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Abstract. Improving the Quality of Service (QoS) in the 
data transfer of 4G Long-Term Evolution (LTE) mobile 
networks has been a significant concern. Previous 
analyses have focused on enhancing network 
infrastructure using statistical tools, computational 
algorithms, and fuzzy models to improve mobile network 
operators. Those works are based on simulated data or 
data collected by a specialised modem without providing 
user information. In this study, we propose a fuzzy 
inference model to evaluate QoS Key Performance 
Indicators and signal parameters using data acquired by 
user equipment through collaboration or crowdsourcing. 
This fuzzy inference model provides specialists with a 
new method for assessing the QoS and offers users 
relevant information on the quality of data transfer 
service in LTE networks. The evaluation is based on 
fuzzy QoS, and effectiveness indices are classified into 
five levels: Very poor, Poor, Acceptable, Good, and Very 
good. Furthermore, the model can evaluate other data 
samples different from those used in this proposal. 
Finally, this method can assess the data transfer of 5G 
networks, making respective adaptations. 

Keywords. Quality of service, key performance 
indicators, long-term evolution, crowdsourcing, fuzzy 
inferences system, assessment indices. 

1 Introduction 

As technology continues to develop, the demand 
for activities and the number of mobile devices 
have increased, resulting in a significant increase 

in data transfer over mobile broadband networks 
[1, 2, 3]. 

Consequently, there has been a rise in the use 
of Over-the-Top services [4]: video, audio, voice, 
or data applications transmitted over fixed or 
mobile internet platforms [5]. User can now access 
various multimedia applications through their 
devices, requiring reliable connectivity at any time 
and place. 

This translates into the need for adequate 
Quality of Service (QoS) from mobile network 
operators (MNOs) [6]. Technological advances in 
multimedia offerings have forced operators to 
adopt a user-centric and quality of experience 
(QoE) approach [7]. 

Telecommunications regulatory bodies 
recommend evaluating QoS. However, ensuring 
QoS in the 4G mobile network is a significant 
challenge due to constant changes in the network 
[8]. The International Telecommunication Union 
(ITU) mentions that the QoS planned by network 
operators is typically different from the level users 
experience and could even be much lower than 
expected [9]. 

QoS is a set of measurable quality parameters 
called key performance indicators (KPIs). These 
indicators provide the necessary information for 
planning, performance analysis, and network 
optimization and can be either technical or non-
technical [10]. As mentioned by the ITU, examples 
of technical KPIs are call success rate, call drop 
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rate, and upload and download connection speeds, 
among others.  

Non-technical KPIs are customer-focused and 
may include parameters such as billing accuracy 
and failures [9]. Inadequate KPI data can limit 
service efficiency, increase operating costs, and 
negatively affect users [10]. Correct data is 
beneficial to network operators and users, as well 
as for research purposes. For example, an 
ensemble learning scheme for indoor-outdoor 
classification based on cellular data from a 
commercial LTE mobile network has been 
presented in [11], where the data was obtained 
with a single-user equipment (UE) model. 

Numerous studies have focused on LTE mobile 
networks’ data transfer KPIs and QoS. A 
comprehensive guide to standardized QoS 
assessment models is presented in [12]. Graphical 
comparisons of KPIs with received signal 
parameters have also been performed [13]. 

However, this study does not consider 
obtaining an index to determine the QoS of the LTE 
mobile network. On the other hand, to increase 
revenues from network services provided by the 
MNOs, the base station (eNodeB) performance is 
evaluated when a higher priority QoS is enabled for 
some LTE users [14]. In that study, the commercial 
network and UE were used. The study mainly 
focused on improving the infrastructure of the 
MNOs, but it is a very relevant work for the 4G 
network in general. 

Other studies focus on the development or use 
of LTE mobile network simulators. In those studies, 
the network capacity is calculated. Improvements 
in the scheduling process for the network are 
proposed to impact both the QoS and QoE, thus 
increasing the spectral efficiency in terms of 
network throughput or packet delay prediction [7], 
[15, 16, 17, 18]. 

In addition, other research works aim to 
improve QoS and QoE during video transmission 
over LTE networks by evaluating and analysing 
various configurations and parameters [19 20 21 
22 23]. Although, in these studies, there is an 
interest in increasing QoS and QoE, their main 
focus remains improving the services of the MNOs. 

Several studies use experimental data 
collected from a smart city to conduct statistical 
analysis on the QoS of mobile networks. They 
present statistical descriptions and probability 

distribution functions for the KPIs to aid 
comprehension [10]. However, the experimental 
data contains some missing values estimated for 
each network parameter using the PCHIP 
algorithm and statistical error analysis [24]. The 
measurements in both cases were taken using a 
specialised modem. The Egil model [25] is also 
proposed to estimate signal loss using the 
quadratic regression method. While these 
investigations offer valuable statistical insights for 
the 4G LTE mobile network, they require a large 
data sample, which the current proposal aims 
to avoid. 

The scientific literature encompasses various 
computational models, including a gradient-based 
iterative process to determine the optimal tilt 
configuration for the LTE eNodeB antenna [25]. 

Several sets of rules have been proposed to 
optimise resource allocation in downlink 
scheduling, and their performance has been 
evaluated by comparing the Knapsack and Priority-
only algorithms [26]. The QoS-aware downlink 
scheduling algorithm (QuAS) was presented in [27] 
to enhance the QoE for peripheral users. 
Additionally, an innovative approach aims to 
maximise QoE by sharing an available channel 
among video traffic flows, incorporating genetic 
algorithms and random neural networks [23]. 

Despite these efforts offering alternatives to 
improve QoS and QoE, it is necessary to present 
relevant information to the user, such as 
knowledge of the actual QoS and effectiveness 
that users are experiencing. 

On the other hand, Zadeh's fuzzy set theory is 
an extension of classical binary logic and has had 
a lasting impact on artificial intelligence [28]. The 
essential advantage of the fuzzy approach over 
binary logic lies in its flexible decision boundaries, 
providing greater adaptability to specific 
application domains [29]. 

Fuzzy logic draws inspiration from our 
understanding of human cognition in decision-
making systems, making it widely accepted as an 
explainable artificial intelligence among 
interdisciplinary experts. It effectively deals with 
input variables, their ranges, limits, and variations, 
facilitating design, verification, and continuous 
improvement [30, 31, 32]. 

In the context of LTE networks, fuzzy systems 
have been employed in Call Admission Control to 
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reduce call drop and call blocking probabilities, as 
well as mitigate co-channel interference [23, 33] 
and [34]. 

To reduce costs and minimize negative impacts 
on the user experience of self-organizing networks, 
a problem-solving rule learning method based on 
fuzzy logic controllers and data mining techniques 
was proposed in [35]. 

To assess the QoS of LTE networks, 
particularly during the handover process, a 
Sugeno-type fuzzy model was employed to 
analyse four QoS KPIs across four applications 
[36]. Furthermore, a novel study compared the 
Sugeno-type fuzzy model against an Adaptive 
Neuro-Fuzzy Inference System (ANFIS) model 
tailored explicitly for QoS calculations in 
heterogeneous LTE networks [37]. 

However, it is worth noting that both 
investigations relied on simulated data and failed 
to propose a fuzzy index that effectively correlates 
KPIs with received signal parameters. As a result, 
users should receive more easily understandable 
and explainable information regarding the LTE 
network's QoS. 

This paper introduces a novel fuzzy inference 
model for evaluating QoS and data transfer 
efficiency in LTE mobile networks. It incorporates 
two user-friendly fuzzy indices for swift 
categorisation of QoS and effectiveness, 
benefiting both network evaluators and end-users. 
The information repository used to evaluate the 
fuzzy model was collected through crowdsourcing. 

The structure of the paper is as follows: Section 
2 presents the methodology and information 
repository, followed by the results in Section 3, a 
comprehensive discussion in Section 4, and 
concluding remarks in Section 5. 

2 Materials and Methodology 

This section shows the phases that were attended 
to develop the fuzzy inference system. Fig. 1 
introduces the methodology of our proposed model 
inspired by [38] and features six distinct stages: 
Fig. 1(a) acquisition of an information repository 
compiled through crowdsourcing; Fig. 1(b) 
selection of KPIs and signal parameters to be used 
as input variables, alongside data filtration to 
discard any outliers; Fig. 1(c) proposal of 

membership functions for the input variables and 
two fuzzy indicators; Fig. 1(d) creation of the fuzzy 
rules considering six input variables for QoS and 
two for effectiveness; Fig. 1(e) implementation of 
defuzzification using the Centroid Method; and Fig. 
1(f) obtaining fuzzy indices for both QoS 
and effectiveness. 

Further explanation of these stages can be 
found in subsections 2.1-2.5. 

2.1 Information Repository 

The information repository was gathered using 
crowdsourcing by teams of users equipped with 
mid-range mobile phones (UE) in the central 
Alameda zone of Mexico City during the first two 
months of 2021. This information was facilitated by 
the Telecommunications Engineering branch of 
the Postgraduate Sciences program (PCIT), part of 
the Postgraduate Studies and Research Section 
(SEPI) at the Higher School of Mechanical and 
Electrical Engineering (ESIME), Zacatenco unit of 
the National Polytechnic Institute (IPN). 

Crowdsourced measurements from an end-
user perspective prove crucial in enhancing the 
overall QoS, facilitating the acquisition of valuable 
information beyond the mere network layer and 
into the user and application layers. This approach 
allows a deeper understanding of any challenges 
or quality issues users face within the network [39]. 

Mid-range phones during this data-gathering 
process do not influence or impact the fuzzy 
indices obtained in this work. Device range 
classification is based primarily on RAM, screen 
resolution, and processor performance. 

On the other hand, the transceiver and antenna 
are similar across all mobile phones to ensure 
good reception and transmission quality provided 
by MNOs. 

In selecting the location, the downtown area of 
Mexico City stands out for its rich blend of 
economic, cultural, and social activities. A 
particularly strategic zone within this area is the 
public park of Alameda Central, enveloped by 
museums, theatres, hotels, offices, restaurants, 
and commercial stores. 

This dynamic environment attracts many office 
workers, residents, tourists, and visitors 
participating in recreational activities, generating a 
significant demand for mobile data transfer. 
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To assess the QoS of LTE network data 
transfer, we have considered the 
recommendations of prominent organisations such 
as ITU [9], the European Telecommunications 
Standards Institute (ETSI) [40], and the Body of 
European Regulators for Electronic 
Communications (BEREC) [41]. These guidelines 
indicate that the appropriate KPIs for this 
evaluation are download speed, upload speed, 
latency, jitter, and packet loss rate. 

Notably, the packet loss rate is not explicitly 
included in the information repository but can be 
derived by applying Eq. (1), as both received and 
sent packets are available in the repository. 
Additionally, we propose incorporating the 
reference signal received quality (RSRQ) 
parameter to account for the transmission medium. 

packet loss rate �  ������ �������� 
������ ����  �%�. (1) 

Furthermore, we derive the data transfer 
effectiveness index to complement the evaluation 
of the LTE network service. The packet loss rate is 
the corresponding KPI for assessing this index. 
Moreover, as with the QoS, we introduce a signal 
parameter to consider the transmission medium: 
the reference signal received power (RSRP). 

Ookla [42], the organization responsible for the 
crowdsourcing measurements, provided the data 
dictionary of the information repository available in 
Table A1. However, it is worth noting that the 
samples reported include outliers, which require a 

filtering or debugging process that we outline in 
Section 2.2. 

2.2 Filtering the Information Repository 

It is necessary to verify the data to ensure an 
accurate network performance evaluation, as 
mentioned in [43]. Each parameter has a specific 
valid range indicated in the data dictionary or the 
reports published by the company that carried out 
the measurements [44]. 

The mobile broadband service reports an 
average latency of 50 ms, with values ranging from 
1 ms to 100 ms. Jitter has a maximum allowable 
value of 30 ms; any value higher than this is 
considered invalid. The packet loss rate should fall 
between 0% and 1%, and values outside this range 
are discarded. Likewise, the valid range for RSRP 
is from -120 dBm to -44 dBm, with -44 dBm being 
the maximum value. For RSRQ, the acceptable 
values range from -19.5 dB to -3 dB, with -19.5 dB 
being the minimum value. 

For the download and upload speeds, we 
used the recommendations from the 
telecommunications regulatory body in Mexico, the 
Federal Telecommunications Institute [45], and the 
2021 Mexico Median Country Speeds report [44]. 
These state that the valid range for download 
speed is 4 Mbps to 300 Mbps, and upload speed is 
1 Mbps to 100 Mbps. Table 1 presents the range 
of values used as filters for each parameter. 

 

Fig. 1. Fuzzy model methodology: (a) information repository; (b) five QoS KPIs of data transfer and two LTE network 
signal parameters; (c) fuzzification process based on membership functions; (d) fuzzy rules (372); (e) defuzzification 
process with the centroid method; and (f) fuzzy QoS and effectiveness indices of the 4G LTE network 
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Applying these filters to the information 
repository resulted in a reduction of data samples 
from 607 to 385, which were geolocated across 39 
different locations, as seen in Fig. 2. 

The latitude and longitude coordinates of these 
39 geolocated points can be found in Table A2. Out 
of the 385 valid data samples, measurements are 
available for each day of the first two months of 
2021, representing five MNOs. However, it is 
essential to note that not every georeferenced 
point contains data for each day and each 
operator. Considering this, membership functions 
for the fuzzy inference model are proposed and 
presented in Section 2.3. 

2.3 Membership Functions: Input Variables 

The fuzzy inference model evaluates seven input 
variables: five are linear data transfer QoS KPIs, 
while the other two are logarithmic signal 
parameters. Consequently, the membership 
functions for the linear variables are of triangular 
and trapezoidal types. On the other hand, the 
membership functions for the logarithmic variables 
are sigmoidal. 

Eqs. (2) and (3) give the parameterisation for 
the triangular and trapezoidal membership 

functions [46]. The triangular membership function 
is defined by three parameters, a, b, and c, 
as follows: 

μ�x; a, b, c# �
⎩⎪
⎨
⎪⎧

0, x ) a,x * a
b * a , a ) x ) b,
c * x
c * b , b ) x ) c,

0, c ) x,
 (2) 

where the parameters a, b, and c, with a�b + c, 
determine the triangle’s three corners. Meanwhile, 
the trapezoidal membership function is defined by 
four parameters, a, b, c, and d, as follows: 

μ�x; a, b, c, d# �

⎩⎪
⎪⎨
⎪⎪
⎧ 0, x ) a,x * a

b * a , a ) x ) b,
1, b ) x ) c,d * x

d * c , c ) x ) d,
0, d ) x,

 
(3) 

 

where the parameters a, b, c, and d, with a + b )c + d, determine the value of x for the four corners 
of the trapezoid. The input membership functions 
for the QoS KPIs, i.e., download speed, upload 
speed, latency, jitter, and packet loss rate, are 
depicted in Figs. 3–7. 

 

Fig. 2. Map showing the geographical location where information was obtained. The colors indicate different network 
operators named with the following terminology: MNO 1 is AT&T, MNO 2 is Telcel, MNO 3 is Altan Redes, MNO 4 is 
Movistar, and MNO 5 is Unefón 
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These linear membership functions have been 
fitted within the ranges described in Section 2.2. 
Three linguistic values are considered for all input 
variables: Low, Medium, and High. 

For instance, as depicted in Fig. 3, when the 
download speed falls from 0 to 4, it is classified 
under the linguistic value of Low. In the range of 4 
to 38, the linguistic variable Medium exhibits a 
degree of membership that increases linearly with 
a high positive slope. 

Similarly, Fig. 4 illustrates that upload speed 
follows a comparable pattern from 1 to 14. 

However, this high positive slope is not 
observed for latency (1 to 50), jitter (0 to 15), and 
packet loss rate (0 to 0.005), as shown in Figs. 5-
7, respectively. In these cases, the membership 
functions increase with a lower slope. 

Conversely, for download and upload speeds 
starting from 38 and 14, respectively, the 
membership degree of the linguistic variable 
Medium decreases with a steeper negative slope 
than latency, jitter, and packet loss rate starting 
from 50, 15, and 0.005, respectively. Furthermore, 
the linguistic variable High reaches its maximum 
values for download speed, upload speed, and 
latency, beginning from 72, 29, and 99. 

The sigmoidal membership function and its 
parameters are defined by Eq. (4): 

μ�x; a, c# � .
./�01�203#. (4) 

Here, a controls the slope at the crossing point x � c. As stated in [47], the sign of the parameter a 
determines whether the sigmoidal membership 
function is intrinsically open to the right or left, 
making it suitable for representing concepts such 
as "very large" or “very negative”. 

Fig. 8 illustrates the sigmoidal membership 
functions for the variables RSRP and RSRQ. Both 
variables were rescaled and normalised using the 
following expression (Eq. 5): 

�454678#
�461254678#, (5) 

where x9�� represents the minimum valid value of 
the variable to be normalised, x9�4 is the maximum 
value of the variable, and x is the variable to be 
normalised. For RSRP, the range of values to be 
normalised is from –120 dBm to –44 dBm, while for 
RSRQ, the range is from –19.5 dB to –3 dB. These 
sigmoidal membership functions were initially fitted 

with expert knowledge, followed by a 
manual adjustment. 

2.4 Membership Functions: Output Variables 

The QoS and effectiveness indices are the output 
variables obtained from the fuzzy inference model. 
Fig. 9 illustrates sigmoid-shaped membership 
functions for both indices because each output is 
evaluated with at least one non-linear variable. 
Additionally, linguistic values such as Very poor, 

Table 1. Filters for each data transfer QoS KPI or signal 
parameter considered 

Parameter Unit Filter 

Latency ms 1 to 100 

Jitter ms 0 to 30 

Packet loss rate % 0 to 1 

RSRP dBm ˗120 to ˗44 

RSRQ dB ˗19.5 to ˗3 

Download speed Mbps 4 to 300 

Upload speed Mbps 1 to 100 

 

Fig. 3. Trapezoidal and triangular membership 
functions for download speed 

 

Fig. 4. Trapezoidal and triangular membership 
functions for upload speed 
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Poor, Acceptable, Good, and Very good have been 
considered to establish a quality evaluation scale 
for both indices. 

On the other hand, the fuzzy quality index is 
determined by evaluating the following input 
variables: download speed, upload speed, latency, 
jitter, packet loss rate, and RSRQ. This index 
depends on the values of the input variables. For 
instance, if the download speed, upload speed, 
and RSRQ have a High value, while the latency, 
jitter, and packet loss rate have a Low value, the 
resulting quality is classified as Very good. 

Similarly, the fuzzy effectiveness index, which 
assesses packet loss rate and RSRP as input 
variables, will yield a Very good value when the 
packet loss rate is Low and the RSRP is High. The 
fuzzy rules that complement the membership 
functions are described in detail in Section 2.5. 

2.5 Fuzzy Rules 

Fuzzy rules of the type if–then were proposed 
using the AND (minimum) connector in the 
antecedent for both fuzzy indices. Each input 
variable is associated with three linguistic 
variables. The general expression for this set of 
variables is given by Eq. (6): 

T�variable# � =Low, Medium, HighF, (6) 

where T represents the set of the variable in 
question (e.g., download speed, latency, etc.), and Low, Medium, and High are the linguistic variables 
in the set. The following expression was used to 
determine the number of rules: 

Q � MH, (7) 

where M is the size of the linguistic variable set, N 
is the number of input variables, and Q is the 
number of rules. 

First, we obtained the number of rules for the 
QoS fuzzy index by considering six input variables 
and three linguistic variables, resulting in 729 rules 
for QoS. Similarly, the effectiveness index yielded 
nine fuzzy rules after considering two input 
variables and three linguistic variables. Thus, the 
total number of rules for both indices is 738, 
encompassing all possible combinations of input 
variables using the AND connector. 

We considered reducing the number of rules to 
avoid redundancy and computational cost 
associated with many of them. For this purpose, 
the rules were analysed from the point of view of 
expert knowledge in mobile networks. We 
proposed a weighting scheme for the input 
variables, giving higher importance to the KPIs 
variables relative to the signal parameter ones 
since regulatory bodies recommend KPIs for the 
QoS evaluation. 

For the QoS case, where five of the six input 
variables are KPIs, and one is a signal parameter, 
a weighting of 7/36 was assigned to each of the 
five KPIs and 1/36 to RSRQ. The sum of the 
weights for all six variables is equal to 1, namely: 

J
KL M J

KL M J
KL M J

KL M J
KL M .

KL � 1. (8) 

Likewise, different weights were assigned to the 
input variables for the fuzzy effectiveness index. A 
weight of 3/4 was proposed for the KPI and 1/4 for 

 

Fig. 5. Trapezoidal and triangular membership functions 
for latency 

 

Fig. 6. Triangular membership functions for jitter 

 

Fig. 7. Triangular membership functions for packet 
loss rate 
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the RSRP. The sum of the weights for both 
variables is again equal to one. 

After applying the weights mentioned earlier to 
the 738 rules, we found coincidences in two 
different types of groups, each containing three 
rules. In the first group, five of the six variables in 
the antecedent held the same value, and the 
consequent had the same result for all three rules. 
Consequently, these rules could be merged into 
one. Consider the following rules as an example: 

RL1: IF (download speed is Low) AND 
(upload speed is Low) AND (latency is High) AND 
(jitter is High) AND (packet loss ratio is High) AND 
(RSRQ is Low) THEN QoS is Very poor. 

RL2: IF (download speed is Low) AND 
(upload speed is Low) AND (latency is High) AND 
(jitter is High) AND (packet loss ratio is High) AND 
(RSRQ is Medium) THEN QoS is Very poor. 

RL3: IF (download speed is Low) AND 
(upload speed is Low) AND (latency is High) AND 
(jitter is High) AND (packet loss ratio is High) AND 
(RSRQ is High) THEN QoS is Very poor. 

Observing rules RL1, RL2, and RL3, we can see 
that the linguistic values for download speed (Low), 
upload speed (Low), latency (High), jitter (High), 
and packet loss ratio (High) are repeated in the 

antecedent. However, the RSRQ variable carries 
different linguistic values for each rule (Low, 
Medium, and High). 

On the other hand, the consequent consistently 
yields the same value for QoS (Very poor). Since 
the RSRQ variable covers all three linguistic 
possibilities in this group without affecting the QoS 
result, we can merge these three rules into one. As 
a result, the RSRQ variable is removed, obtaining 
rule R1: 

R1: IF (download speed is Low) AND (upload 
speed is Low) AND (latency is High) AND (jitter is 
High) AND (packet loss ratio is High) THEN QoS 
is Very poor. 

A similar situation occurs with the second group 
of rules shown below. In the antecedent, the 
variables maintaining the same linguistic value are 
download speed, upload speed, latency, jitter, and 
packet loss ratio, while the RSRQ variable varies 
its linguistic value. In the rule’s consequent, the 
QoS has two different outcomes. 

RL25: IF (download speed is Low) AND (upload 
speed is Low) AND (latency is High) AND (jitter is 
Low) AND (packet loss ratio is Low) AND (RSRQ 
is Low) THEN QoS is Poor. 

RL26: IF (download speed is Low) AND (upload 
speed is Low) AND (latency is High) AND (jitter is 
Low) AND (packet loss ratio is Low) AND (RSRQ 
is Medium) THEN QoS is Acceptable. 

RL27: IF (download speed is Low) AND (upload 
speed is Low) AND (latency is High) AND (jitter is 
Low) AND (packet loss ratio is Low) AND (RSRQ 
is High) THEN QoS is Acceptable. 

Here, two rules share the same linguistic value, 
while the third rule differs. Thus, we can merge two 
rules into one, reducing the number of rules from 
three to two. In the antecedent of rules RL25, RL26, 
and RL27, we can observe that only the RSRQ 
variable changes its linguistic value among the 
three possibilities: Low, Medium, and High. 

On the other hand, in the consequent, the QoS 
value remains "Acceptable" for rules RL26 and RL27, 
while for rule RL25, it is classified as "Poor." 
Keeping this in mind, we merge rules RL26 and RL27 
into rule R13. However, it should be noted that to 
avoid affecting the result of this group, rule R12 is 
placed before the merged rule R13, as 
shown below: 

R12: IF (download speed is Low) AND (upload 
speed is Low) AND (latency is High) AND (jitter is 

 

Fig. 8. Sigmoidal membership functions for the RSRP 
and RSRQ (the graphical representation is the same 
for both) 

 

Fig. 9. Sigmoidal membership functions for the QoS and 
Effectiveness indices (the graphical representation is 
the same for both indices) 
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Low) AND (packet loss ratio is Low) AND (RSRQ 
is Low) THEN QoS is Poor. 

R13: IF (download speed is Low) AND (upload 
speed is Low) AND (latency is High) AND (jitter is 
Low) AND (packet loss ratio is Low) THEN QoS 
is Acceptable. 

Consequently, after merging sets of three rules, 
the total number of rules was reduced from 738 to 
372. Some representative rules are presented 
below. A summary of these rules can be found in 
Table A3. 

R1: IF (download speed is Low) AND (upload 
speed is Low) AND (latency is High) AND (jitter is 
High) AND (packet loss ratio is High) THEN QoS 
is Very poor. 

R12: IF (download speed is Low) AND (upload 
speed is Low) AND (latency is High) AND (jitter is 
Low) AND (packet loss ratio is Low) AND (RSRQ 
is Low) THEN QoS is Poor. 

R182: IF (download speed is Medium) AND 
(upload speed is Medium) AND (latency is 
Medium) AND (jitter is Medium) AND (packet loss 
ratio is Medium) THEN QoS is Acceptable. 

R351: IF (download speed is High) AND (upload 
speed is High) AND (latency is Low) AND (jitter is 

High) AND (packet loss ratio is High) AND (RSRQ 
is High) THEN QoS is Good. 

R363: IF (download speed is High) AND (upload 
speed is High) AND (latency is Low) AND (jitter is 
Low) AND (packet loss ratio is Low) THEN QoS is 
Very good. 

R364: IF (packet loss ratio is High) AND (RSRP 
is Low) THEN Effectiveness is Very poor. 

R366: IF (packet loss ratio is High) AND (RSRP 
is High) THEN Effectiveness is Poor. 

R368: IF (packet loss ratio is Medium) AND 
(RSRP is Medium) THEN Effectiveness 
is Acceptable. 

R370: IF (packet loss ratio is Low) AND (RSRP 
is Low) THEN Effectiveness is Good. 

R372: IF (packet loss ratio is Low) AND (RSRP 
is High) THEN Effectiveness is Very good. 

In rule R1, when there is poor data download 
and upload speed performance, high latency, jitter, 
and packet loss, the QoS is classified as "Very 
poor." On the other hand, for rule R12, the QoS is 
"Poor" when the download speed is less than 21 
Mbps, the upload speed is less than 7.5 Mbps, 
latency is between 75 ms and 100 ms, jitter is 
between 22.5 ms and 30 ms, packet loss ratio is 
between 0.25% and 0.75%, and the RSRQ is 

Table 2. File format for KPIs and signal parameter data in the information repository 

Download Speed 

(Mbps) 

Upload Speed 

(Mbps) 

Latency 

(ms) 

Jitter 

(ms) 

Packet 
Loss Rate 

(%) 

RSRP RSRQ 

21.92 26.436 31 9.2 0 0.36 0.70588235 

67.943 27.148 32 7.8 0 0.36 0.70588235 

 

Fig. 10. QoS and effectiveness fuzzy indices for the 385 data samples evaluated in the study zone 
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higher than –7.125 dB (i.e., Low download and 
upload speeds, High latency, jitter, and RSRQ; 
Medium packet loss ratio). 

Rule R182 demonstrates that QoS is 
"Acceptable" when each variable fall within their 

medium range, i.e., download speed between 21 
Mbps and 55 Mbps, upload speed between 7.5 
Mbps and 20.5 Mbps, latency between 25 ms and 
75 ms, jitter between 7.5 ms and 22.5 ms, packet 
loss ratio between 0.25% and 0.75%, and RSRQ 

Table 3. Fuzzy indices range corresponding to linguistic variables 

Fuzzy QoS Index 

× 102 (%) 

Fuzzy Effectiveness Index 

× 102 (%) 
Linguistic variables 

0 to 0.2 0 to 0.2 Very poor 

0.2 to 0.4 0.2 to 0.4 Poor 

0.4 to 0.6 0.4 to 0.6 Acceptable 

0.6 to 0.8 0.6 to 0.8 Good 

0.8 to 1 0.8 to 1 Very good 

Table 4. Input and output variables used in evaluating QoS for the area of study 

Data 

Sample 

Download 
Speed 

(Mbps) 

Upload Speed 

(Mbps) 

Latency 

(ms) 

Jitter 

(ms) 

Packet Loss 
Rate 

(%) 

RSRQ 

(dB) 

QoS 

×102 (%) 

5 38.928 23.443 37 6.6 0 –11 0.700233 

33 23.104 6.268 50 8.9 0 –13 0.600372 

149 9.383 1.23 41 12.6 0 –14 0.5004 

158 36.921 41.222 16 9.1 0 –15 0.810547 

304 4.474 4.241 21 19.3 0.003597122 –17 0.337567 

331 4.643 10.326 71 15.7 0 –8 0.408525 

379 56.694 27 21 15.1 0 –13 0.847512 

157 0 –81 0.99994181 

300 0.003355705 –109 0.43180837 

374 0.003355705 –77 0.60668714 

Table 5. Input and output variables used in the evaluation of effectiveness for the area of study 

Data Sample 
Packet Loss Rate 

× 102 (%) 

RSRP 

(dBm) 

Effectiveness 

× 102 (%) 

19 0 –108 0.7983722 

60 0.003355705 –97 0.54166604 

84 0.009950249 –95 0.02383161 

145 0.003937008 –115 0.36244197 
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between –15.375 dB and –7.125 dB (all variables 
have a value of Medium). Rule R351 states that if 
high values are observed for download speed (55 
Mbps) and upload speed (20.5 Mbps) and low 
values for latency (25 ms), jitter (7.5 ms), packet 
loss ratio (0.25%), and RSRQ (–15.375 dB) (i.e., 
High download and upload speeds, Low latency, 
jitter, and packet loss ratio), then the QoS is 
classified as "Good". 

Similarly, rule R363 states that the QoS is 
classified as "Very Good" when the download and 
upload speeds are higher than 55 Mbps and 20.5 
Mbps, respectively. The latency, jitter, and packet 
loss ratio are lower than 25 ms, 7.5 ms and 0.25%, 
respectively (i.e., High download and upload 
speeds, Low latency, jitter, and packet loss ratio). 

If the packet loss rate exceeds 0.75% and the 
RSRP values are below –101 dBm (packet loss 
rate is High and RSRP is Low), then the 
effectiveness is categorised as "Very poor" in rule 
R364. Rule R366 classifies the effectiveness as 
"Poor" if the packet loss rate is higher than 0.75% 

and the RSRP is –63 dBm (packet loss rate and 
RSRP are both High). 

The effectiveness is considered "Acceptable" in 
rule R368 when the packet loss rate falls between 
0.25% and 0.75%, and the RSRP is between –110 
dBm and –63 dBm (packet loss rate and RSRP are 
both Medium). 

If the packet loss rate and RSRP are below 
0.25% and –101 dBm, respectively (Low packet 
loss rate and RSRP), then the effectiveness is 
categorised as "Good" in rule R370. Similarly, in rule 
R372, if the data transfer is optimal with a packet 
loss rate below 0.25% and RSRP greater than –63 
dBm (Low packet loss rate and High RSRP), the 
effectiveness is classified as "Very good." 

3 Results 

The fuzzy inference model algorithm was 
developed and programmed in software with 
specialised fuzzy logic libraries. The program 

Table 6. Distribution of QoS by operator in the study area 

QoS 
MNO 1 

(%) 

MNO 2 

(%) 

MNO 3 

(%) 

MNO 4 

(%) 

MNO 5 

(%) 

Very poor 0 0 0 0 0 

Poor 0 2 0 0 0 

Acceptable 36 35 27 45 0 

Good 62 60 71 55 86 

Very good 2 3 2 0 14 

Average 64 61 65 58 68 

Table 7. Distribution of service effectiveness by operator in the study area 

Effectiveness 
MNO 1 

(%) 

MNO 2 

(%) 

MNO 3 

(%) 

MNO 4 

(%) 

MNO 5 

(%) 

Very poor 0 1 0 0 0 

Poor 0 2 0 0 0 

Acceptable 0 5 0 0 0 

Good 8 20 14 18 0 

Very good 92 72 86 82 100 

Average 90 84 89 88 99 
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allows for manual or automatic evaluation of the 
input variables through the following steps: 

1. Select the manual or automatic evaluation 
mode for the data rows. 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

Fig. 11. Fuzzy QoS and effectiveness indices obtained by the mobile network operators (MNO): (a) MNO 1, (b) MNO 
2, (c) MNO 3, (d) MNO 4, and (e) MNO 5 
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2. Prompt the user to provide a plain text file 
containing the information repository data. 
This file comprises seven columns, each 
representing a KPI or a received 
signal parameter. 

3. Request the file containing the fuzzy rules. 

4. Evaluate each row from the repository data file 
using the Mamdani fuzzy method. 

5. If the evaluation mode is manual, proceed to 
the next step. Otherwise, return to step 4 until 
all rows in the repository data file have 
been evaluated. 

6. Calculate the fuzzy quality and 
effectiveness indices. 

The structure of the information repository file 
should follow the format presented in Table 2. This 
file should not contain headers, only the seven-
column data representing the five KPIs and two 
signal parameters. 

The proposed fuzzy inference model employs 
seven LTE network parameters to assess 4G data 
transmission quality and efficiency. The two 
descriptive indices summarise the percentage of 
QoS and the percentage of effectiveness, allowing 
even users without technical expertise to evaluate 
and interpret the results quickly. 

However, it is essential to note that while LTE 
network indices provide an interpretable measure 
of network QoS, they do not replace the KPIs or 
parameters recommended by regulators, which 
are the basis of the fuzzy model. 

We use a dataset of 385 samples from the 
central Alameda zone of Mexico City to evaluate 
the model. The input variables for the fuzzy quality 
index are download speed, upload speed, latency, 
jitter, packet loss rate, and RSRQ. 

On the other hand, the variables for the 
effectiveness index are packet loss rate 
and RSRP. 

Table 8. Fuzzy QoS index for MNO 1 by location 

No. Location no. Latitude Longitude MNO QoS Index Category 

1 3 19.434 –99.149 1 0.64829325 Good 

2 9 19.434 –99.147 1 0.67515632 Good 

3 14 19.435 –99.145 1 0.70858523 Good 

4 17 19.436 –99.144 1 0.57596928 Acceptable 

5 18 19.435 –99.144 1 0.61902345 Good 

6 19 19.433 –99.144 1 0.66704351 Good 

7 20 19.438 –99.142 1 0.62331306 Good 

8 21 19.434 –99.142 1 0.58415889 Acceptable 

9 26 19.435 –99.141 1 0.61081482 Good 

10 30 19.434 –99.139 1 0.82497577 Very good 

11 31 19.432 –99.139 1 0.55999562 Acceptable 

12 32 19.434 –99.138 1 0.77987155 Good 

13 33 19.433 –99.138 1 0.51886548 Acceptable 

14 35 19.435 –99.137 1 0.65858975 Good 

15 36 19.433 –99.137 1 0.75429903 Good 

16 37 19.435 –99.136 1 0.51764475 Acceptable 
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To facilitate interpretation, the values obtained 
for both fuzzy indices are normalised and classified 
into five levels associated with the five linguistic 
variables used in the fuzzy rules: Very poor, Poor, 
Acceptable, Good, and Very good. The normalised 
value is divided into five equal sections of size 0.2, 
each representing a different linguistic variable. 

For instance, the range from 0 to 0.2 
corresponds to the "Very poor" category, while the 
range from 0.2 to 0.4 means "Poor". Similarly, the 
range from 0.4 to 0.6 indicates "Acceptable, the 
range from 0.6 to 0.8 is "Good”, and the range from 
0.8 to 1 represents "Very good". In other words, the 
numerical values can be represented by qualitative 

variables, as summarised in Table 3, which reflect 
the QoS perceived by the user QoE. 

Fig. 10 gives a visual representation of the 
results for both fuzzy indices. The horizontal lines 
highlight the minimum value for each linguistic 
variable category. 

For example, the horizontal axis appears in red 
at the 0 level to indicate the minimum value for the 
"Very poor" category. Similarly, the horizontal axis 
is orange, yellow, green, and dark green at the 0.2, 
0.4, 0.6, and 0.8 index levels representing the 
minimum values for the "Poor", "Acceptable", 
"Good", and "Very good" categories, respectively. 

 

Fig. 12. Thematic map of the data transfer QoS index for MNO 1 

 

Fig. 13. Thematic map of the effectiveness index for MNO 1 
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Thus, if the index is above the minimum value 
of one category and below the next, it will 
correspond to the lower category. 

For example, consider the effectiveness index 
result for sample 84, the lowest value depicted in 
Fig. 10. Although it surpasses the minimum of the 

Table A1. The telecommunications department of IPN ESIME Zacatenco provided the information repository 

Field Name in Extract Definition Data type Max Field 
Size 

test_id A unique ID for every speed test performed based on the platform.  number 11 

test_date 
Date and time of the test in UTC (default). Previously, this data was presented 
in Pacific time (default). datetime 19 

download_kbps 
The result of the download portion of the test was measured in kilobits per 
second. number 11 

upload_kbps The result of the upload portion of the test was measured in kilobits per second. number 11 

latency The result of the latency portion of the test was measured in milliseconds. number 6 

client_city 
The city where the test was conducted. If this field is labelled unknown and the 
location type field equals 2, we cannot confidently assign a city to the record, 
and it is only accurate to the region level. 

text 255 

client_latitude The latitude of the device conducting the test. If the location type equals 2, this 
value is approximate. 

number 10 

client_longitude The longitude of the device conducting the test. If the location type equals 2, 
this value is approximate. 

number 10 

network_operator_name 

The device displays the name of the network operator. This field is generally 
accurate but is not reliable. Custom versions of Android, including carrier-
specific versions, may modify this string, and carriers have used different 
spellings and brandings on their network names. 2020-05-28: When Ookla can 
more accurately identify the active network operator via Android CellIdentity 
APIs, it will overwrite the network_operator_name based on Ookla-maintained 
MCCMNC-to-network relations. 

text 255 

MCC A Mobile Country Code (MCC) is a three-digit code specific to the country where 
the network operator is located. A list of codes and countries can be found here. 

number 3 

mnc 

Mobile Network Code (MNC). A three-digit identifier is specific to a network 
operator within a given country. Each mobile network can be uniquely identified 
when combined with the Mobile Country Code. A comprehensive list of Mobile 
Network Codes can be found here, but each country regulates their MNCs 
individually so that codes may appear or change without any notice. 

number 3 

pre_connection_type 

A number representing the device's connection type as detected before the test 
begins. Please see the connection type table for an explanation of each type. 
Connection type as detected before the test starts: 0 = Unknown,1 = Cell, 2 = 
Wi-Fi, 3 = GPRS, 4 = EDGE, 5 = UMTS, 6 = CDMA, 7 = EVDO0, 8 = EVDOA, 
9 = OnexRTT, 10 = HSDPA, 11 = HSPA, 12 = IDEN, 13 = EHRPD, 14 = 
EVDOB, 15 = LTE, 16 = HSUPA, 17 = HSPAP, 18 = GSM, 19 = TDSCDMA, 
20 = IWLAN, 21 = LTE-CA, 22 = Ethernet, 23 = Bluetooth, 24 = NR 

number 4 

post_connection_type 

A number representing the device's connection type as detected at the end of the test. 
Please see the connection type table for an explanation of each type. Connection type as 
witnessed at the end of the test: 0 = Unknown,1 = Cell, 2 = Wi-Fi, 3 = GPRS, 4 = EDGE, 
5 = UMTS, 6 = CDMA, 7 = EVDO0, 8 = EVDOA, 9 = OnexRTT, 10 = HSDPA, 11 = HSPA, 
12 = IDEN, 13 = EHRPD, 14 = EVDOB, 15 = LTE, 16 = HSUPA, 17 = HSPAP, 18 = GSM, 
19 = TDSCDMA, 20 = IWLAN, 21 = LTE-CA, 22 = Ethernet, 23 = Bluetooth, 24 = NR 

number 4 

brand The consumer-facing brand of the device. text 255 

manufacturer The device manufacturer. text 255 

model User device's model. text 255 

jitter_a The latency variance over time determines the internet connection's stability. number 4 
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"Very poor" category, it is below the minimum of 
the "Poor" category. Hence, this value is classified 
as "Very poor.” 

On the contrary, the QoS index result for data 
sample 379, the highest value depicted in Fig. 10, 
is 84.7512%.  

This index considers the download speed, 
upload speed, latency, jitter, packet loss rate, and 

RSRQ, with values of 56.69 Mbps, 27 Mbps, 21 
ms, 5.1 ms, 0%, and –13 dB, respectively.  

Furthermore, Fig. 10 illustrates that the 
resulting values for QoS are distributed across four 
of the five categories.  

Most values fall into the "Good" category at 
64%, followed by 33% in the 
"Acceptable"  category. 

ploss_sent_a 
The number of packages sent to the host server from the device. To determine packet 
loss percentage, take the ploss_recv divided by ploss_sent. 100% means zero packet 
loss since 100% of the packets were sent and received. 

number 5 

ploss_recv_a 
The number of packages received by the host server from the device. To determine packet loss 
percentage, take the ploss_recv divided by ploss_sent. 100% means zero packet loss since 100% of the 
packets were sent and received. 

number 5 

tr_latency_a The time is taken for the packet to be received after the first hop in the traceroute. Number 5 

tr_ip_1_a This is the IP address of the second hop of the traceroute during a test. text 15 

earfcn_a 
EARFCN stands for E-UTRA Absolute Radio Frequency Channel Number. In LTE, the carrier frequency 
in the uplink and downlink is designated by EARFCN, which ranges between 0 and 65535. EARFCN 
uniquely identify the LTE band and carrier frequency. ... EARFCN is independent of channel bandwidth. 

number 8 

rsrp_a 
Reference Signal Received Power.  LTE metric displaying the received power of the reference LTE 
signal, similar to the old school "signal strength".  Range: -40 to -140, where -140 is the worst and -44 is 
the highest the device will report 

number 4 

rsrq_a 
Reference Signal Received Quality The received quality of the LTE reference signal. Range: -19.5 to -
3, where -3 is best 

number 5 

rssnr_a 
Reference Signal Signal-to-Noise Ratio is Perhaps the most important KPI, but it needs to be reported 
more adequately in Android OS. It's the ratio between the noise and signal of the LTE data transmission. 
The range is -30 to +30, where +30 is best 

number 3 

cqi_a 

CQI stands for Channel Quality Indicator. As the name implies, it is an indicator carrying the information 
on how good/bad the communication channel quality is.  LTE has 15 different CQI values ranging from 
1 to 15 and mapping between CQI and modulation scheme. In HSDPA, the CQI value ranges from 0 to 
30. 30 indicates the best channel quality, and 0,1 tells the poorest channel quality.  

number 2 

cellbandwidth_a Cell bandwidth in kHz number 6 

Table A2. Geographic coordinates of the 39 points where the information repository is distributed 

No. Latitude Longitude  No. Latitude Longitude  No. Latitude Longitude 

1 19.438 –99.149  14 19.435 –99.145  27 19.434 –99.141 

2 19.436 –99.149  15 19.438 –99.144  28 19.433 –99.141 

3 19.434 –99.149  16 19.437 –99.144  29 19.435 –99.14 

4 19.437 –99.148  17 19.436 –99.144  30 19.434 –99.139 

5 19.436 –99.148  18 19.435 –99.144  31 19.432 –99.139 

6 19.435 –99.148  19 19.433 –99.144  32 19.434 –99.138 

7 19.432 –99.148  20 19.438 –99.142  33 19.433 –99.138 

8 19.437 –99.147  21 19.434 –99.142  34 19.438 –99.137 

9 19.434 –99.147  22 19.433 –99.142  35 19.435 –99.137 

10 19.433 –99.147  23 19.438 –99.141  36 19.433 –99.137 

11 19.438 –99.146  24 19.437 –99.141  37 19.435 –99.136 

12 19.433 –99.146  25 19.436 –99.141  38 19.434 –99.136 

13 19.432 –99.146  26 19.435 –99.141  39 19.432 –99.136 
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The "Very good" category represents 2% of the 
values, while the "Poor" category accounts for only 
1%. Notably, there is no distribution in the "Very 
poor" category.  

As a result, the average QoS is 62%, indicating 
a “Good” QoS in the central Alameda zone of 

Mexico City. Table 4 displays the correlation 
between the input parameters and the 
resulting  index. 

For example, for data sample 304, the obtained 
QoS was classified as "Poor" at 31.9078%. This 
low rating is due to shared values in input 

Table A3. Most relevant fuzzy rules to obtain the fuzzy indices of quality and effectiveness 

No. Fuzzy Rules 

1 IF (download speed is Low) AND (upload speed is Low) AND (latency is High) AND (jitter is High) AND (packet loss ratio is High) THEN QoS is Very poor. 

2 IF (download speed is Low) AND (upload speed is Low) AND (latency is High) AND (jitter is High) AND (packet loss ratio is Medium) THEN QoS is Very poor. 

3 IF (download speed is Low) AND (upload speed is Low) AND (latency is High) AND (jitter is High) AND (packet loss ratio is Low) AND (RSRQ is Low) THEN QoS is Very poor. 

4 IF (download speed is Low) AND (upload speed is Low) AND (latency is High) AND (jitter is High) AND (packet loss ratio is Low) THEN QoS is Poor. 

⋮ ⋮ 
12 IF (download speed is Low) AND (upload speed is Low) AND (latency is High) AND (jitter is Low) AND (packet loss ratio is Low) AND (RSRQ is Low) THEN QoS is Poor. 

13 IF (download speed is Low) AND (upload speed is Low) AND (latency is High) AND (jitter is Low) AND (packet loss ratio is Low) THEN QoS is Acceptable. 

14 IF (download speed is Low) AND (upload speed is Low) AND (latency is Medium) AND (jitter is High) AND (packet loss ratio is High) THEN QoS is Very poor. 

15 IF (download speed is Low) AND (upload speed is Low) AND (latency is Medium) AND (jitter is High) AND (packet loss ratio is Medium) AND (RSRQ is Low) THEN QoS is Very 
poor. 

⋮ ⋮ 
182 IF (download speed is Medium) AND (upload speed is Medium) AND (latency is Medium) AND (jitter is Medium) AND (packet loss ratio is Medium) THEN QoS is 

Acceptable. 

183 IF (download speed is Medium) AND (upload speed is Medium) AND (latency is Medium) AND (jitter is Medium) AND (packet loss ratio is Low) AND (RSRQ is High) 
THEN QoS is Good. 

184 IF (download speed is Medium) AND (upload speed is Medium) AND (latency is Medium) AND (jitter is Medium) AND (packet loss ratio is Low) THEN QoS is Acceptable. 

185 IF (download speed is Medium) AND (upload speed is Medium) AND (latency is Medium) AND (jitter is Low) AND (packet loss ratio is High) THEN QoS is Acceptable. 

⋮ ⋮ 
351 IF (download speed is High) AND (upload speed is High) AND (latency is Low) AND (jitter is High) AND (packet loss ratio is High) AND (RSRQ is High) THEN QoS is 

Good. 

352 IF (download speed is High) AND (upload speed is High) AND (latency is Low) AND (jitter is High) AND (packet loss ratio is High) THEN QoS is Acceptable. 

353 IF (download speed is High) AND (upload speed is High) AND (latency is Low) AND (jitter is High) AND (packet loss ratio is Medium) THEN QoS is Good. 

354 IF (download speed is High) AND (upload speed is High) AND (latency is Low) AND (jitter is High) AND (packet loss ratio is Low) AND (RSRQ is High) THEN QoS is 
Very good. 

⋮ ⋮ 
360 IF (download speed is High) AND (upload speed is High) AND (latency is Low) AND (jitter is Low) AND (packet loss ratio is High) AND (RSRQ is High) THEN QoS is 

Very good. 

361 IF (download speed is High) AND (upload speed is High) AND (latency is Low) AND (jitter is Low) AND (packet loss ratio is High) THEN QoS is Good. 

362 IF (download speed is High) AND (upload speed is High) AND (latency is Low) AND (jitter is Low) AND (packet loss ratio is Medium) THEN QoS is Very good. 

363 IF (download speed is High) AND (upload speed is High) AND (latency is Low) AND (jitter is Low) AND (packet loss ratio is Low) THEN QoS is Very good. 

364 IF (packet loss ratio is High) AND (RSRP is Low) THEN Effectiveness is Very poor. 

365 IF (packet loss ratio is High) AND (RSRP is Medium) THEN Effectiveness is Very poor. 

366 IF (packet loss ratio is High) AND (RSRP is High) THEN Effectiveness is Poor. 

367 IF (packet loss ratio is Medium) AND (RSRP is Low) THEN Effectiveness is Poor. 

368 IF (packet loss ratio is Medium) AND (RSRP is Medium) THEN Effectiveness is Acceptable. 

369 IF (packet loss ratio is Medium) AND (RSRP is High) THEN Effectiveness is Good. 

370 IF (packet loss ratio is Low) AND (RSRP is Low) THEN Effectiveness is Good. 

371 IF (packet loss ratio is Low) AND (RSRP is Medium) THEN Effectiveness is Very good. 

372 IF (packet loss ratio is Low) AND (RSRP is High) THEN Effectiveness is Very good. 
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variables, including download speed (4.74 Mbps), 
upload speed (4.241 Mbps), latency (21 ms), and 
RSRQ (–17 dB). Low values for download speed, 
upload speed, and RSRQ worsen QoS, while a low 
value for latency improves QoS. Additionally, the 
jitter and packet loss rates have medium values of 
19.3 ms and 33.7567%, respectively, which 
contribute to a QoS score of 50%. Thus, after 
processing all this information using the fuzzy 
model, sample 304 is classified as “Poor.” 

Furthermore, Fig. 10 shows the results of the 
effectiveness index, with an average score of 
82.1% classified as "Very good." The distribution of 
values across categories is as follows: "Very good" 
(80%), "Good" (16%), "Acceptable" (2%), "Poor" 
(1%), and "Very poor" (1%). 

Additional details about the correlation between 
input variables and the effectiveness index can be 
found in Table 5. For instance, in the evaluation of 
sample 157, the resulting effectiveness is 
99.994181%, classified as "Very good" due to a 
0% packet loss rate and an average RSRP of –
81 dBm. 

The fuzzy indices categorised by MNO are 
displayed in Fig. 11 for the study area. The QoS 
index has a "Good" category for four out of the five 
MNOs (1, 2, 3, and 5), while MNO 4 received an 
"Acceptable" rating, as shown in Figs. 11(a), 11(b), 
11(c), and 11(e) respectively. This indicates that, 
in this geographical location, MNOs 1, 2, 3, and 5 
maintain a good quality of data transfer service. 
Meanwhile, MNO 4 lags two points below the 
quality of the other MNOs. 

The average scores are 68%, 65%, 64%, 61%, 
and 58% for MNOs 5, 3, 1, 2, and 4, respectively. 
In summary, MNO 5 performs the best in terms of 
QoS, while MNO 4 has the lowest quality, as 
presented in Table 6. Moreover, all five operators 
achieved the "Very good" category in the fuzzy 
effectiveness index, indicating excellent 
effectiveness in data transmission in this 
geographical zone. The average scores for the 
MNOs 1, 2, 3, 4, and 5 are 90%, 84%, 89%, 88%, 
and 99%, respectively, as detailed in Table 7 and 
depicted in Figs. 11(a), 11(b), 11(c), 11(d), and (e). 

The fuzzy indices for each MNO are presented 
as thematic maps below to provide users and 
regulatory bodies with easily understandable 
information. The thematic map in Fig. 12 illustrates 
the QoS for MNO 1, displaying data for 16 of the 

39 georeferenced points in the repository. Among 
these points, ten are categorised as "Good" 
quality, five as "Acceptable," and one as "Very 
good." Importantly, no points are classified as 
"Poor" or "Very poor." Points that are not shown 
lack measurements for MNO 1. For a summary of 
these findings, please refer to Table 8. 

Furthermore, Fig. 13 demonstrates that in all 
the 16 locations examined, the effectiveness 
category is consistently classified as "Very good." 
It is important to note that this georeferenced 
analysis was conducted for each MNO. However, 
as this work focuses on evaluating the LTE mobile 
network rather than the individual MNOs, the 
specific results for the other MNOs are 
not included. 

4 Discussion 

Numerous studies have examined QoS evaluation 
with diverse objectives. In [13], the relationship 
between KPIs and received signal parameters is 
investigated, although the aim is not to provide a 
joint index for both parameters. 

In [14], the QoS priority is adjusted for some 
users to evaluate the scheduling of base stations. 
In addition, several works propose improvements 
in network resource planning to enhance QoS and 
user-perceived quality by increasing spectral 
efficiency [7. 15, 16, 17] or by analysing various 
configurations and parameters during video 
transmissions over the mobile network 
[19].Nonetheless, their objective is primarily to 
improve the infrastructure of MNOs. 

On the other hand, [10, 24, 47] conduct 
statistical analyses of mobile network QoS, 
presenting distributions or estimates for missing 
values, but their approaches require substantially 
large data samples. Computational models have 
also been applied, employing various algorithms to 
optimise base station antenna tilt [25], optimise 
downlink resource allocation [26, 27], and 
maximise QoE [23]. Despite their aim to improve 
QoS and QoE, these proposals do not deliver 
relevant information to users. 

Fuzzy systems have also been explored for 
LTE networks. [36, 37] assess QoS using Sugeno 
and ANFIS fuzzy models, yet they do not use 
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measurement data or provide understandable 
information to users about LTE network QoS. 

Following ITU recommendations, this study 
combines KPIs and signal parameters to evaluate 
fuzzy indices of QoS and effectiveness in the 4G 
LTE mobile network. While the proposed fuzzy 
model can handle any dataset, even if appropriate 
adjustments are made, it could evaluate data from 
the 5G network; the results presented here are 
based on the information repository acquired in the 
central Alameda zone of Mexico City. This work 
offers the following contributions: 

– Using crowdsourcing measurements allowed 
for information to be collected by end users 
through their devices, effectively integrating 
their perspective on network performance. 

– Analyzing the information repository enabled 
determining the number of input variables and 
their combinations for each fuzzy index. This 
process led to designing a fuzzy model, 
employing membership functions and fuzzy 
rules that utilize KPIs and signal parameters to 
derive two fuzzy indexes. 

– This fuzzy inference model effectively utilises 
Telecom expert knowledge and provides 
accurate evaluations using a small data 
sample. Its if–then rule-based inference 
enables easier comprehension of results for 
experts and users alike, as the indices are 
classified into five levels. 

– Classifying results into these five levels allows 
for a qualitative understanding of current 
service quality and effectiveness at specific 
georeferenced points or within the study area. 
This aids experts and users in interpreting the 
mobile network service from a different 
perspective. Moreover, network operators can 
share these results to improve transparency. 

5 Conclusion 

This work proposes a fuzzy inference model to 
quantify seven LTE network parameters during 
data transfer using an information repository 
obtained through crowdsourcing. The ITU 
recommends specific KPIs and signal parameters 
for this purpose. We evaluated 385 data samples 
collected at 39 georeferenced points in the central 
Alameda zone of Mexico City. 

Our model was designed based on the if–then 
rules derived from analysing the information 
repository and expert reasoning. As a result, we 
obtained fuzzy indices for data transfer QoS and 
effectiveness in the 4G LTE mobile network. This 
approach addressed the challenge of evaluating 
the network's QoS with a limited data sample, 
thanks to the flexibility offered by fuzzy models. 

It is essential to clarify that our proposed fuzzy 
indices are not intended to replace existing 
descriptors. However, our developed fuzzy 
inference model brings two significant advantages 
compared to other works mentioned: a) it requires 
a smaller data sample to analyse the 4G LTE 
mobile network, and b) the evaluation results 
provide regulatory bodies and users with valuable 
insights into the network's quality. Finally, the 
realised Fuzzy Inference System can evaluate 
data from 5G networks, making the corresponding 
adaptions for this network. 

As a part of future work to enhance the 
robustness of this research, we intend to consider 
utilising a more extensive information repository 
with additional data. This includes extending the 
study duration within the same geographic area for 
a more comprehensive analysis. Additionally, we 
plan to enhance the fuzzy model by incorporating 
an analytic hierarchy process and data for 
5G networks. 
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