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Abstract. The present research focuses on developing a
method based on feature point descriptors and template
matching and comparing its performance with a method
based on deep learning. These methods have particular
aspects in how they were implemented; some stand out
for the simplicity of their structure and others for the
complexity they entail. The methods presented in this
work range from developing a basic template matching
algorithm, developing an algorithm based on feature
point descriptors incorporating the template matching
qualities to obtain better results, to implementing a
method based on deep learning. Performance and
precision tests are carried out to compare the methods
on a selected dataset of video object tracking.

Keywords. Video object tracking, template matching,
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1 Introduction

Object detection and tracking applications have
been growing in various sectors, such as video
surveillance, transportation, agriculture, industry,
sports, health, and academia. The process of
estimating over time the location or bounding box
of one or more objects through a video is called
video tracking or video object tracking [10]. Various
visual resources, videos, images, and video
tracking methods currently fit multiple projects and
applications [15, 8].

The traditional methods to perform the video
tracking are those based on optical flow, template
matching, background subtraction or change

detection, feature point descriptors, and correlation
filters [14, 1, 13]. Among the methods based
on deep learning for object detection are models
based on convolutional neural networks, such
as R-CNN and YOLO [7], which, combined with
methods such as intersection over union, the
Hungarian algorithm, and the Kalman filter, can
also track these detected objects [6].

The methods selected for this work meet specific
qualities in their structure to obtain relevant results
that can be compared appropriately.  These
methods range from template matching through
feature point descriptors to implementing deep
learning. Having an essential element such as the
video and candidate objects to track, the different
methods provide helpful information that, although
in some cases they are synthesized and easy to
analyze, in others they are not, so the problem
lies in carrying out a study on these video object
tracking methods and subject them to evaluations
that demonstrate their robustness and reliability.

This paper aims to conduct a study where
various video object tracking methods are im-
plemented and evaluated to obtain relevant and
helpful information in projects or applications with
visual resources. With information from tests and
experiments, it is possible that video object tracking
projects can save research and testing time and
have a solid foundation for developing applications
that use video object tracking [11]. On the other
hand, currently, the growth of tools that contribute
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Fig. 2. Video object tracking methods implemented

to the tracking of objects in video has grown
exponentially, and that is why developers need
information and data that they can use to make
decisions and carry out their projects successfully.

This paper is organized as follows. Section
2 presents the proposal methodology, describing
the dataset, tracking methods, and metrics used
to evaluate the implemented methods. The
experimental results are presented in Section
3, where qualitative and quantitative results are
shown. Section 4 presents the conclusions and
future work.

2 Methodology

This research focuses on the implementation and
analysis of the different algorithms and methods
for tracking objects in video, ranging from the
most basic algorithms or approaches to the most
complex, viewing it from a technical point of view.
The proposed methodology is designed to achieve
the previously stated objectives, not ruling out
discoveries. In Fig. 1, a block diagram of the
methodology is observed. Next, the steps of
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the proposed methodology and the computational
resources used are described in detail.

2.1 Input Dataset

The dataset we used for this research was
obtained from the VOT Challenge website [2];
this site contains various freely licensed image
sequences used to evaluate object tracking
algorithms [18]. It is called an image sequence
since in each folder, there is a series of image files;
each image sequence has a certain number of
image files, in addition to preserving the uniformity
of the size of the image files contained in each
folder or sequence of pictures. The image sizes
in the sequences range from 320 x 240 pixels to
640 x 480 pixels. Table 1 shows the relationship
of the image sequences downloaded and used in
this research.

Furthermore, the dataset includes the ground-
truth (GT_BBoxes), which is a text file that stores in
each line the coordinates of a bounding box; this
must have the following format: (z,y,w, k), where
(z,y) is the upper left coordinate, and (w, h) is the
width and height of the bounding box, respectively.

2.2 Video Object Tracking Methods

Below are the methods implemented in this work
(see Fig. 2). Some methods are implemented
in C++, while others are in Python. Likewise, an
image as an icon on the left makes a general
illustrative representation of the central strategy
used by the algorithm or method.

2.2.1 Template Matching

The template matching (TM) method consists of
taking a template image and finding it in a larger
image. When the algorithm finds the image region
most similar to the template, it is highlighted to
show where the most similar region is located. This
algorithm is very useful for finding specific objects
in images and is the basis for developing several
computer vision projects [5].

Fig. 3 exemplifies the template matching method
in a general way. Given the bounding box (BBox) in
the first frame (f1) of the input video, a subregion
or template of the image is obtained. With the
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Table 1. Image sequences of input dataset

ID  Sequence Ny  Brief Description

1 Ball 603 Ball in motion.

2 Board 698 Electronic circuit board in motion.

3 Box 1161  Small cardboard box in motion.

4 Car 374 Car leaving a parking lot.

5 Car2 945 White van on streets.

6 Carchase 9928 Police chase.

7 Cup_on_table 1021 A cup on a table with the camera moving.

8 Dog1 1390 A moving dog plush.

9 Gym 767 Olympic gymnast presenting her routine.
10 Juice 404 Juice box on a table with the camera moving.
11 Jumping 313 A person jumping a rope.

12  Lemming 1336 Teddy bear in motion.

13 Liquor 1741 Bottles in motion.

14 Mountain-bike 228 Motorcyclist jumping a ramp.

15 Person 948 A person in motion.

16 Person_crossing 1018 A person walking through a park.

17 Person_p_occluded 306 A person filmed from different angles with partial occlusion.
18 Singer 351 A singer presenting his show.

19 Sylvester 1345 A Sylvester plush in motion.

20 Track_running 503 Professional runner in a competition.

template T established, the searching process
follows, where T is compared with all possible
image subregions in a sliding window strategy.
The sliding window is applied over a searching
area instead of the whole image to reduce the
computational processing.

To compare T and the subregions in the
searching area, the normalized cross-correlation
(NCC) measure can be used, which is defined
as follows:

Zzﬂil(TZ - T)(f1u1 - f_‘w)
\/Zf\il(Tl - T)Q\/Z?il(f’i,w - .f’w)2

where i denotes a pixel in the image, M is the
number of pixels in T, w is a window of size equal
to T centered in a pixel in the searching area, f,, is
the average of the pixel values in the window w,
and T is the average of the pixels values in the

NCC =

(1)

template 7. The NCC can take values between
[—1, 1], while closer to one, the T" and the subregion
Jw are more similar. See [13] for more details.

2.2.2 Feature Point Descriptor and Template
Matching

Inspired by the ALIEN tracker based on feature
point descriptors [14], we developed the Fea-
ture Point Descriptors and Template Matching
(FPDTM) tracker.

Figure 4 shows the general flowchart of the
FPDTM method. Given the BBox in the first frame
(f1) of the input video, the features and descriptors
are computed using the SIFT algorithm to initialize
the object and context feature sets 77 and (4,
respectively. The state #; includes the object
center location (z,y;), scale s; and rotation angle
6, with respect to the BBox. Furthermore, we use
a template vector Ty, consisting of a set of ten
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Fig. 3. General process of the template matching method

templates or subregions corresponding to different
object views. The initialization of the template
vector corresponds to loading the object to track
in the first position of the vector.

For the following frame f;, a search region is
computed to avoid searching for the object in
the whole frame. Features and corresponding
descriptors are computed at frame f;. A procedure
to find the matching between the object and context
feature sets of frames f;_; and f; is performed,
filtering the features corresponding to the object
feature set that does not match the context feature
set. Then, the object state &, is estimated using
the filtered object feature set, minimizing the loss
function reported in [14].

With the estimated object state i;, we compute
the matching between the image obtained with
the BBox at Z; and the template vector images
using the NCC measure. We obtain the maximum
NCC (NCCmax). When the template vector is
complete, we must compare ten NCC values to
obtain the NCC_max.

If the scale, rotation, and NCC meet the following
conditions: (|8;—8;_1| < k), (|6; —0;_1| < kq), and
(NCCmax > thr_NCC), then the object is detected.
If the object is detected, an occlusion detection
procedure is performed; otherwise, the process
continues with the following frame.
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If the cardinality of the context feature set that
contains the features localizing inside the BBox
area at state #; is higher than the threshold
No, then the object is occluded. If the object
is occluded, the following step is to update the
template vector; otherwise, the object and context
appearance are updated previously to continue
with the update of the template vector.

If the object is not occluded, the object and
context feature sets are updated, including new
features and descriptors. When the cardinality
of some set exceeds a threshold, some features
and descriptors are removed in a uniform random
sampling way; see [14] for more detalils.

Suppose the NCCmax is found in a location [
different from zero of the template vector. In that
case, the image in this location is updated using a
linear combination as follows:

THN () = afy + (1 — )T (D), (2)

with o € [0,1] a parameter which controls the
contribution of f; and T, (/). The corresponding
procedures are repeated until the last frame of the
video is reached.

2.2.3 YOLOV5-StrongSORT

There is a yolo_tracking framework available in [3,
4], where multi-object trackers are implemented
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Fig. 4. General flowchart of the FPDTM method

in Python. We tested the YOLOV5-StrongSORT
method, which uses the YOLOV5 object detector
model inside the StrongSORT tracker method. The
YOLOV5 model is open source, actively maintained
by Ultralytics [16] and commonly trained in the
COCO dataset [9]. StrongSORT [6] is a tracker
method based on DeepSORT [17], which consists
of an automatic object detector and a combination
of the Kalman filter and Hungarian algorithm for
tracking the detected objects. The Kalman filter
predicts the object movement from a linear velocity
model. On the other hand, the Hungarian algorithm
is used to solve an assignment cost matrix, which
is constructed from the intersection over the union
between each detection and all predicted bounding
boxes of the targets.

Different from DeepSORT, StrongSORT is
equipped with advanced modules such as a
detector model based on YOLO, a more robust
appearance feature extractor, an exponential
moving average to update the embedding fea-

tures, a correlation coefficient maximization for
camera motion compensation, and a matching
cost that combines the appearance and motion
information [6]. Thus, the detections generated
by YOLOV5 are passed to StrongSORT, which
combines appearance and motion information to
track the objects trained in the YOLOVS.

2.3 Output Dataset

The output dataset consists of text files
(Out_BBoxes) with the same format as the
GT_BBoxes generated by the object tracking
methods. With the Out_BBoxes, it is possible to
analyze the results qualitatively and quantitatively.

2.4 Recall Metric

This part involves the text files GT_BBoxes and
Out_BBoxes, which are used to calculate the recall
metric to analyze the effectiveness of each method.
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Before calculating the recall metric, the intersec-
tion over union (IoU) between the GT_BBoxes and
Out_BBoxes is computed as follows:

A(GT_BBoxes; N Out_BBoxes;)
IoU; = )
A(GT_BBoxes; U Out_BBoxes;)

where A denotes the area and : indicates a
register in both set. Thus, for each frame i of
a video sequence, the IoU; evaluates the ratio
between the intersection area and union area of
the ground-truth bounding box GT_BBoxes; and the
estimated bounding box Out_BBoxes; [12].

The recall metric is defined as follows:

TP

" TIP L EN (4)

where TP represents the true positives and FN the
false negatives, which are computed considering a
threshold 7 € (0, 1) over the ToU,. Thus, if the value
IoU; > 7, the estimated bounding box Out_BBoxes;
is taken as a TP; else, it is taken as FN.

3 Experiments and Results

Two programming languages were used: C++ and
Python. These languages easily fit this research
work, and many scientific projects are implemented
in these two languages. OpenCV library was used
because it has several methods that help develop
image and video processing tasks. Furthermore,
Matlab was used for the analysis of quantitative
results. In terms of hardware, a PC with an
8-Core i7 CPU and 16 GB RAM was used locally.
In addition, a server with Intel(R) Core(TM) CPU
i9-9920X 3.50 GHz, Ubuntu 20.04 (64-bit), 24
hyper-threading cores, and 64 GB RAM was
used remotely.

In the following subsections, the qualitative and
quantitative results are shown.

3.1 Qualitative Results

Fig. 6 shows the results of TM (first row) and
FPDTM (second row) methods using the video
sequence Dog1. In this video sequence, there is
a moving dog plush, sometimes changing its size,
nearing and faring to the camera. Note that the TM

Computacion y Sistemas, Vol. 29, No. 3, 2025, pp. 1503-1512

doi: 10.13053/CyS-29-3-4806

method loses the dog plush when it changes its
size, while the FPDTM is robust to scale changes.

Fig. 5 shows the results of FPDTM (first row)
and YOLOV5-StrongSORT (second row) methods
using the video sequence Car. In this video
sequence, a moving black car changes its perspec-
tive through the video. The YOLOV5-StrongSORT
detects several objects because this method is
a multi-object tracker However, we consider only
the black car, marked with an orange bounding
box and the label “1 car”. It is observed that
the FPDTM loses the object and cannot follow
it again when it changes its perspective, while
the YOLOV5-StrongSORT tracks it even though it
changes its perspective.

Fig. 7 shows the results of TM (first row),
FPDTM (second row), and YOLOV5-StrongSORT
(third row) methods using the video sequence
Person. In this video sequence, a person is still
at the beginning of the video, then begins to walk
and turn, changing his pose and appearance. The
TM only tracks the person in the first video frames
while the person is static. FPDTM sometimes
loses the person, specifically when this changes
its appearance. On the other hand, note that
YOLOV5-StrongSORT is more robust in tracking
this person.

3.2 Quantitative Results

Three values for the parameter A: low A; = 0.25,
middle A,, = 0.5, and high A, = 0.75 were fixed
to compute the recall metric. A high value of A
means a better overlapping between the estimated
bounding box and the ground-truth bounding box.

There is a class list of objects that the methods
based on deep learning can detect. This class
list is used for training the deep learning model;
thus, these methods can only detect these objects.
Within the dataset used in this work, some image
sequences have an object that is not within that
class list of objects; therefore, the method is
incapable of detecting or tracking it.

Table 2 shows the results of the recall metric
using the TM, FPDTM, and YOLOV5-StrongSORT
methods with different values of A: ;| An.|An.
The highest recall values are shown in bold.
The TM method obtains the smallest recalls,
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Fig. 7. Results of TM (first row), FPDTM (second row) and YOLOV5-StrongSORT (third row) methods using the video
sequence Person

except in the Juice and Jumping videos, where recall values in more videos than the BM and
the tracked objects almost do not change their YOLOV5-StrongSORT methods. Note that there
size. The FPDTM method obtains the highest are videos such as Board, Box, Juice, Jumping,
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Table 2. Results of the recall metric using the TM, FPDTM, and YOLOV5-StrongSORT methods with different values of
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and YOLOV5-StrongSORT methods

A A A An
ID Sequence ™ FPDTM YOLOV5-StrongSORT
1 Ball 0.09]0.09]0.03 0.40(0.34/0.19 0.31/0.31]0.31
2 Board 0.05/0.04]0.03 0.14/0.13/0.07 NA|NA|NA
3 Box 0.14/0.14]0.03 0.78/0.73/0.45 NA|NA|NA
4 Car 0.18|0.09]0.03 0.46/0.20]|0.05 0.99/0.99|0.73
5 Car2 0.29]0.04/0.03 0.98/0.98/0.93 0.57]0.55]0.01
6 Carchase 0.04]0.04/0.02 0.17/0.16/0.09 0.01]0.0]0.0
7 Cup_on_table 0.13]0.13|0.07 0.93/0.71/0.47 0.40(0.40|0.40
8 Dog1 0.11/0.11]0.09 0.67|0.62|0.49 0.98/0.97/0.51
9 Gym 0.18/0.15/0.03 0.60(0.27]0.04 0.94/0.89|0.48
10 Juice 1.00(0.47|0.32 1.00|1.00(|1.00 NA|NA|NA
11 Jumping 0.99/0.71/0.17 0.81|0.71]0.14 NA|NA|NA
12 Lemming 0.04/0.03]0.03 0.72|0.31/0.20 NA|NA|NA
13 Liquor 0.17|0.17|0.17 0.86/0.86]|0.84 1.00|1.00|0.90
14 Mountain-bike 0.26/0.26(0.12 0.49|0.21/0.11 0.08/0.07]0.00
15 Person 0.10/0.10]0.05 0.72|0.64/|0.35 1.00/1.00(|1.00
16 Person_crossing 0.06/0.06]0.06 0.86/0.84/0.75 0.64/0.63|0.59
17 Person_p_occluded 0.53|0.53]|0.53 1.00/0.95/0.82 0.99/0.99|0.99
18 Singer 0.17]0.17]0.12 0.34/0.34/0.27 0.23/0.19]0.00
19 Sylvester 0.05/0.05/0.03 0.51/|0.45/0.35 NA|NA|NA
20 Track_running 0.28]0.24/0.11 0.16/0.10]|0.06 0.93/0.93/0.57
Lemming, and Sylvester where the object is not using A,,. It is observed that there is a favorable

inside the class list of the YOLOV5-StrongSORT
training; thus, the YOLOV5-StrongSORT is not
applicable (NA). Fig. 8 shows the results of
TM, FPDTM, and YOLOV5-StrongSORT methods
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trend for the YOLOV5-StrongSORT because when
detecting the object, it does so almost perfecily.
All recall values where the YOLOV5-StrongSORT
is superior to the other methods are up to 0.8.
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On the other hand, in the video sequences where
the FPDTM has the highest recall values, the
YOLOV5-StrongSORT loses the object, assigning
it a new identifier when it is detected again.

4 Conclusion and Future Work

The methods analyzed and implemented in
this work offer different results that can be
useful for computer vision applications involving
object tracking.

The template matching algorithm performs well
on objects where lighting changes may occur,
and it can follow objects with slight occlusion and
smooth movements as long as they do not change
their size.

The method based on feature point descriptors
and template matching proved good at tracking
objects that change size, have scaling, or undergo
some slight rotation.  However, its weakness
was when the object changed shape throughout
the video.

The method based on deep learning offered
good results when the object belongs to the set of
objects previously trained. This method is robust
to illumination changes, scaling, partial occlusions,
and perspective changes. However, this method
can lose the object when this is not detected by
severe occlusions, assigning it a different identifier.

The future work proposal is to investigate and
implement video object trackers that can have the
robustness of a tracker based on deep learning,
feature point descriptors, and template matching.

Furthermore, we want to apply it in a real case,
such as video surveillance.

The implementation using parallel computing of
the method based on feature point descriptors and
template matching is also proposed, considering
both the multiple cores of a computer and the
graphic processing unit.
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