables and lead to a total
pairwise ranking (denoted by ≺ in Table 5). On
the contrary, the rankings are different for n = 512
in these two tables. It is interesting to note that
this ranking, in Table 4, is tagged as not significant
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since there are intersections of CI(s) (denoted by ?
in this table).

As a first conclusion of this step, it should
be mentioned that the first rankings of the sorts
using µP (s) and CI(s) in Table 4 provide us with
very accurate rankings for almost all values of n,
it has been able to identify the fastest sort in 9
out of 10 cases while discarding the worst one
(i.e. quick-sort).

As a second conclusion, this current test, based
on statistical test confirms and refines all rankings
obtained in previous step, leading to the following
choices: Tim-sort is the fastest sort for 8 ≤ n ≤ 32
and n = 256, shell-sort is the faster sort for n = 64
and n = 128, heap-sort is the fastest sort for
n ≥ 1024, it is not more than 95% sure that
merge-sort is faster than heap-sort for n = 512 in
this latter case their temporal stabililies is used in
next step to refine the choice for n = 512.

3.2.3 Temporal Stability of Sorting Algorithms
on i7

This subsection is based on the last step of
Algorithm 1 (lines 18 to 20) which leads to
the results presented in Table 6. First of all,
it’s worth mentioning that none of these sorts
are ideally stable and there are “acceptable”
temporal variations. These variations can be
bounded by upper values using the upper bound
of CI(s) or Q3(s). In this paper, this bound is set to
Q3(s)+1.5×IQR(s), which is the standard definition
of upper outliers.

Consequently – at this step of algorithm
Algorithm 1 (line 19) – each sort s such as
%+outliers(s) > 0 should be considered as non
temporally stable and discarded from the final
ranking of the sorts. It is also important to
bound the relative dispersion of computational
times around the average and this is exactly the
definition of RSDP (s).

Consequently, each sort s such as RSDP (s) >
5% should be considered as non temporally stable
and discarded from the while ranking the sorts,
either in this current step or in previous steps of
Algorithm 1 (line 12 or line 17). Finally, if there
are too many variations from the computational

environment (Algorithm 1, line 20), it is possible to
discard each sort s such that badRSDR[s] = true.

As previously mentioned, it should have been
interesting to represent the results using boxplots,
however due to lack of space the comparisons
are exclusively based on numerical values
RSDR(s,πn), CI(s), RSDP (s) and %+outliers(s).
To this end, RSDP (s) are given in Table 3 and
(%+outliers) are given in Table 6.

Before finalizing the ranking, it is important to
mention that in our target application, a duration
of less than one microsecond is considered
negligible, consequently there no real challenge
on temporal stability when considering the sorts
for n ≤ 64 (excepted for quick-sort as
previously mentioned).

So for n ≤ 64 any sort s might be considered as
temporally stable, even if %+outliers(s) > 0 since
its overall duration, including the upper bound of
CI(s) or Q3(s) are within the tolerance ranges of
one microsecond. As a general comment, it is
noticeable that, in Table 3, RSDP (s) are greater
than 1% and even mainly greater than 5%.

Consequently, a good choice might be the
fastest sort or the most temporally stable one,
that is either tim-sort for 8 ≤ n ≤ 32 and
shell-sort for n = 64 or (fastest sorts) heap-sort
for 8 ≤ n ≤ 32 and tim-sort for n = 64 (most
temporally stable sorts) or another combination of
the sorts. For 64 ≤ n ≤ 256, the best sort in
terms of %+outliers(s) is merge-sort whereas the
best sort in terms of RSDP (s) is heap-sort (even if
RSDP (s) for merge-sort are very close to those of
heap-sort).

In the same time, for 64 ≤ n ≤ 256, the fastest
sorts are shell-sort and team-sort. For n ≥ 512, the
best sorts in terms of %+outliers(s) are merge-sort
and heap-sort whereas terms of RSDP (s) is clearly
heap-sort. In the same time, for n ≥ 512, the
fastest sorts are also merge-sort and heap-sort.
Consequently the best choice for n ≥ 512 is the
heap-sort.

At the end of all the steps of Algorithm 1 we
can derive a definitive conclusion regarding the
sorting method(s) to be employed for our avionics
application on I7. It is clear that the “best sort”
on i7 depends on n but also on the criterion to
be minimized, i.e. either the computational time
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or the temporal stability. It is clear that the best
choice considering both criteria for n ≥ 512 is the
heap-sort. For 64 ≤ n ≤ 256, the choice is not so
easy whereas for n ≤ 64 the computational times
and the relating variations are so small that any
sort is acceptable on i7.

3.3 Performances Study of Sorting Algorithms
on FPGA

As for i7 in section 3.2, this section illustrates
our DOE to compare and analyze the sorts
on FPGA. All codes are written in C language
and the optimized hardware implementation is
generated using HLS directives (loop unrolling,
loop pipelining, input/output interface). Vivado
is used for synthesis and running the VHDL
architecture. The sorts are evaluated in terms of
computational times and temporal stability.

On FPGA our DOE follows the steps of
Algorithm 1: The first step of our DOE computes
RSDR(s) to check for external variations from
the computational environment (lines 5 to 8 of
Algorithm 1). Then, subsection 3.3.1 illustrates the
second step of Algorithm 1 (lines 10 to 12).

Contrary to i7, the values of RSDP (s) on FPGA
are such that there is no need to use statistical
tests and the third step of Algorithm 1 is “skipped”.
Finally, subsection 3.3.2 is dedicated to the last
step of Algorithm 1 (lines 18 to 20). In the following
subsections, steps 2 and 4 of Algorithm 1 are
detailed to illustrate how it works and “its” results
in several tables.

3.3.1 Average and Standard Deviation of
Computational Times on FPGA

To illustrate the second step of Algorithm 1,
Table 7 displays the average and standard
deviation of computational times (µP (s) and σP (s))
whereas Table 8 shows the relative standard
deviation RSDP (s).

In this subsection, the objective is to rank
the sorts according to µP (s) while considering
RSDP (s) and CI(s) as in the second step of
Algorithm 1. In this step, RSDP (s) and CI(s)
are used to check whether statistical tests are
needed or whether it is possible to obtain a total

or partial ranking of the sorts. On FPGA, these
measurements lead to the ranking of the sorts
presented in Table 9.

In this table, the sorts are ranked from left
(first/best/fastest sort) to right (last/worst/slowest
sort) according to their µP (s). The ≺ symbol
indicates a strict ranking, with no intersection
of confidence intervals whereas ? denotes that
the confidence intervals overlap. In addition,
⪯ indicates that the confidence intervals are
contiguous within a range of 1 us, meaning they
are “nearly disjoint”.

At this second step of Algorithm 1, based on
µP (s) and CI(s), Table 7 and Table 9 show that – in
terms of µP – for n = 8 shell-sort outperforms other
sorts, for n = 16 or n = 32 heap-sort outperforms
other sorts, and for n = 64 tim-sort outperforms
other sorts. However in previous rankings, these
“bests sorts” are tagged as not significant since
there are intersections of CI(s) (denoted by ?
in Table 9).

It is worth noting that for n ≤ 64, RSDP (s) >
5% for all sorts, as summarized in Table 9, last
column. Before finalizing the ranking, it is important
to mention that in our FPGA, σP (s) is mainly due
to hardware perturbations and appears as “almost
constant” in Table 7 for all n.

This explains that RSDP (s) is decreasing as
a function of n. This also means that hardware
perturbations are too high to rank the sort for
n ≤ 64, which is confirmed by RSDP (s) >
5% for all sorts. Therefore, these rankings
should be viewed with caution and the hardware
perturbations are such that statistical tests would
not refine the results.

In Table 9, the results are completely different
for n > 64 and for all sorts since all pairwise
comparisons of sorts are such that confidence
intervals of sorts do not intersect (excepted for
heap-sort and merge-sort for n = 256 where
confidence intervals are contiguous within a range
of 1 us).

Moreover, for n > 64 tim-sort is ranked first and
this is confirmed by the fact that RSDP (s) < 5%
for all sorts, with no need for statistical tests (since
Q2(S) ≈ µP (s) is also verified), leading Algorithm 1
to line 12. With the previous conclusions in mind,
we can calculate the relative gains in terms of
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µP (s), even if the values of RSDP (s) and CI(s)
temper these results.

For n < 64, heap-sort is 1.01x-1.12x faster
than other algorithms. Furthermore, for n =
4096, the results show that tim-sort has an
average computational time of 3756.00 us, while
merge-sort, heap-sort, shell-sort, and quick-sort
have average computational times of 4734.90 us,
4848.50 us, 9756.40 us, and 38507.00 us
respectively. When comparing tim-sort with
the other sorts, the results show that tim-sort
is 1.16x-1.21x, 1.08x-1.23x, and 1.25x-1.61x
faster than merge-sort, heap-sort, and shell-sort
respectively, if n > 64.

As a conclusion of this step, the rankings of the
sorts on the basis of computational times on FPGA
for n ≤ 64 need to be considered with caution due
to the hardware perturbations. Indeed, σP (s) is
almost constant for all sort s and all n, which is due
to the synchronous design of the FPGA. Therefore,
the average temporal variation does not depend on
n (with n ≤ 4096).

Moreover, Table 9 shows that for n >
64, tim-sort is the fastest sort in terms of
average computational time. Additionally, there
is no intersection of confidence intervals while
considering pairwise comparisons of the sorts.

3.3.2 Temporal Stability of Sorting Algorithms
on FPGA

This subsection is based on the last step of
Algorithm 1 (lines 18 to 20). First of all, it’s
worth mentioning that none of these sorts are
ideally stable and there are “acceptable” temporal
variations if n ≤ 64.

Consequently, each sort s such as RSDP (s) >
5% should be considered as non temporally stable
and discarded from the while ranking the sorts,
either in this current step or in previous steps of
Algorithm 1.

Finally, if there are too many variations from the
computational environment (Algorithm 1, line 20),
it is possible to discard each sort s such that
badRSDR[s] = true. Due to the synchronous
design of the FPGA and the above-mentioned
hardware perturbations, the results of this step can
be summarized in a few words.

For n ≤ 64, RSDP (s) > 5% and it is not
possible to precisely measure the intrinsic temporal
stability of the sorts. For n > 64, RSDP (s) < 5%
(as shown in Table 8) and CI(s) are such that
the sorts are considered as temporally stable on
FPGA with a constant maximum value for σP (s)
and RSDR(s,πn) < 5%.

At the end of all the steps of Algorithm 1 we
can derive a definitive conclusion regarding the
sorting method(s) to be employed for our avionics
application on FPGA. It is clear that the “best sort”
on FPGA depends on n but the temporal stability is
induced by the synchronous design of the FPGA.

This explains that for n ≤ 64 it is almost
impossible to distinguish the sorts from the point
of view of computational times as well as from their
temporal stability. This also explains the fact that
it is possible to clearly distinguish (i.e. with small
temporal variations, measured by σP (s)) the “best
sort” from the point of view of computational times
for n > 64, i.e. tim-sort. Moreover, for n > 64, the
sorts are also undistinguishable from the point of
view of their temporal stability.

3.4 Comparison of the
Computational Platforms

Despite a much lower frequency, computational
times on FPGA are “respectable” compared to
those on i7 because Xilink’s tool is able to extract
the parallelism of the algorithms by means of
the optimizations introduced via HLS directives.
However, a decrease in terms of average and
standard deviation of computational times leads to
an increase in resource utilization on FPGA.

Additionally, it is worth noting that the temporal
stability of the hardware implementation on FPGA
is much better than that on i7, when considering
the relative variations given by RSDP (s) or when
considering CI(s).

For conclusion, FPGA provides a better
temporal stability than Intel i7 but sorts on FPGA
are slower than on i7, even if FPGA offers
high performance in terms of parallelism. On
the contrary, i7 leads to worse performance
than FPGA in terms of temporal stability, when
considering RSDP (s).
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However, the sorts run much faster on i7 than
on FPGA and it is possible to act on worst-case
computational times and limit the time variations by
reducing the upper outliers (#+outliers(s)) thanks
to dedicated configuration of the operating system,
based on “processor affinity for RT-tasks”.

The choice of the “best sort” from the points of
view of computational time and temporal stability
is clear on FPGA and tim-sort appears to be the
ranked first. The same choice on i7 is not so
easy and depends on n but also on the criterion
to be minimized, i.e. either the computational time
or the temporal stability. It appears that the best
choice considering both criteria for n ≥ 512 is the
heap-sort.

For 64 ≤ n ≤ 256, the choice is not so easy
whereas for n ≤ 64 the computational times and
the relating variations are so small that any sort is
acceptable on i7 when considering the maximum
time-constraints of our target application.

4 Conclusions

In this paper, we presented a review of different
works using sorting algorithms on Intel i7 and
FPGA architectures. To conduct our study, a
high-level description of the sorting algorithms is
used on FPGA. Our evaluation of various sorts
provides valuable insights into their performance
and stability, which can guide the selection of
suitable algorithms for real-time decision support
applications in the avionics industry.

Indeed, a stable sort is particularly useful for
real-time targeted applications. In the context of
real-time applications, particular attention should
be payed to the percentage of upper outliers
since it provides information on worst-case
computational times of a given sort. In other
words, depending on input data this sort may reach
computational times that are not compatible with
the targeted time-constraints.

The obtained results show that it is difficult to
choose the best algorithms on Intel i7, on the
contrary tim-sort have a better performance on
FPGA for n ≥ 64. We concluded that the FPGA
provides a better performance in terms of temporal
stability. We show experimentally that the same

sorting algorithms are not ranked in the same way
on two different architectures.

Additionally, the calculation of the average
and standard deviation of computational times
may not be sufficient – depending on the target
architecture – to rank these sorts in a statistically
representative manner. Similarly, the stability of
sorting algorithms may vary from one architecture
to another one and/or depending on the size of
the data to be sorted. Consequently, we are
working on combinations of sorting algorithms to
propose a hybrid sort that offers the best possible
performance both in terms of computation time and
temporal stability.

As future work, we plan to use the hardware
version of “the best sorting algorithm” in our
targeted avionics decision support system [35,
40, 36]. The present work is also inspired by
other researches dedicated to the optimization
of matching and scheduling on heterogeneous
CPU/FPGA architectures [40] where efficient sorts
are required.
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