
PAREX: A Novel exFAT Parser for File System Forensics

Gaurav Gogia*, Parag Rughani

National Forensic Sciences University,
India

gaurav-gogia@outlook.com, parag.rughani@gmail.com

Abstract. File systems, being one of the core
components of any computational device, contain the
most important information which makes them pivotal
to any digital forensics investigation. However, file
system parsing is a complex process. Existing file
system forensic software are capable of processing large
datasets but often at the cost of either performance
or resource utilisation. Slow evidence processing has
a direct impact on investigation time, while higher
resource requirements have a monetary impact. Digital
Forensics labs are often on a constrained budget in
terms of both time and money. So, they often need
to define priorities on a case-by-case basis. Another
major concern for forensic investigators is correctness.
Tools that suffer from memory management issues may
generate inconsistent reports or worse yet, increase
overall attack surface for malware that may pollute
investigator’s workstation. This research proposes a
novel open-source exFAT file system parsing library.
It has been validated against the current open-source
state-of-the-art: The Sleuth Kit (TSK), on a dataset of
disk images ranging from 1MiB to 1TiB. Experimental
results indicate that the proposed tool is 40 times faster
and 17 times more memory efficient than TSK.

Keywords. ExFat, parsers, file system forensics,
digital forensics.

1 Introduction

File systems are blueprints that provide an
arrangement for operating systems to efficiently &
reliably store all the files. Modern file systems can
scale up to billions of files with each file reaching
sizes over multiple terabytes. Such features have
made file systems the de facto structure of storing
data in secondary storage.

Some of the most common file systems include
NTFS, exFAT, EXT4, APFS, and XFS. As the
default storage method, most of the data is stored
in secondary storage. This effectively turns file
systems into a gold-mine of artefacts for digital
forensics investigators [28].

To extract these artefacts, numerous digital
forensic tools have been developed [36]. Almost
all modern digital forensic tools have a file system
parsing module in them. A file system parser is
a tool that understands the structure of the file
system it has to read. The parser must understand
all the pre-defined fields in the file system and read
them while understanding their specific meanings.

Some parts of the file system contain meta-data
while others contain contents of the files stored in
them. A file system is similar to a JavaScript Object
Notation (JSON) object or an Extensible Markup
Language (XML) object in the sense that all three
of them present different ways to organize data.

Almost all of the modern digital forensic tools
have file system parsing capabilities. Some of
these modern tools include TSK [41] & EnCase
[32]. These forensics tools parse the file system
to extract the artefacts and run analytics on top
of them. However, file system parsing can be a
complex process.

While digital forensics tools are able to handle
terabytes of data, they are often slow to process
the large volume of data [29]. Processing
performance and resource utilisation are inversly
related, high performance processing requires
higher memory in most cases. For instance,
parsing a file system with a large number of files
and directories can result in high memory usage,
which can slow down the parsing process.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 421–433
doi: 10.13053/CyS-28-2-4804

ISSN 2007-9737

Fig. 1. exFAT file system not detected at offset ’0’

Fig. 2. exFAT file system header signature at offset ’0’

When file system parsing is slow or inefficient,
it slows down investigations. In certain instances,
the indexing of an entire disk image with
millions of files can be a time-consuming process,
particularly when dealing with legacy equipment.
The ”Experiment” section of this research offers
empirical evidence derived from testing various
scenarios on five different platforms.

This research focuses on open-source file
system parsers. Specifically designed for the
exFAT file system [2], aiming to contribute an
efficient and fast exFAT parser. The exFAT file
system was selected for its compatibility with most
of the major electronic devices [20, 23, 43, 39, 40,
1]. The ”Related Work” section provides a more
comprehensive discussion of this aspect.

1.1 Problem Statement

Forensic investigations often suffer from large
backlog of cases due to slow, bulky, and inefficient
digital forensic tools [29]. Digital evidence is
relevant in about 90% of the cases [26]. The
amount of data that must be acquired, analyzed,
indexed, processed, triaged, and reported, keeps
increasing every passing day. Storage devices
have evolved to preserve multiple terabytes of data.

While advanced forensic tools and
high-powered hardware tools are available, a
lot of digital forensics labs don’t have the budget
for these advanced tools [17]. Building a digital
forensics lab can easily cost over $100,000 [33],
this cost is excluding yearly maintenance cost of
the lab. Labs that rely on open-source tools find
themselves lagging behind because existing tools
are slow and memory in-efficient.

Next sub-section will explain the current state
of open source exFAT file system parsers for
digital forensic tasks. According to a joint report
by Google and Microsoft, a staggering 70% of
all security bugs can be traced back to memory
safety issues [47, 48]. Although there are
other open-source tools available for file system
parsing, such as dfir ntfs [30] & exfatDump [18]
written in Python [37], they appear to have limited
functionality. For instance, dfir ntfs, is designed
for parsing the Volume Boot Record (VBR), Master
Boot Record (MBR) structures, and file metadata
without the ability to read or extract any entries.

While, exfatDump, published in October 2015,
unfortunately, seems to be non-operational. As
shown in Figure 1, exfatDump fails to identify the
start of the exFAT file system at the specified offset
0, which is indicated using hexdump [16] tool in
figure 2. In contrast, the proposed solution of
this research offers a robust and comprehensive
approach to parsing file system structures.

1.2 Contribution

The primary contribution of this research is
LIBXFAT, an exFAT file system parsing library [3].
Additionally, a secondary add-on to the contribution
is PAREX, a Command Line Interface (CLI) tool
built on top of LIBXFAT [4]. PAREX offers four
options for parsing disk images, which are further
explained in Table 1.

The main features of these software tools
include listing all entries in the file system, including
deleted and deleted entries, as well as extracting
file contents in a forensically sound manner. Both
LIBXFAT and PAREX were developed using the Go
programming language [14], which was selected
for its simplicity, easy concurrency, and built-in
memory safety features.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 421–433
doi: 10.13053/CyS-28-2-4804

Gaurav Gogia, Parag Rughani422

ISSN 2007-9737

Table 1. PAREX options

Parsing Option Operation

0 List Root Entries

1 List All Entries - With Metadata

2 List All Entries - With Count

3 Extract All Entries - Collected

4 Extract All Entries - Recursively

Table 2. Indexed files per image

Image Size Indexed Files

1 MiB 7

512 MiB 4540

1 GiB 11336

10 GiB 240295

32 GiB 442

64 GiB 313030

The memory safety aspect of the Go has
been validated by Felix A. Wolf et al., as cited
in reference [45]. To ensure the correctness of
LIBXFAT, its results were compared with those
obtained from TSK and Autopsy [5]. Furthermore,
for benchmarking purposes, LIBXFAT was profiled
against TSK using various parameters. Detailed
explanations of these experiments can be found in
the experiments section.

1.3 Outline

The rest of the paper is organized in 5 major
sections: Section 2 ”Related Work” discusses
some related research work with the current
state of file system parsing tools. Section 3
”Background” explains the structure of exFAT file
system. This section can be skipped by those
readers who understand this file system well.

Section 4 “Experiment” presents experiments,
experimental methodology, and the data
generated during those experiments. In Section 5
“Discussion”, experimental results are interpreted;
Section 6 “Conclusion” concludes and discusses
future research work and potential applications of
this work.

2 Related Work

This section reviews studies on file system
forensics, highlights the importance of exFAT
from a forensic perspective, and explores existing
software solutions. It focuses on solutions that offer
API/Library integration for developers to promote
inter-operability in the field.

File System Forensics: The significance
of file system forensics is paramount; virtually
all digital artefacts can be traced back to the
file system. A recent paper explored the
application of machine learning algorithms for
identifying contraband within file systems [28].
Extensive research has been conducted regarding
forensic and anti-forensic techniques for various
file systems.

One such study proposed a novel file recovery
algorithm designed to recover deleted files from
the FAT32 file system [8]. Another research
introduced a scheme aimed at detecting data
in FAT32 file systems that leaves no traces
[46]. However, investigating file systems isn’t
solely limited to recovery files or identifying data
streams. For instance, ExtSFR is a scalable file
recovery framework that is compatible with EXT file
systems [19].

APFS, another crucial file system, has
been sparsely studied due to its proprietary,
closed-source nature. Researchers interested
in developing file recovery algorithms for this file
system had to resort to reverse engineering [36].
Similarly, the proprietary Resilient File System
(ReFS) also necessitates reverse engineering to
extract valuable information [32].

These efforts pose various legal and technical
questions around the process of reverse
engineering a file system [42]. However, reverse
engineering and file recovery are not the sole use
cases in file system forensics. Another scenario
involves the simple reading and classification
of files.

This has spurred research into classification
algorithms, with some based on neural networks
that traverse the file system to identify contraband
[27]. File system forensics has indeed spurred a
numerous research initiatives. To that end, this
paper will primarily focus on the exFAT file system.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 421–433
doi: 10.13053/CyS-28-2-4804

PAREX: A Novel exFAT Parser for File System Forensics 423

ISSN 2007-9737

Table 3. exFAT region layout with offset & size in sectors

Sub-Region Name Offset (Hex) Size (Decimal)

Main Boot Region

Main Boot Sector 0x0 1

Main Extended Boot Sectors 0x1 8

Main OEM Parameters 0x9 1

Main Reserved 0xA 1

Main Boot Checksum 0xB 1

Backup Boot Region

Backup Boot Sector 0xC 1

Backup Extended Boot Sectors 0xD 8

Backup OEM Parameters 0x15 1

Backup Reserved 0x16 1

Backup Boot Checksum 0x17 1

FAT Region

FAT Alignment 0x18 FatOffset – 24

First Fat FatOffset FatLen

Second Fat FatOffset + FatLen FatLen * (FatCount – 1)

Data Region

Cluster Heap Alignment FatOffset + FatLen * FatCount ClusterHeapOffset – (FatOffset +
FatLen * FatCount)

Cluster Heap ClusterHeapOffset ClusterCount * 2

Excess Space ClusterHeapOffset + ClusterCount*2 VolumeLen – (ClusterHeapOffset +
ClusterCount * 2)

exFAT Forensics: The exFAT file system has
emerged as the de facto standard for removable
storage devices and those utilizing NAND flash
storage technology, including thumb drives, SDXC
cards, eMMC storage in laptops, and more.

A key factor driving its widespread adoption
is the deliberate design choice made by its
creators—minimising write operations to promote
the longevity of storage devices. Another pivotal
aspect is its compatibility with major operating
systems such as Windows, MacOS, Ubuntu,
Android, and other Unix-based systems [15].
Forensic workstations leverage exFAT file systems
to ensure seamless interoperability across different
operating systems [20].

Despite its popularity, the algorithms used
to parse and analyse devices employing the
exFAT system are not publicly available, posing
a challenge to comprehensive forensic analysis
[23]. The significance of the exFAT file system
is underscored by Yves Vandermeer et al.,
who conducted an in-depth study on its data
structure [43]. Furthermore, various studies
highlight the use of exFAT file systems in a
diverse array of devices, from medical equipment
to drones [39, 40, 1]. Consequently, advancing our
understanding and capabilities in exFAT forensics
holds paramount importance.

Open Source Digital Forensics: Several
digital forensics software programs capable of
parsing the exFAT file system currently exist.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 421–433
doi: 10.13053/CyS-28-2-4804

Gaurav Gogia, Parag Rughani424

ISSN 2007-9737

Table 4. Number of entires per disk image

Size All Root Indexed Deleted

1 MiB 10 6 10 0

512 MiB 4734 19 4733 1

1 GiB 11580 20 11561 19

5 GiB 1 9 9 0

10 GiB 246910 13 246845 65

25 GiB 11 11 11 0

32 GiB 556 13 556 0

40 GiB 20 20 20 0

64 GiB 325517 112 324865 652

128 GiB 533292 150 532444 848

256 GiB 1375122 152 1374820 302

500 GiB 45 45 45 0

512 GiB 2550344 152 2550212 132

1 TiB 5057669 1546 5053570 4099

However, the process of validating,
benchmarking, and developing trust in these
tools presents a considerable challenge [7].
Although open-source file system forensics
software are available [41, 40], their over-reliance
on memory-unsafe programming languages
such as C & C++ can cause supply chain
security challenges.

Multiple entities, including Google and
Microsoft, along with independent researchers,
have reported that over 70% of memory-related
flaws in operating systems and browsers can be
directly attributed to code written in C or C++
[47, 48, 49, 12].

These memory-related bugs, if exploited, can
compromise a digital forensics workstation causing
damage to all the cases being investigated on
the same machine or on the same local network,
depending on the extent of the exploit.

The Go programming language, developed
by Google, offers a safer alternative [45]. Its
design goals are simplicity, ease of development,
and high performance. When compared to
other memory-safe programming languages, the
performance of Go is comparable to C++ [35, 11,
22, 34].

However, only one open-source library has
been identified to date [10] that is written in Go
programming language, but it lacks features such
as recursive file system traversal and access to
metadata information like the number of clusters a
file contains.

This paper introduces a new open-source
library and a CLI tool for parsing the exFAT file
system. This library has been validated with
and benchmarked against industry standard tools.
Validation and benchmark tests are explained in
more detail in Section 4 ”Experiment” section.

3 Background

The exFAT file system was developed by Microsoft
to address the limitations of the FAT32 file system,
particularly in relation to flash storage devices
like SD cards. The exFAT file system comprises
three primary regions: the Boot Region (also
known as the superblock), the FAT Region, and
the Data Region. The Boot Region, occupying
the first 512 bytes, contains crucial metadata
and initialization data, including the file system
signature and parameters.

The FAT Region, as the name suggests, stores
the file allocation table, which manages file and
directory locations. The Data Region stores
the actual contents and metadata of all the files
and folders. A comprehensive study by Julian
Heeger et al. provides detailed insights into
the architecture and functioning of the exFAT file
system [15]. Table 3 explains subsections of these
regions with their offsets [2].

4 Experiment

To evaluate the correctness and performance
for PAREX software (powered by LIBXFAT),
functional and benchmarking experiments were
carried out. For benchmarking experiments
FLS software (powered by TSK) was used
as the control/standard software against all
the comparison was made. The upcoming
subsections will provide detailed explanations of
the experiment setup, the experiment itself, and the
corresponding results.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 421–433
doi: 10.13053/CyS-28-2-4804

PAREX: A Novel exFAT Parser for File System Forensics 425

ISSN 2007-9737

Fig. 3. Verify metadata - PAREX

Fig. 4. Verify metadata - autopsy

4.1 Experiment Setup

To validate both PAREX and FLS, the first
step involved generating a dataset of raw disk
images. Most of the disk images were generated
synthetically by creating several files and folders
in an external storage device. Additionally, a
portion of the dataset was downloaded from NIST
CFReDS repositories [31].

The downloaded files were saved into a
separate partition in a Virtual Machine. Raw disk
images were created out of the partitions where
the files were downloaded. Disk images ranging
from 1MiB to 1TiB were created to cover a range
of scenarios. Experiment setup is divided into
two parts: Functional Tests Setup & Benchmark
Tests Setup.

They explain the experiment environment and
profiling methods used to conduct the experiment.
Within the context of this study, the terms ’entry’
& ’entries’ are employed to denote an ’entry’ &
a number of ’entries’ within the file system. This
term is used universally to represent both files and
folders. Table 4 exhibits the total number of entries,
root entries, indexed entries, and deleted entries
for a disk image, along with their respective sizes.

4.1.1 Functional Test Setup

The experimental environment for the functional
tests was intentionally simple. A single platform
was chosen to evaluate the basic functionality
of PAREX software developed within this
research. Performance assessments of all
the tools were executed using GNU/Time software
[13] within a Windows Subsystem for Linux 2
(WSL-2) environment [6].

4.1.2 Benchmark Test Setup

The benchmark tests were performed in five
different environments: WSL-2 [6], Anarchy Linux
[9], Windows 10 Professional [24], Windows
11 Professional [25], and Kali Linux [21].
These environments were created using VMWare
Workstation Pro 17 [44].

Windows 10, Windows 11, Anarchy Linux,
& Kali Linux environments were created with 4
vCPUs and 6 GiB RAM. A 12 TiB 7200RPM
external HDD was used for storage. While on the
other hand, WSL-2 had 16 vCPUs, 32 GiB RAM,
and 1 TiB internal M2 SSD storage drive.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 421–433
doi: 10.13053/CyS-28-2-4804

Gaurav Gogia, Parag Rughani426

ISSN 2007-9737

Algorithm 1 Process Profiling Algorithm

1: start time← current time
2: p← Process object for proc. pid

3: Initialise empty lists: cpu use list, mem use list, thread count list, read bytes list, write bytes list

4: while proc is running do
5: cpu← CPU percent of p divided by total number of CPUs
6: Append cpu to cpu use list

7: mem← memory used by p

8: Append mem to mem use list

9: Append number of threads used by p to thread count list

10: Get I/O counters for p
11: Append read bytes and written bytes to read bytes list and write bytes list respectively
12: Sleep for sampling rate seconds
13: end while
14: end time← current time
15: avg cpu use← Average of cpu use list

16: avg ram use← Average of mem use list

17: avg thread count← Average of thread count list

18: avg io read← Average of read bytes list

19: avg io write← Average of write bytes list

20: return avg cpu use, avg ram use, avg thread count, avg io read, avg io write

To profile all these experiments, a python [37]
script was written using psutil [38] library. This
library helps in profiling system events like memory
use, execution time, thread count, processor use,
disk reads/writes etc.

The version of the library at the time of writing
this paper is v5.9.5. This library has a proven
record and is being actively maintained on GitHub
by many contributors. Algorithm 1 explains the
profiling script.

4.2 Functional Tests

For the functional tests, all the files were extracted
out of the disk images using PAREX to validate
the correctness of the CLI tool. Table 2 shows
image size and the number of indexed files per
disk image.

To verify the correctness of PAREX, results of
data parsing and extraction were compared with
the results of TSK & Autopsy. Please note that
an additional command in PAREX was executed
for this experiment to list out all the files and their
metadata out of the disk image.

Figures 3 & 4 represent matching metadata
between PAREX & Autopsy to solidify the
correctness of exFAT file system parsing in PAREX.
On the other hand, figure 7 represents matching
SHA-256 hash of the extracted files by PAREX
& TSK illustrating correctness of file extracted
by PAREX.

Mean and Standard Deviation out of experiment
data was calculated to compare performance,
efficiency, and consistency between PAREX and
FLS. Upcoming sub-sections will delve into the
details of the experiemnts and present results.

4.2.1 List Root Entries

In the first benchmark test, FLS was executed
in its default state without any flags, while
PAREX(powered by LIBXFAT) was run with the
0 option. This option parses root dir entry and
returns them for the user, please find table 1 for
more details. This approach ensured that both
tools used a 0 offset of the disk image as the
starting point and exclusively returned root entries
from the disk image.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 421–433
doi: 10.13053/CyS-28-2-4804

PAREX: A Novel exFAT Parser for File System Forensics 427

ISSN 2007-9737

P1 P2 P3 P4 P5
0

0.2

0.4

0.6

0.8

Platform

M
e

a
n

FLS PAREX

P1 P2 P3 P4 P5

0

0.5

1

1.5

2

Platform

S
ta

n
d

a
rd

D
e
v
ia

ti
o

n

FLS PAREX

Fig. 5. List root entries — execution time (seconds) — lower is better

P1 P2 P3 P4 P5

2

4

6

Platform

M
e

a
n

FLS PAREX

P1 P2 P3 P4 P5

2

4

6

8

Platform

S
ta

n
d

a
rd

D
e
v
ia

ti
o

n

FLS PAREX

Fig. 6. List root entries — RAM use (MB) — lower is better

4.2.2 List All Entries

In the second benchmark test, FLS was run with
options ’-u -r’ while PAREX was run with option ’2’.
This option lists out all the indexed entries in the
file system while keeping track of count of number
of entries, please find table 1 for more details.
This approach ensured that both tools used a 0
offset of the disk image as the starting point and
exclusively returned all the indexed endtries from
the disk image.

4.3 Experiment Results

Mean & Standard Deviation was calculated
for all the statistical data that was acquired
by profiling the experiments run to benchmark
both PAREX and FLS software tools. Results
of these experiments have been visualized to
clearly state the difference in performance,
efficiency, and consistency between the two tools.
Figures 5, 6, 8, and 9 represent comparative
analysis between PAREX and FLS on various
platforms through mean execution time, standard

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 421–433
doi: 10.13053/CyS-28-2-4804

Gaurav Gogia, Parag Rughani428

ISSN 2007-9737

Fig. 7. Verify file extraction

deviation in execution time, mean RAM use, and
standard deviation in RAM use. The following
list elucidates the platforms on which these
experiments were conducted:

– P1 - WSL 2,

– P2 - Windows 10,

– P3 - Windows 11,

– P3 - Arch Linux,

– P4 - Kali Linux.

4.4 Caveats

This study has several important caveats that
must be considered when interpreting its findings.
Prrofiling in a Windows Subsystem for Linux
2 (WSL-2) environment is currently not fully
reliable. The high level of abstraction that WSL-2
introduces an inherent challenge in accurately
profiling all parameters.

This limitation potentially impacts the precision
and consistency of our results obtained from this
environment. To alleviate this concern, identical
experiments were conducted on Anarchy Linux,
Kali Linux, Windows 10, and Windows 11 virtual
machines were conducted.

The diverse range of environments helps
in establishing a comprehensive and more
reliable picture of the software’s execution time.
Secondly, the accuracy of profiled data is inversely
proportional to the sampling rate.

As the sampling rate decreases, the chances of
obtaining accurate profiling data diminishes. This
phenomenon occurs because lower sampling rates
have a reduced ability to capture all system state
changes accurately. To examine this effect and
capture data at different levels of granularity, we
performed profiling at sampling rates of 0ms, 50ms,
and 100ms.

Lastly, the accuracy of profiled data can also
be affected if an operation runs faster than the
sampling rate. This discrepancy can lead to the
operation being entirely missed by the profiler,
especially for those operations that complete within
a time frame shorter than the sampling rate. This
occurrence introduces another potential source of
error in the profiling data.

Therefore, it’s critical to understand that the
results of this study are subjected to these
inherent limitations of the profiling process. Future
work could focus on developing methods to
mitigate these issues and enhance the accuracy of
profiling data.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 421–433
doi: 10.13053/CyS-28-2-4804

PAREX: A Novel exFAT Parser for File System Forensics 429

ISSN 2007-9737

P1 P2 P3 P4 P5

0

1,000

2,000

Platform

M
e

a
n

FLS PAREX

P1 P2 P3 P4 P5

0

1,000

2,000

3,000

4,000

Platform

S
ta

n
d

a
rd

D
e
v
ia

ti
o

n

FLS PAREX

Fig. 8. List all entries — execution time (seconds) — lower is better

P1 P2 P3 P4 P5
0

20

40

60

Platform

M
e

a
n

FLS PAREX

P1 P2 P3 P4 P5
0

20

40

60

80

Platform

S
ta

n
d

a
rd

D
e
v
ia

ti
o

n

FLS PAREX

Fig. 9. List all entries — RAM use (MB) — lower is better

5 Discussion

This section presents the outcomes of functional
and benchmark tests.

The experimental results indicate that the
PAREX and LIBXFAT library accurately parses
the exFAT file system, effectively identifying
root entries, traversing all directories and
sub-directories to locate the remaining entries,
and extracting file content in a forensically
sound manner.

The benchmark tests reveal that the PAREX,
is significantly faster and more memory efficient
than FLS. Experiments also reveal that PAREX
software performs much more consistently across
different platforms.

This is another important finding, as it means
that PAREX can be used to process large
exFAT formatted devices reliably with high speed
while keeping minimum memory footprint on the
investigator’s workstation. However, this research
does have a limitation: the absence of active
detection for deleted entries.

While the PAREX can identify obviously deleted
or deleted entries evidenced by 0x0 listed as the
entry cluster offset, it does not carry out any
advanced operations to detect less obvious deleted
entries.

Furthermore, PAREX does not employ any
statistical or pattern matching techniques to
identify deleted directory entries, it can only detect
deleted file entries.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 421–433
doi: 10.13053/CyS-28-2-4804

Gaurav Gogia, Parag Rughani430

ISSN 2007-9737

These features can be added in future to arm
PAREX with more features for forensic artefact
analyses. Overall, the findings of the research are
positive. PAREX is a promising tool for recovering
data from exFAT formatted devices. However,
future work should focus on addressing the
limitation of the research by developing methods
to actively detect deleted entries.

6 Conclusion

In this study, an open-source library and a CLI
tool were developed for parsing the exFAT file
system. To validate correctness and performance,
deep profiling and benchmarking tests were
conducted using the psutil library on five different
platforms: WSL-2, Anarchy Linux, Kali Linux,
Windows 10, & Windows 11. The developed
tools were benchmarked against industry standard
open-source tools: The Sleuth Kit (TSK) & Autopsy.
The results demonstrate that the developed tools
are over 40 times faster than the control set while
also being 17 times more memory efficient.

The developed software consistently present
effective and efficient results over multiple
platforms. These results directly impact the cost
of acquisition and maintenance of workstations
and other associated computer hardware, be it
on-premises or on cloud. However, to further
enhance the software, several optimization
strategies can be implemented.

These include improving the handling of
multiple goroutines, implementing thread-pooling
for larger objects, and conducting deeper profiling
tests to identify and eliminate unnecessary
object allocations and deallocations. Moreover,
future research prospects involve addressing
the limitation of active deleted file detection
and deleted file recovery by developing
additional features.

References

1. Allen-Barton, T. E., Bin-Azhar, M. A.
H. (2018). Open source forensics for a
multi-platform drone system. Computing,
Digital Forensics and Cybersecurity,

pp. 83–96. DOI: 10.1007/978- 3- 319- 736
97-6 6.

2. alvinashcraft (2022). Exfat file system
specification - win32 apps. h t t p s :
// learn.microsoft.com/en-us/windows/wi
n32/fileio/exfat-specification.

3. aoiflux (2023). Libxfat. https://github.com/aoi
flux/libxfat.

4. aoiflux (2023). Parex. https://github.com/aoi
flux/parex.

5. Autopsy (2023). Digital forensics. https://ww
w.autopsy.com/.

6. Barnes, H. (2021). Pro Windows subsystem
for Linux (WSL). Apress. DOI: 10.1007/978-1
-4842-6873-5.

7. Bhat, W. A., AlZahrani, A., Wani, M. A.
(2021). Can computer forensic tools be trusted
in digital investigations?. Science & Justice,
Vol. 61, No. 2, pp. 198–203. DOI: 10.1016/j.
scijus.2020.10.002.

8. Chen, B., Guan, J., Wang, H., Yao, G. (2021).
A novel data recovery algorithm for FAT32 file
system. 2021 2nd International Conference on
Information Science and Education (ICISE-IE),
pp. 605–608. DOI: 10.1109/ICISE-IE53922.2
021.00143.

9. Community, A. L. (2023). Anarchy Installer.
https://anarchyinstaller.gitlab.io/.

10. dsoprea (2022). go-exfat. https://github.com/d
soprea/go-exfat.

11. Fua, P., Lis, K. (2020). Comparing python, go,
and C++ on the n-queens problem. http://arxi
v.org/abs/2001.02491. DOI: 10.48550/arXiv.2
001.02491.

12. Gao, Y., Chen, L., Shi, G., Zhang, F.
(2018). A comprehensive detection of memory
corruption vulnerabilities for C/C++ programs.
2018 IEEE International Conference on
Parallel & Distributed Processing with
Applications, Ubiquitous Computing &
Communications, Big Data & Cloud
Computing, Social Computing & Networking,
Sustainable Computing & Communications

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 421–433
doi: 10.13053/CyS-28-2-4804

PAREX: A Novel exFAT Parser for File System Forensics 431

ISSN 2007-9737

(ISPA/IUCC/BDCloud/SocialCom/SustainCom),
pp. 354–360. DOI: 10.1109/BDCloud.2018.0
0062.

13. GNU (2023). GNU time - GNU project - free
software foundation. https://www.gnu.org/soft
ware/time/.

14. Google (2023). The go programming
language. https://go.dev/.

15. Heeger, J., Yannikos, Y., Steinebach, M.
(2022). An introduction to the exFAT file
system and how to hide data within. Journal
of Cyber Security and Mobility, Vol. 11, No. 2,
pp. 239–264. DOI: 10.13052/jcsm2245-1439.
1125.

16. Kerrisk, M. (2023). hexdump(1) - Linux
manual page. https://www.man7.org/linux/m
an-pages/man1/hexdump.1.html.

17. Lawrence, T., Karabiyik, U., Shashidhar, N.
(2018). Equipping a digital forensic lab on a
budget. 2018 6th International Symposium on
Digital Forensic and Security (ISDFS), pp. 1–7.
DOI: 10.1109/ISDFS.2018.8355345.

18. lclevy (2023). An experimental tool for forensic
analysis of ExFAT filesystem. https://github.c
om/lclevy/exfatDump.

19. Lee, S., Jo, W., Eo, S., Shon, T. (2020).
ExtSFR: Scalable file recovery framework
based on an Ext file system. Multimedia
Tools and Applications, Vol. 79, No. 23,
pp. 16093–16111. DOI: 10.1007/s11042-019
-7199-y.

20. Lin, X. (2018). Building a forensics
workstation. Introductory Computer Forensics:
A Hands-on Practical Approach, pp. 53–89.

21. Linux, K. (2024). Penetration testing and
ethical hacking Linux distribution. https://ww
w.kali.org/.

22. Lion, D., Chiu, A., Stumm, M., Yuan,
D. (2022). Investigating managed language
runtime performance: why javascript and
python are 8x and 29x slower than c++, yet
java and go can be faster? Usenix ATC’22,
pp. 835–852.

23. Mason, S., Seng, D. (2017). Electronic
evidence. University of London Press. DOI: 10
.14296/517.9781911507079.

24. Microsoft (2023). Download Windows 10. http
s://www.microsoft.com/en-in/software-downl
oad/windows10.

25. Microsoft (2023). Download Windows 11. http
s://www.microsoft.com/en-in/software-downl
oad/windows11.

26. Miller, C. M. (2022). A survey of prosecutors
and investigators using digital evidence: A
starting point. Forensic Science International:
Synergy, Vol. 6, pp. 100296. DOI: 10.1016/j.fs
isyn.2022.100296.

27. Mohammad, R. M. (2018). A neural network
based digital forensics classification.
2018 IEEE/ACS 15th International
Conference on Computer Systems
and Applications (AICCSA), pp. 1–7.
DOI: 10.1109/AICCSA.2018.8612868.

28. Mohammad, R. M. A., Alqahtani, M. (2019).
A comparison of machine learning techniques
for file system forensics analysis. Journal of
Information Security and Applications, Vol. 46,
pp. 53–61. DOI: 10.1016/j.jisa.2019.02.009.

29. Montasari, R., Hill, R. (2019).
Next-generation digital forensics: Challenges
and future paradigms. 2019 IEEE 12th
International Conference on Global
Security, Safety and Sustainability (ICGS3),
pp. 205–212. DOI: 10.1109/ICGS3.2019.868
8020.

30. msuhanov (2023). An NTFS/FAT parser for
digital forensics & incident response. https:
//github.com/msuhanov/dfir\ ntfs.

31. NIST (2023). CFReDS Portal. https://cfreds.n
ist.gov/.

32. Nordvik, R., Georges, H., Toolan, F.,
Axelsson, S. (2019). Reverse engineering
of ReFS. Digital Investigation, Vol. 30,
pp. 127–147. DOI: 10.1016/j.diin.2019.07.004.

33. Opolskii, V., Stupina, M. (2021).
Consumer-grade storage comparative

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 421–433
doi: 10.13053/CyS-28-2-4804

Gaurav Gogia, Parag Rughani432

ISSN 2007-9737

analysis in the context of digitalization
of the agro-industrial complex. IOP
Conference Series: Earth and Environmental
Science, Vol. 937, No. 3, pp. 032079.
DOI: 10.1088/1755-1315/937/3/032079.

34. Pascal, C., Hurt, I., Mattson, T. G. (2022).
Towards a graphblas implementation for
go. 2022 IEEE International Parallel
and Distributed Processing Symposium
Workshops (IPDPSW), pp. 01–04.
DOI: 10.1109/IPDPSW55747.2022.00052.

35. Pascal, C., Herzeel, C., Verachtert, W.
(2019). Comparing ease of programming
in C++, go, and java for implementing a
next-generation sequencing tool. Evolutionary
Bioinformatics, Vol. 15. DOI: 10.1177/117693
4319869015.

36. Plum, J., Dewald, A. (2018). Forensic
APFS file recovery. Proceedings of the
13th International Conference on Availability,
Reliability and Security, pp. 1–10. DOI: 10.1
145/3230833.3232808.

37. Python (2023). Welcome to Python.org. https:
//www.python.org/.

38. Rodola, G. (2023). Psutil: Cross-platform lib
for process and system monitoring in Python.
https://github.com/giampaolo/psutil.

39. Schmitt, V. (2022). Medical device forensics.
IEEE Security & Privacy, Vol. 20, No. 1,
pp. 96–100. DOI: 10.1109/MSEC.2021.3127
490.

40. Senturk, S., Apaydın, T., Yasar, H. (2020).
Image and file system support framework for a
digital mobile forensics software. 2020 Turkish
National Software Engineering Symposium
(UYMS), pp. 1–3. DOI: 10.1109/UYMS5062
7.2020.9247055.

41. sleuth kit, T. (2022). The sleuth kit (Tsk) &
autopsy: Open source digital forensics tools.
https://sleuthkit.org/.

42. Stoykova, R., Nordvik, R., Ahmed, M.,
Franke, K., Axelsson, S., Toolan, F. (2022).

Legal and technical questions of file system
reverse engineering. Computer Law & Security
Review, Vol. 46, pp. 105725. DOI: 10.1016/j.cl
sr.2022.105725.

43. Vandermeer, Y., Le-Khac, N. A., Carthy, J.,
Kechadi, T. (2018). Forensic analysis of the
exFAT artefacts. DOI: 10.48550/arXiv.1804.08
653.

44. VMWare (2023). Download VMware
Workstation Pro. h t tps : / /www.vmware .c
om/products/workstation-pro/workstation-pro
-evaluation.html.

45. Wolf, F. A., Arquint, L., Clochard, M.,
Oortwijn, W., Pereira, J. C., Müller, P. (2021).
Gobra: Modular specification and verification
of go programs. Computer Aided Verification,
pp. 367–379. DOI: 10.1007/978-3-030-81685
-8 17.

46. Xu, S., Liu, F., Meng, L., Wang, L., Chang,
X., Yang, W. (2022). A scheme of traceless
file deletion for windows FAT32 file system.
Proceedings of the 2021 ACM International
Conference on Intelligent Computing and its
Emerging Applications, pp. 89–93. DOI: 10.1
145/3491396.3506515.

47. ZDNET (2022). Chrome: 70% of all security
bugs are memory safety issues. www.zdnet.co
m/article/chrome-70-of-all-security-bugs-are
-memory-safety-issues/.

48. ZDNET (2022). Microsoft: 70 percent of all
security bugs are memory safety issues. ww
w.zdnet.com/article/microsoft-70-percent-of-a
ll-security-bugs-are-memory-safety-issues/.

49. Zhang, H., Wang, S., Li, H., Chen, T. H.,
Hassan, A. E. (2022). A study of C/C++
code weaknesses on stack overflow. IEEE
Transactions on Software Engineering, Vol. 48,
No. 7, pp. 2359–2375. DOI: 10.1109/TSE.20
21.3058985.

Article received on 12/01/2024; accepted on 11/03/2024.
*Corresponding author is Gaurav Gogia.

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 421–433
doi: 10.13053/CyS-28-2-4804

PAREX: A Novel exFAT Parser for File System Forensics 433

ISSN 2007-9737

