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Abstract. With the release of several Large Language
Models (LLMs) to the public, concerns have emerged
regarding their ethical implications and potential misuse.
This paper proposes an approach to address the
need for technologies that can distinguish between text
sequences generated by humans and those produced
by LLMs. The proposed method leverages traditional
Natural Language Processing (NLP) feature extraction
techniques focusing on linguistic properties, and
traditional Machine Learning (ML) methods like Logistic
Regression and Support Vector Machines (SVMs).
We also compare this approach with an ensemble
of Long-Short Term Memory (LSTM) networks, each
analyzing different paradigms of Part of Speech (PoS)
taggings. Our traditional ML models achieved F1 scores
of 0.80 and 0.72 in the respective analyzed tasks.

Keywords. Generative text detection, text generation,
AuTexTification, logistic regression, support vector
machine (SVM), classification.

1 Introduction

There has been an increase—in the last few
years—in the number of LLMs available to the
public, among such models we find: Pathways
Language Model (PaLM) [4], BLOOM [28],
Bidirectional Encoder Representations from
Transformers (BERT) [6], BART [14], Robustly
Optimized BERT Pretraining Approach
(RoBERTa) [15], Generative Pre-trained
Transformer (GPT) [23], GPT-2 [24], GPT-3 [3],
and, more recently, Chat-GPT and GPT-4 [22].

Although great performance has been achieved
in terms of text generation, there are some ethical
issues that need to be addressed, for instance: the
lack of validation for the data retrieved from these
models, since they suffer from hallucinations—the
information provided might be incorrect— [13];
the creation of fake news [34, 3] and academic
cheating [1].

Since these models are publicly available,
there exists high risk of misuse of LLMs
models; therefore, there is a requirement for
the creation of algorithms and systems capable
of differentiating human generated text from that
generated by LLMs. To this purpose, both, LLMs,
as well as traditional Machine Learning (ML) have
been tested on this classification task. When
it comes to LLMs, several models have been
used to leverage their capabilities (including BERT,
RoBERTa, and GPT-2), while traditional ML have
been less used (see Related work).

In this paper, we present our approach for the
human vs. machine generated text classification
problem, to this purpose, we selected the
AuTexTification dataset [26] to work with. This
dataset is divided, mainly, into two subtasks:
1) human vs. machine generated text and 2)
model profiling, i.e., for a given machine generated
sequence, determine which model created it.

Our proposal includes: a preprocessing stage,
common in traditional NLP tasks, conformed by
Tokenization, Multi-Word Token Expansion, Part of
Speech and Lemmatization.
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This stage is followed by Logistic Regression
and Support Vector Machines (SVMs) models with
10-fold Cross Validation. Due to the particularities
of both subtasks, special attention was taken into
the feature extraction stages (previous to providing
inputs to the models), creating combinations of
unigrams, bigrams and trigrams of different nature,
from PoS Taggins to Lemmas.

The rest of the paper is structured as follows:
Section 2 provides a literature review on the
present task, highlighting the most important
research. Section 3 introduces the dataset,
preprocessing and models employed for our study.

In Section 4 we present our empirical results
from the experiments, as well as an overview of
the meaning of such values. Lastly, Section 5
offers our conclusions drawn based on our results
and observations.

2 Related Work

The task of detecting machine-generated text
is closely related to and a direct consequence
of the task of text generation, which was first
implemented by authors such as Mann and
McKeown [17, 18].

However, only recently has the problem of
detecting whether a given text was generated
or identifying the model that produced the text
become challenging, even for humans [5]. Most
efforts to detect or classify generated content apply
Large Language Models such as BERT [10, 32],
DistilBERT [21], RoBERTa [30, 7, 31, 12, 25, 9, 16,
19, 35], and others [2].

Classical approaches to detect generated text
have also been attempted. Solaiman et al. [30]
utilized classical machine learning classifiers such
as logistic regression to identify content generated
by GPT-2, finding that they do not perform worse
than language models.

Unfortunately, this approach has not been
completely followed by subsequent literature.
In addition, statistical criteria have also been
considered to address the task of detecting
generated text [8, 20], as well as feature extraction
[33, 29].

In the AuTexTification task [27], a preliminary
evaluation of the task of detecting generated

Fig. 1. The AuTexTification subtasks and their
corresponding datasets for each language

English text, logistic regression achieved a score
of 0.6578 in F1-macro, surpassing the language
model DeBERTa V3 (0.571), whereas in the model
attribution task logistic regression reached a score
of 0.3998, while DeBERTa V3 reached 0.6042.

3 Methodology

3.1 Dataset Description

The AuTexTification dataset [26] consists on data
for two different subtasks: human vs machine
generated text detection and model attribution.
Therefore, this dataset contains text produced
either by humans or by any of the following models:
BLOOM-1b7, BLOOM-3b, BLOOM-7b1, GPT-3
Babbage, GPT-3 Curie and GPT-3 DaVinci-003.

Consequently, the training dataset for the first
subtask consists on 33,845 text samples labeled
as either machine-generated or human; on the
other hand, for the second subtask, its training set
includes 22,416 machine-generated text samples,
each labeled with one of the letters A to F,
corresponding to the modelo which generated
the text.

The maximum text length is 98 and 97 words
for subtasks one and two, respectively. Subtask
1 has a fixed testing set of 21,832 samples,
whereas subtask 2 has 5,605 samples in its testing
set. AuTexTification provides separate datasets
for English and Spanish Languages, but our study
only focuses on English. Figure 1 shows the
structure of the dataset; it highlights in red the data
used in this paper.
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Fig. 2. LSTM ensemble proposal pipeline

3.2 Preprocessing and Feature Extraction

3.2.1 Machine Learning Algorithms

We utilized a preprocessing pipeline for both tasks
with the aim of extracting more significant syntactic
and lexical features. This preprocessing sequence
encompassed the following stages:

1. Tokenization: The raw text was broken down
into individual tokens (words in this case).

2. Multi-Word Token (MWT) Expansion: This
involved identifying combinations of words that
function as a single unit and treating them as
cohesive entities.

3. Part of Speech Tagging (PoS): To understand
the grammatical roles and relationships within
the text, we applied Part of Speech tagging.
This involved assigning a specific tag, such
as noun, verb, adjective, etc., to each token.
Part of Speech tagging assists in capturing
syntactic structures and provides valuable
context for subsequent steps.

4. Lemmatization: Is a text normalization
technique that involves reducing words to their
base or root form.

The preprocessing steps applied to the raw text
contribute significantly to its refinement, making
it more suitable for analysis and improving
classification accuracy. For our experiments, we
included the sequence of lemmas and Part of
Speech (PoS) tags as features.

The incorporation of PoS sequences was
particularly important for both tasks, as it provided
valuable insights into the writing style and enabled
us to identify patterns and combinations of PoS
tags that contributed to the text’s structure. Overall,
utilizing PoS sequences enhanced our ability to
extract syntactic information.

Fig. 3. 10-fold cross validation procedure

3.2.2 LSTM Ensemble

For this approach, we decided to work with two
different PoS tags configurations, i.e., we used
UPoS and XPoS, since the first provides a PoS
analysis universal to most natural languages and
the latter provides a specific PoS analysis for
the given language which, in this particular case,
is English.

The proposal was tested only on subtask 1
of the dataset (See Section 3.3), and involves
the training of two LSTM cells, each one of
them analysing—simultaneously— either UPoS
or XPoS, where each tag was converted to a
one-hot representation; once both LSTMs give
their outputs, these are concatenated to become
the input of a Multi-Layer Perceptron (MLP) of the
following characteristics:

— A linear layer with a number of neurons equal
to the sum of the hidden states of both LSTMs,
for a total of 64 units.

— A dropout layer—for regularization
purposes—, with a probability of 0.5 for
every neuron to be zeroed out.
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Table 1. Results of experiments of the subtask 1

Model Feat. Recall Precision Accuracy F1 score
LR a 0.7636 0.763 0.7633 0.0763

b 0.774 0.7735 0.7732 0.7731
c 0.6215 0.5793 0.5811 0.53332
d 0.7831 0.7807 0.7801 0.7797
e 0.7405 0.7405 0.7405 0.7404
f 0.761 0.7546 0.7538 0.7538
g 0.8057 0.8055 0.8055 0.8054

SVM a 0.754 0.7552 0.7516 0.7512
b 0.7664 0.7616 0.7625 0.7587
c 0.6425 0.6076 0.6063 0.573
d 0.774 0.7616 0.7625 0.7587
e 0.7301 0.7301 0.73 0.7299
f 0.7558 0.7516 0.7518 0.7506
g 0.8016 0.8014 0.8014 0.8013

— A ReLU activation funciton layer, and,

— A single neuron as output, with a Sigmoid
activation function for classification purposes.

Figure 2 shows the pipeline used for this
ensemble proposal.

3.3 Subtask 1: Automatically Generated Text
Identification

We deemed feature extraction crucial for this
task, prompting us to experiment with various
combinations of features:

a) Unigrams of lemmas with frequency counts.

b) Unigrams of lemmas with binary counts.

c) Unigrams of PoS with frecuency counts.

d) Unigrams of lemmas with binary counts
along with unigrams of PoS and their
frequency counts.

e) Unigrams, bigrams and trigrams of lemmas
with binary counts.

f) Unigrams, bigrams and trigrams of PoS with
frecuency counts.

g) Unigrams, bigrams and trigrams of
lemmas with binary counts along with
unigrams, bigrams and trigrams with their
frecuency counts.

We employed Logistic Regression and Support
Vector Machines (SVMs) for the classification,
utilizing Stochastic Gradient Descent for both
algorithms. In the case of the Support Vector
Machine, a linear kernel was applied.

3.4 Task 2: Model Attribution

For this task, we experimented with the
following features:

a) Unigrams of lemmas with binary counts.

b) Unigrams of PoS with frecuency counts.

c) Unigrams, bigrams and trigrams of lemmas
with binary counts.

d) Unigrams, bigrams and trigrams of PoS with
frecuency counts.

e) Unigrams, bigrams and trigrams of
lemmas with binary counts along with
unigrams, bigrams and trigrams with their
frecuency counts.

Continuing with the previous proposal, we
employed Logistic Regression and Support Vector
Machines using Stochastic Gradient Descent.

4 Results

4.1 Validation Methods and Evaluation

As stated in Section 3.1, the AuTexTification tasks
data is available for two subtasks, each one of
them with four datasets: a training and a testing
datasets, for English and Spanish Languages (see
Figure 1).

For the purpose of this study, we exclusively
focused on utilizing the training and testing data
associated with subtasks one and two, for the
English language.

We employed the training set as a development
set. This involved partitioning the training data
further to create a validation subset.

For the conventional machine learning
techniques, we adopted a cross-validation
approach as our chosen validation method.
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Table 2. Results in the testing set with the selected
features (subtask 1)

Recall Precision Accuracy F1 score
LR 0.7296 0.6942 0.699 0.6852

SVM 0.7319 0.7258 0.7277 0.7252
Baseline 0.6578

SotA 0.8091

Fig. 4. Hold out validation procedure

The validation results presented in this study
represent the average outcomes obtained from
applying a 10-fold cross-validation process. On
the other hand for our LSTM ensemble proposal,
we used a hold out validation procedure on the
training set, where 80% was still considered as
training data, while the resting 20% became the
validation set.

Figures 3 and 4 show a graphical representation
of both 10-fold cross validation and hold out
validation, respectively.

Subsequently, we proceeded to evaluate our
models on the designated test set. The outcomes
generated from this testing phase serve as the
basis for our comparative analysis against both
the state-of-the-art methods and the established
baselines set forth in the contest.

4.2 Classification results. Subtask 1

4.2.1 LSTM ensemble

For the LSTM ensemble, the selected loss function
was Binary Cross Entropy, with a learning rate of
3× 10−4; the number of epochs proposed was 80;
and the optimizer used was Adam [11]; additionally,
a hold out validation procedure was performed
on the provided training set, as described in
Section 4.1.

To test the model’s performance, the
corresponding testing set was used. This model
only achieved an F1 average macro value of 0.62.

4.2.2 Machine Learning Algorithms

Initially, we tested the various features suggested
in the preceding section using the development set.
The results are presented in Table 1.

The Table 1 highlights that the optimal feature
combination for both classification algorithms is the
combination ”g,” encompassing unigrams, bigrams,
and trigrams of lemmas, as well as unigrams,
bigrams, and trigrams for the PoS sequence.

As a result, we have chosen to employ these
features for the test set.The results are presented
in Table 2.

4.3 Classification results. Subtask 2

For subtask 2, we adhered to a similar approach,
commencing with experimentation on the
development set. The results are presented
in Table 3.

Table 3 demonstrates that the most effective
feature blend for both classification algorithms is
the ”e” combination.

This amalgamation comprises unigrams,
bigrams, and trigrams of lemmas, along with
unigrams, bigrams, and trigrams for the PoS
sequence. Subsequently, we opted to utilize these
features for the test set. The outcomes are outlined
in Table 4.

5 Conclusions

We introduce a proposal addressing two distinct
tasks that share similarities with the Natural
Language Processing task of ”author attribution.”

Our approach places a stronger emphasis on
feature extraction rather than on the model itself,
employing traditional machine learning algorithms.
Notably, both tasks surpass the baseline set by
the AuTexTification contest organizers, utilizing
Logistic Regression.

While our approach may not attain the pinnacle
of state-of-the-art performance, it highlights
the enduring importance of preprocessing and
feature selection.

Tables 1 and 3 show us the significant impact of
these factors, as they reveal substantial variations
in outcomes even with the exact same model.
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Table 3. Results of experiments mentioned in the
previous section

Model Feat. Recall Precision Accuracy F1 score
LR a 0.2897 0.2777 0.2793 0.2277

b 0.3844 0.3916 0.3924 0.3847
c 0.4274 0.4399 0.4399 0.4302
d 0.3332 0.3416 0.3415 0.3444
e 0.459 0.4649 0.4646 0.4594

SVM a 0.2814 0.2513 0.2537 0.1945
b 0.3643 0.3701 0.3798 0.3647
c 0.4182 0.4284 0.4284 0.4176
d 0.3321 0.3208 0.3219 0.3088
e 0.4585 0.4514 0.4517 0.4443

Table 4. Results for the test set with the
selected features

Recall Precision Accuracy F score
LR 0.4785 0.4854 0.4869 0.4797

SVM 0.462 0.4844 0.4639 0.4602
Baseline 0.3998

SotA 0.625

In the first task, our results with Support
Vector Machine approach the state-of-the-art
performance without resorting to large models,
indicating that notable progress can be achieved.
Furthermore, our findings underscore the pivotal
role of syntactic information as a crucial feature
when discerning authorship.

It is important to note that, although a Deep
Learning (DL) architecture was proposed, we
consider that the lower performance achieved by
the model is inherent to the lack of a detailed text
preprocessing, based strictly on the tasks to solve.

Therefore, special care must to be taken when
proposing DL models, since the preprocessing
must consider both, the characteristics of the text
generation and model profiling tasks, as well as the
type of preprocessing that works well with a given
DL architecture.

We aspire to build upon our current approach by
integrating these features into more sophisticated
machine learning algorithms, such as Neural
Networks. This progressive step aims to further
enhance the quality of our outcomes.
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