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Abstract. Wildfires represent one of the most relevant
natural disasters worldwide, due to their impact on
various societal and environmental levels. Thus, a
significant amount of research has been carried out
to investigate and apply computer vision techniques
to address this problem. One of the most promising
approaches for wildfire fighting is the use of drones
equipped with visible and infrared cameras for the
detection, monitoring, and fire spread assessment in a
remote manner but in close proximity to the affected
areas. However, implementing effective computer
vision algorithms on board is often prohibitive since
deploying full-precision deep learning models running
on GPU is not a viable option, due to their high
power consumption and the limited payload a drone can
handle. Thus, in this work, we posit that smart cameras,
based on low-power consumption field-programmable
gate arrays (FPGAs), in tandem with binarized neural
networks (BNNs), represent a cost-effective alternative
for implementing onboard computing on the edge.

Herein we present the implementation of a segmentation
model applied to the Corsican Fire Database. We
optimized an existing U-Net model for such a task
and ported the model to an edge device (a Xilinx
Ultra96-v2 FPGA). By pruning and quantizing the
original model, we reduce the number of parameters by
90%. Furthermore, additional optimizations enabled us
to increase the throughput of the original model from
8 frames per second (FPS) to 33.63 FPS without loss
in the segmentation performance: our model obtained
0.912 in Matthews correlation coefficient (MCC), 0.915
in F1 score and 0.870 in Hafiane quality index (HAF),
and comparable qualitative segmentation results when
contrasted to the original full-precision model. The final
model was integrated into a low-cost FPGA, which was
used to implement a neural network accelerator.

Keywords. SoC FPGA , computer vision, segmentation,
binarized neural networks, artificial intelligence, infrared
imaging, pruning.

Computación y Sistemas, Vol. 27, No. 4, 2023, pp. 965–977
doi: 10.13053/CyS-27-4-4773

ISSN 2007-9737



1 Introduction

A wildfire is an exceptional or extraordinary
free-burning vegetation fire that may have been
started maliciously, accidentally, or through natural
means that could significantly affect the global
carbon cycle by releasing large amounts of CO2
into the atmosphere.

It has profound economic effects on people,
communities, and countries, produces smoke that
is harmful to health, devastates wildlife, and
negatively impacts bodies of water [26].

The three main categories of remote sensing
for wildfire monitoring and detection systems
are ground-based systems, manned aerial
vehicle-based systems, and satellite-based
systems. However, they present the
following technological and practical problems:
ground-based have limited surveillance ranges.

Satellite-based have problems when planning
routes, their spatial resolution may be low, and the
information transmission may be delayed. Manned
aerial vehicle-based systems are expensive
and potentially dangerous due to hazardous
environments and human error.

Unmanned aerial vehicles (UAVs) provide a
mobile and low-cost solution using computer
vision-based remote sensing systems that can
perform long-time, monotonous, and repetitive
tasks [31]. Drones, in particular, represent an
excellent opportunity due to their easy deployment.

However, the ability to implement these fire
detection systems, based on deep learning (DL), is
limited by the maximum payload of the drone and
the high power consumption. In this paper, we posit
that a convolutional neural network (CNN) can be
implemented on a hardware accelerator that can
be embedded as part of a smart camera and
installed on a drone for the detection of wildfires.

A review of the literature on hardware
implementation for various artificial intelligence (AI)
algorithms was published by Talib et al. [22]
reviewing 169 different research reports published
between 2009 and 2019, which focus on the
implementation of hardware accelerators by using
application-specific integrated circuits (ASICs),
FPGAs, or GPUs. They found that most
implementations were based on FPGAs, focusing

mainly on the acceleration of CNNs for object
detection, letting the GPU-based implementations
in second place.

Due to the diversity of applications, AI models
such as CNNs need to meet various performance
requirements for drones and autonomous vehicles,
with the essential demands of low latency, low
weight overhead, long-term battery autonomy,
and low power consumption being the most
pressing requirements. The complexity of the tasks
that CNNs must perform continues to increase as
models evolve.

As a result, deeper networks are designed in
exchange for higher computational and memory
demands. In this context, the reconfiguration
capabilities of FPGAs enable the creation
of CNN hardware implementations that are
high-performance, low-power, and configurable to
fit system demands [27].

A smart camera is an embedded system for
computer vision applications that has attracted
great interest in various application domains, as
it offers image capture and image processing
capabilities in a compact system [20].

This paper describes the methodology,
implementation, design cycle, and experimental
protocol of porting a modified U-Net model
into a Xilinx Ultra96-V2 FPGA for the wildfire
semantic segmentation task for the smart camera
system. The rest of the paper is organized as
follows: Section 2 discusses recent works applying
computer vision models for wildfire segmentation,
highlighting their strengths and limitations; the
second part of the section discusses related works
regarding smart camera implementations in order
to better contextualize our work.

Section 3 details our contribution, discussing
in detail the proposed model, the dataset used
for evaluating our models, and the design flow
followed for optimizing the model and testing it in
the target embedded FPGA board.

Section 4 discusses the results of our
optimization process and provides a quantitative
and qualitative comparison between full precision
and the BNN model. Finally, Section 5 concludes
the paper and discusses future areas of research.
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Fig. 1. General overview of the Pytorch flow for Vitis AI. This flow allows us to optimize a given full precision model and
target an embedded device such as an FPGA, consuming less power while attaining a higher throughput in terms of
processed FPS

Fig. 2. Overall implementation flow for FPGA-based systems based on Vitis AI

2 State of the Art

2.1 Segmentation Models for Wildfire
Detection and Characterization

Detecting a wildfire by categorizing each pixel
in an infrared image is a semantic segmentation
problem; therefore, for this task, AI models
have been used, such as fully convolutional
networks as well as the U-Net model proposed
by Ronnenberger et al. in 2015 [19], which allow
precise segmentation with few training images.

For the specific task of fire segmentation,
artificial intelligence models have already been
implemented to solve this problem with visible
images of fire [2], the fusion of visible and infrared

images of fire [8], and visible images of fire and
smoke [18]. Akhloufi et al. [2] proposed Deep-Fire,
a semantic segmentation model based on the
U-Net architecture.

The authors trained and evaluated their model
using the Corsican Fire Database [25]. With an F1
score ranging from 64.2% to 99% on the test set,
Akhloufi et al. claimed successful results using the
Dice similarity coefficient as the loss function for
the model.

Ciprián-Sánchez et al. [8] evaluated thirty-six
different DL combinations of the U-Net-based
Akhloufi architecture [2], the FusionNet-based
Choi architecture [6], and the VGG16-based Frizzi
architecture [9], the Dice [16], Focal Tversky
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Fig. 3. Proposed architecture. The original U-Net architecture has been extended by introducing batch normalization
layers and fewer filters in the deepest layers to reduce training and inference times. The numbers on black on the
top of the blocks represent the original filter sizes, whereas the blue one (below) represents the filter size after the
optimization process

[1], Unified Focal [30] losses, and the visible
and near-infrared (NIR) images of the Corsican
Fire Database [25] and fused visible-NIR images
produced by the methods by Li et al. [15] and
Ciprián-Sánchez et al. [7].

After evaluating these models, the combination
with the best results was Akhloufi + Dice + visible
with a 0.9323 F1 score, also known as the
Dice coefficient.

Although these works have highlighted the
potential of using AI in this domain, many of
these algorithms are incapable of operating in
real-time, as they inherently suffer from very high
inference times and are prohibitive as they require
many computing resources, which impedes their
usability on drone missions and thus we posit that
new paradigms are needed for their successful

deployment, particularly in terms of inference time
(FPS) and power consumption.

2.2 Smart Camera Implementations for
Computer Vision

Smart cameras are devices that process,
analyze, and extract data from the images
they capture. Different video processing algorithms
are used for the extraction.

Smart cameras have been employed in a
variety of applications, including human gesture
recognition [29], surveillance [4], smart traffic
signal optimization systems [23], and a fire
detection system based on conventional image
processing methods [10].
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Fig. 4. When a filter is pruned, the matching feature map and associated kernels in the following layer are removed.
Retrieved from: Hao Li et al. [14]

We propose a DL implementation capable of
performing a precise segmentation that can be
used as a first step in wildfire characterization and
risk assessment systems.

FPGAs are excellent choices for creating
smart cameras because they offer significant
processing capabilities while maintaining a low
power consumption, which makes them good
candidates for particular edge tasks creating
efficient hardware accelerators capable of high
throughput [27], and maintaining a high degree of
flexibility and reconfigurability.

The disadvantage of FPGAs is that developers
need to be skilled in hardware design to
accomplish these goals. The design process
frequently takes longer with FPGAs than with CPU
and GPU systems.

To address such issues, FPGA vendors and
other academic and industrial tool developers
have introduced several computer-aided design
(CAD) tools for training and optimizing DL
models and mapping such models into the
reconfigurable fabric.

Convolutional neural networks provide
high-accuracy results for computer vision tasks,
and their applications could be benefited from
being implemented in edge devices such as
FPGAs. Still, for applications such as smart
cameras, limited use of hardware resources and
power requirements are of the utmost importance.

Therefore, to implement models that generally
require a large number of computational
resources, large storage capabilities for the model

parameters, and the use of high energy consuming
hardware [28, 27], such as GPUs, it is necessary
to use model optimization techniques such as
pruning and quantization [3] for the compression
of the model, to implement it in devices such as an
FPGA while achieving high inference speed.

3 Proposed Method

The implementation of a BNN for the segmentation
of wildfire images was done using the Xilinx tool
Vitis AI because each operation of the model
is mapped into a hardware-accelerated
microinstruction, in which a series of sequential
micro-instructions can represent the whole DL
model, while a scheduler is in charge of managing
the hardware calls and data flow. This enables
the customization of the HW accelerator while
considering the resources of the FPGA.

In the particular context of our application, Vitis
AI is indeed the best choice as we target a
small FPGA device (Xilinx Ultra96-V2) for deep
embedded image processing.

3.1 General Overview of the
Optimization Approach

Fig. 1 depicts the Vitis AI Pytorch flow followed in
this paper. The design process begins by training
a segmentation with NIR images from the Corsican
Fire Database [25] and their corresponding ground
truths for fire region segmentation.
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Fig. 5. Schematic flow for optimizing a model in Vitis AI

Subsequently, a pruning process to reduce the
number of filters in the convolution layers using the
Pytorch framework is performed. Then, both the
original and the pruned models are saved in pt files.

The next module is in charge of changing
the numerical representation of the DL model by
performing an 8-bit quantization using the Vitis AI
quantizer module, producing an xmodel file.

Finally, the quantized model is compiled,
producing an xmodel file containing all the
instructions needed by the DPU to execute the
model. After the model has been compiled, it can
be loaded on the target FPGA board and tested.

In our work, this model is a U-Net model modified
to accommodate the needs of our application. The
rest of this section will detail the implementation of
such an optimized segmentation model.

3.2 Dataset: Corsican Fire Database

In this paper, we employ the NIR images from
the Corsican Fire Database, first introduced by
Toulouse et al. [25].

For fire region segmentation tasks, this dataset
includes 640 pairs of visible and NIR fire images
along with the matching ground truths created
manually by experts in the field.

A representative NIR image from the Corsican
Fire Database is shown in the top left corner of Fig.
2, along with its corresponding ground truth.

3.3 Segmentation Model Training

The proposed architecture for this paper is a
modified version of a U-Net model [19] with the
number of filters from the deepest layers reduced
to reduce training and inference times.

Furthermore, we add batch normalization layers
[12] after every convolutional layer. The final
architecture is shown in Fig. 3; the numbers
in black are the number of filters before pruning,
and the numbers in blue are the number of filters
after pruning.

As depicted in Fig. 2, every image in the training
set was resized to a width of 320 and a height
of 240 pixels for training. For the training of the
proposed model, the dataset was divided into 80%
for training and 20% for testing.

The model was trained with a learning rate of
0.0001 for 350 epochs with a batch size of 5 using
cross-entropy loss and Adam optimizer.

3.4 Optimization

Pruning. The pruning method (contained in the
binarization block of Fig. 2) employed in the
present paper is based on the work of [14] in
which, as shown in Fig. 4, when a filter is pruned,
the corresponding feature map is removed and
the kernels of the input feature maps for the next
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Fig. 6. Proposed solution model for implementing a smart camera for wildfire detection. Our current implementation
processes images from external memory or an infrared (IR) camera; communication capabilities have not yet
been implemented

convolution that correspond to the output feature
maps of the pruned filters are also removed.

Fig. 5 briefly explains the pruning process used
for this paper, with which it was possible to reduce
the number of filters in each convolutional layer by
approximately 90%.

In Fig. 3, we can see the final architecture of the
model, the numbers in blue being the number of
filters after the pruning process.

Quantization. The model was quantized using the
Vitis AI quantizer module; resulting in a CNN model
with all its values represented with only 8 bits. That
is, the floating-point checkpoint model in coverted
into a fixed-point integer checkpoint.

After confirming there was no significant
degradation in the model’s performance, the
quantized model was compiled with the Vitis
compiler, which creates a xmodel file with all
the instructions required by the DPU to execute
the model.

3.5 Proposed FPGA-Based Smart
Camera System

Fig. 6 shows the system implementation for the
smart camera solution of wildfire detection. The
processing system (PS) controls every step of
the application’s life cycle, including retrieving
images from the camera, feeding them to the
programmable logic (PL) section of the SoC
(hardware accelerator implementing the proposed
model), and processing the segmented image. An
IR camera is attached to the Ultra96 board using a
USB port in the SoC.

The PS block (an ARM processor) processes the
input picture before feeding it to the PL section,
which runs the binarized U-Net model mapped into
the reconfigurable fabric. The image is processed
and then passed back into the PS block for
feature extraction.

If a complete IIoT solution is implemented, these
features may be used for viewing on a TFT screen
or communicated via a communication protocol
(i.e., LORA) to a cloud.

These capabilities are not yet implemented
here and are left for future work. In order
to make the picture more straightforward, the
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Fig. 7. Flow chart for single and multi-threading inference approaches

Table 1. Segmentation comparison for the different model implementations

Model MCC F1 score Hafiane
Proposed Model Original (Validation) 0.964 0.964 0.946
Proposed Model Original (Test) 0.933 0.934 0.902
Proposed Model Pruned (Validation) 0.964 0.965 0.941
Proposed Model Pruned (Test) 0.924 0.926 0.877
Proposed Model FPGA (Validation) 0.932 0.933 0.899
Proposed Model FPGA (Test) 0.912 0.915 0.870

AXI connection, which is not illustrated here, is
used for all communication between the PS, PL,
and peripherals.

In our experiments, the overall performance
of the model implemented using single-thread
execution was not satisfactory, as we obtained
only a throughput of 15.77 FPS, even after the
pruning and quantization of the model. Therefore,
we explored the use of a multi-thread approach
supported by the Ultra89-v2 board.

The use of this functionality enabled us to attain
a higher performance. The main limitation of
the single-threaded approach is the bottleneck
introduced by the DPU when performing inference
in the FPFA, as it introduces a significant latency.

This problem arises from the use of queues
for exchanging information among the different

threads. In Fig. 7, we provide a flow chart
comparing both software implementations.

4 Results and Discussion

In the subsequent section, we will discuss the
results obtained from implementing the U-Net
model for segmenting images of the Corsican
Fire Database, comparing both the original
full-precision model and the optimized model
running on the FPGA platform.

We will also compare our results with previous
works in the state-of-the-art based on a number
of metrics used in the literature, which will be
described in the next subsection.

After this, quantitative and qualitative results will
be provided, based on these metrics, followed by a
discussion of the obtained results.
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Table 2. Comparison of the proposed model (full-precision and FPGA implementation) with other models in the
state-of-the-art

Model MCC F1 score Hafiane
Akhloufi + Dice + NIR 0.910 0.915 0.890
Akhloufi + Focal Tversky + NIR 0.914 0.916 0.889
Akhloufi + Mixed focal + NIR 0.828 0.843 0.802
Proposed Model Original (Test) 0.933 0.934 0.902
Proposed Model FPGA (Test) 0.912 0.915 0.870

4.1 Comparison Metrics

4.1.1 Matthews Correlation Coefficient

First proposed by Matthews [17], it measures the
correlation of the true classes with their predicted
labels [5]. The MCC represents the geometric
mean of the regression coefficient and its dual, and
is defined as follows [24]:

MCC =
(TP×TN)− (FP×FN)√

N− ·N+ · P− · P+

, (1)

where:

N− = TN+ FN,
N+ = TN+ FP,
P− = TP+ FN,
P+ = TP+ FP,

where TP is the number of true positives, TN the
number of true negatives, FP the number of false
positives, and FN the number of false negatives.

4.1.2 F1 score

Also known as the Dice coefficient or overlap index
[21], the F1 score is the harmonic mean of the
precision Pr and recall Re. The F1 score is defined
as the harmonic mean of Pr and Re as follows:

F1 = 2× Pr×Re

Pr+Re
. (2)

4.1.3 Hafiane Quality Index

Proposed by Hafiane et al. [11] for fire
segmentation evaluation, it measures the
overlap between the ground truth and the
segmentation results, penalizing as well the
over- and under-segmentation [11]. First, the
authors define a matching index M as follows [24]:

M = α

NRS∑
j=1

Card(RGT
i∗ ∩RS

j )× Card(RS
j )

Card(RGT
i∗ ∪RS

j )
, (3)

where α = 1/Card(IS) and NRS is the number
of connected regions in the segmentation result
IS . RS

j represents one of the said regions, and
RGT

i∗ is the region in the reference image IGT that
has the most significant overlapping surface with
the RS

j region. Next, Hafiane et al. define an
additional index η to take into account the over-and
under-segmentation as follows [24]:

η =

{
NRGT /NRS if NRS ≥ NRGT ,

log(1 +NRS/NRGT ) otherwise.
(4)

Finally, the Hafiane quality index is defined
as follows:

HAF =
M +m× η

1 +m
, (5)

where m is a weighting factor set to 0.5.

4.2 Quantitative Results

Table 1 shows the results obtained by the final
implementation of the optimized model in the
FPGA using MCC, HAF, and F1 score. It can be
observed the pruned model presented a slight drop
in performance (3% in MCC) whereas the FPGA
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Table 3. Qualitative visual comparison of the segmented images produced by three model configurations: original
(full-precision), pruned and quantized (FPGA implementation)

Image Example 1 Example 2 Example 3

Ground truth

Original model

Pruned model

FPGA model

model presented a slightly higher drop (of about
5% both in MCC and F1 score) of performance
for all metrics. This slight degradation is
expected given the heavy optimization undergone
by the model when passing from 64-bit to 8-bit
data representation.

However, the gain in throughput (and thus
inference time) is significant: the full precision
model runs at 8 FPS in a GPU, consuming a
large amount of power, whereas our model can
attain up to 33.64 FPS in the selected FPGA when
running in multi-threaded mode (15.77 FPS for the
single-threaded mode), for a fraction of the power
consumption. Table 2 provides a comparison with
other models in the literature.

A recent and thorough comparison of the
state-of-the-art carried out by Ciprián-Sánchez et
al. [8] compared different architectures, image
types, and loss functions on the Corsican Fire
Database. Here, we compared the bests model
from this study (by Akhloufi et al. [2] with various
losses) using the base metrics (i.e., MCC, HAF,
and F1 score).

From the table, it can be observed that
the original model outperforms this previous
work by about 2% (0.933 MCC), whereas
the FPGA implemented model attains a similar
performance to the best configuration obtained by
Akhloufi (0.912 vs 0.910 MCC), using a much
smaller footprint.
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4.3 Qualitative Results

Table 3 provides a qualitative comparison of the
different models compared in Table 1.

It shows the original images of the Corsican
Fire Database and the segmentation results using
the original model before the optimization process,
after the pruning method, and finally, the final
model used in the FPGA.

It can be observed that for the 3 examples
provided, both the pruned model and the FPGA
implementation yielded practically the same results
as the full-precision model, albeit at a much higher
frame rate (33 FPS vs the 8 the U-Net running on
a V100 GPU).

Such results can be used in the smart
camera for higher image processing tasks in
real-time, such as fire spread prediction by using
the processing section (ARM processor) of the
Ultra96-v2 platform.

5 Conclusions

In the present paper, we implement and analyze
the performance of a smart camera system based
on an FPGA accelerator.

A modified version of the U-Net architecture
was used, to which optimization methods such as
quantization and pruning were applied, effectively
reducing the inference time and, at the same time,
obtaining good results in the wildfire segmentation
task. The frame rate obtained in the segmentation
task was 33.63 FPS.

It is believed that there is still some potential
to improve the speed of inference by using
other strategies, such as the conversion of CNN
models to spiking neural networks (SNN), whose
conversion has been shown to reduce inference
times by reducing the number of operations
performed [13].

Finally, given the results obtained, heavy
computational tasks are believed to benefit from
the accelerators implemented in FPGAs for their
use in real-time applications such as wildfire
surveillance using drones.
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