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Abstract. This paper presents a comparative study
of various elements and strategies that can be
incorporated into an autoregressive model to address
the MaxSAT problem. Building upon a sequential
architecture as our foundation, we optimize the model’s
parameters by maximizing the expected number of
satisfied clauses. This optimization enables the model,
given a SAT formula, to predict a distribution over
potential solutions using the policy gradient method. Our
controlled experiments pinpoint elements that guide the
optimization process towards superior results1.
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1 Introduction

The Maximum Satisfiability Problem (MaxSAT) is
an optimization variant of the Boolean Satisfiability
Problem (SAT). Its goal is to identify a truth
assignment that maximizes the number of
satisfied clauses in a given boolean formula.
MaxSAT represents a classical challenge in
computational theory and has wide-ranging
applications across numerous domains due to its
generic representation of optimization problems
[10, 16, 24, 11]. While recent advances in machine
learning, especially deep learning, provide
promising approaches to combinatorial problems
[5, 4, 25, 19], the adaptation of these techniques
to the MaxSAT problem is still an emerging area
of study.

This research delves into the comparative
analysis of various elements and strategies,

1https://github.com/omargup/Policy-Gradient-MaxSAT-Solver

all aimed at enhancing the efficiency of an
autoregressive model tailored to address the
MaxSAT problem. Central to our exploration
is the role of sequential models that capture
current and past relevant information to generate
convenient variables’ values, baseline methods
used to mitigate variance during optimization, and
the technique used to represent variables and
incorporate semantic information.

By systematically examining these components
through our controlled hyperparameter searches
across a diverse set of random 3-SAT instances,
we aim to figure out the contributions of each
element to the solution quality. The emphasis is
on discerning the configurations that consistently
yield superior results.

A crucial aspect of our methodology is the
employed optimization technique. We leverage the
policy gradient theorem, optimizing the parameters
of the model on individual MaxSAT instances
by maximizing the expected number of satisfied
clauses to learn a distribution over potential
solutions. This process dynamically adjusts the
probability associated with variables taking specific
values, true or false, as illustrated in fig. 1. It is
crucial to underscore, however, that the ambition of
this paper isn’t to compete with the state-of-the-art
solvers such as the MaxHS [9, 3], Open-WBO [22,
23], EvalMaxSAT [2], or Loandra [6].

Instead, our goal is centered on discovering
strategies and elements that enhance the
effectiveness of Deep Learning approaches.The
remainder of the paper is organized as follows.
In Section 2, we review recent approaches to
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Fig. 1. Evolution of the probability that variables assume the value of true, p(xi = 1), over 5000 iterations for a
random 3-SAT instance with 20 variables and 90 clauses. The ith row showcases the changes in the probability of
variable xi being true throughout the optimization process. Purple indicates a high probability of the value being true,
whereas yellow denotes a lower probability (i.e., a higher likelihood of the value being false). At the beginning, there is
uncertainty regarding the values the variables will assume; however, as the process unfolds, the probabilities converge
towards either one or zero

solving the MaxSAT and related problems with
Deep Learning. Subsequently, in Section 3, we
detail the problem, the optimization process, and
the configurable components of our model. In
Section 4, we outline the proposed experiments
and, finally, in Section 5, we discuss our findings.

2 Related Work

A variety of Machine Learning-based methods for
combinatorial optimization problems have been
developed that construct solutions sequentially
through Reinforcement Learning [4, 17, 19].
These methods are well-suited for integration
with search strategies like sampling and beam
search, providing strong guidance in the search
process. Bello et al. [4] introduced a generic
search strategy known as active search. This
strategy allows for guided exploration in solution
construction without the need for problem-specific
components. Unlike traditional methods that only
sample solutions at inference time with a fixed
model, active search operates iteratively on a
single test input, modifying the model’s parameters

to increase the likelihood of generating high-quality
solutions in future iterations.

Their focus was predominantly on the Traveling
Salesman Problem (TSP). In their study, Bello
et al. compared two methodologies of active
search. The first approach involves adjusting the
weights of a pre-trained model specific to a test
instance, utilizing Reinforcement Learning. The
second approach initiates active search on a single
instance with an untrained model.

Their findings showed enhanced performance
compared to random sampling when starting
the search with a pre-trained model. Notably,
initiating the search with an untrained model also
led to satisfactory results. Hottung et al. [15]
developed and evaluated three efficient active
search strategies that update only a selected
subset of parameters during the search. This
approach contrasts with the full-scale model weight
updates implemented in [4].

Their results indicated significant
enhancements in search performance of models,
outperforming some of the leading Machine
Learning-based methods in various combinatorial
problems, such as the TSP, Capacitated Vehicle
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Fig. 2. High-level description of the model. At each
time step t, the model ingests a representation x̂t of the
current variable, a representation ât−1 of the previous
variable’s value, and the context ct. It then produces
a 1-dimensional output pxt in the range [0,1] which is
interpreted as the probability that the variable’s value is
true. Subsequently, the truth value at for xt is sampled
from pxt

Routing Problem (CVRP), and Job Shop
Scheduling Problem (JSSP). Our research
explores the latter approach in [4], particularly
focusing on active search using an untrained
model for a single input.

We aim to exploit the capabilities of neural
networks, gradient descent, and Reinforcement
Learning as distribution-independent optimization
tools to find efficient solutions for the MaxSAT
problem by transitioning the optimization approach
from a discrete to a continuous domain. While
Hottung et al. focused on improving active
search by updating a subset of parameters starting
from a trained model, our research seeks to
enhance active search beginning with an untrained
model. We explore a range of architectural
and optimization elements. For example, while
Bello et al. used an exponential moving

average (EMA) baseline, we extend our exploration
to include various sequential models, multiple
baselines (including EMA), and the benefits of
incorporating problem-specific information into the
input via Node2Vec.

3 Methods

3.1 Problem Definition

A boolean variable xi can assume values true
(one) or false (zero). A literal li refers to the
variable xi or its negation ¬xi. A clause c
is represented as a disjunction (logical OR) of
literals. A Conjunctive Normal Form (CNF) formula
ϕ is expressed as a conjunction (logical AND)
of clauses.

The SAT problem requires determining a truth
assignment π that provides a truth value (true
or false) to every variable in a CNF formula ϕ,
such that all clauses are satisfied, or stating
that no such assignment exists. The MaxSAT
problem is an optimization variant of SAT that
seeks an assignment which maximizes the number
of satisfied clauses in ϕ.

Thus, even if not all clauses in the formula can
be simultaneously satisfied, MaxSAT will identify
an assignment that satisfies the maximum possible
number of clauses. In this work, our primary focus
is on the MaxSAT problem. Formally, given a CNF
formula ϕ containing n variables and m clauses,
our objective is to identify a truth assignment
π maximizing the number of satisfied clauses,
represented as S(π|ϕ).

3.2 Objective Function and Optimization
Procedure

We employ an autoregressive model to
approximate optimal solutions. Let S(π∗|ϕ)
be the optimal number of satisfiable clauses, and
pθ(π|ϕ) be a multi-dimensional distribution with
learnable parameters θ.

Our aim is to approximate S(π∗|ϕ) by
maximizing the expected number of satisfiable
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Fig. 3. Graph representation of the formula for the
Node2Vec algorithm. The illustration corresponds to the
formula (x0 ∨ x1 ∨ ¬x2) ∧ (¬x0 ∨ x1 ∨ x2) ∧ (¬x0 ∨
x1 ∨ ¬x2). Nodes symbolize literals and clauses.
Undirected edges link literals to the clauses they appear
in, while supplementary edges connect literals of the
same variable

clauses S(π|ϕ) under the distribution pθ(·|ϕ)
represented by the model, i.e.:

S(π∗|ϕ) ≈ max
θ

Eπ∼pθ(·|ϕ)S(π|ϕ), (1)

where
J(θ|ϕ) = Eπ∼pθ(·|ϕ)S(π|ϕ). (2)

Is the objective function.
To maximize this objective function for a specific

instance of the MaxSAT problem, we optimize
the model’s parameters using stochastic gradient
ascent using the ADAM optimizer [18], leveraging
the policy gradient theorem. The gradient of J(θ|ϕ)
with respect to θ is given by:

∇θJ(θ|ϕ) = Eπ∼pθ(·|ϕ) [S(π|ϕ)∇θ log pθ(π|ϕ)] , (3)

where, due to the autoregressive nature of the
model, the probability of an assignment can be
factorized using the chain rule:

pθ(π|ϕ) =
n∏

i=1

pθ(πi|πi−1,πi−2, . . . ,π1). (4)

And hence, we can approximate the gradient by
sampling assignments π from the model.

3.3 Architecture

To address the MaxSAT problem, we employ a
sequential model. This model accepts as inputs
a representation of the formula’s variables and

another representation of the formula itself, termed
as context. Sequentially, for each variable, it
produces an output probability from which the truth
value of that variable is sampled.

The design of the model is autoregressive [12],
ensuring that each step takes into account a
representation of the previously generated output
when generating the probability for the next
variable’s truth value.

In a high-level overview, the functioning of
the model can be described as follows (refer to
fig. 2): for a given time t in the range [0, n −
1], given a sequence of variables’ representation
x̂ = (x̂0, x̂1, . . . , x̂n−1), the embedding module
processes the current variable’s representation x̂t

along with the context ct and a representation of
the previous assignment ât−1 to yield a vector zt.
Subsequently, the sequential model transforms zt
into a state ht taking into account information from
previous time steps.

Finally, a Multi-Layer Perceptron (MLP)
processes ht to produce a 1-dimensional output
p̂xt

. We then map p̂xt
to the range [0,1] using the

logistic function, interpreting pxt
as the probability

of the variable’s value being true. A truth value at
for xt is sampled from pxt

considering 0 and 1 as
false and true, respectively.

We initialize a0 = 2 as our start of
sequence (sos) token, and ât is the corresponding
3-dimensional One-Hot encoded vector of at. We
introduce several adjustable components in the
architecture and the training methodology.

This is done to pinpoint features that contribute
to a better approximation of the solutions, such
as the sequential model, baseline methods, and
variables’ representations. These components are
elaborated further in the subsequent sections.

3.3.1 Variables Representations and Context

To underscore the importance of integrating
problem instance information into the
representation of variables when addressing
the MaxSAT problem, we delve into two
distinct methods: One-Hot encoding and
Node2Vec [13] embeddings.

The former offers a direct, albeit
potentially limited, approach that signifies
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Fig. 4. Embedding module. The module intakes three
inputs: the previous variable value representation ât−1,
the current variable representation x̂t, and the context
ct. Each input is linearly transformed into its respective
embedded vector with dimensions determined by
configurable hyperparameters. These vectors are
then concatenated to form a unified representation,
encapsulating the essence of the initial inputs. This
unified structure is further linearly transformed to
generate the resultant vector zt, defined by a designated
hyperparameter dimension

the index of variables without encapsulating
formula-specific information. On the other hand,
Node2Vec is an algorithmic framework devised
for learning continuous feature representations of
nodes within networks.

It adopts a graph-based approach that
seamlessly blends the strengths of structural
equivalence (nodes sharing similar roles)
with homophily (nodes associating with
similar neighbors), thereby crafting versatile
node embeddings. Building on this, our adaptation
of the Node2Vec methodology entails crafting
a graph representation of the formula, drawing
inspiration from [25]. In this graph, nodes
correspond to literals and clauses.

Undirected edges link literals and clauses that
interrelate within the formula, and supplementary
edges connect literals belonging to the same
variable (see fig. 3). This comprehensive
graph approach allows Node2Vec to encode
formula-specific insights, potentially enhancing the
optimization processes and solution quality.

While both methods provide unique
perspectives, Node2Vec delves deeper into
the instance’s structure, though it necessitates a
separate learning phase to acquire the feature
representations of the nodes. For the Node2Vec
variables’ representation, we construct a vector for
a specific variable by concatenating the Node2Vec
embeddings of its corresponding two literals.
This manner of representation captures insights
concerning both literals of the variable.

Regarding the context, we average the
embeddings corresponding to the literals, and
similarly, average the embeddings linked to the
clauses. The resultant context vector is the
concatenation of these two averaged vectors,
ensuring that the context includes comprehensive
information about the instance, which could be
invaluable when attempting to solve the problem.

3.3.2 Sequential Module

In our study, we compare and analyze three
distinct models within the sequential module of
the architecture: a Transformer encoder [26], an
Long Short-Term Memory (LSTM) [14] network
and Gated Recurrent Units (GRU) [8].

Both recurrent neural networks (RNNs) and
the Transformer offer unique characteristics and
capabilities for approximating solutions to the
MaxSAT problem.

The Transformer encoder leverages
self-attention mechanisms to capture
dependencies among variables and effectively
model long-range dependencies. In contrast, the
LSTM and GRU models, also capture sequential
information and dependencies over time but
typically exhibit better memory efficiency when
compared to Transformers. By examining and
comparing these three models, we aim to assess
their performance and determine the most
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Fig. 5. Average fraction of satisfied clauses as the radius
r increases. The average encompasses the six different
values of n and their respective five different instances

effective approach for approximating MaxSAT
solutions within our proposed architecture.

3.3.3 Embedding Module

To ensure robustness in our model and adaptability
across different experiments, there was a need to
address potential compatibility and expressiveness
issues that arise when altering various components
of the model. An example is the variability in
representation sizes of the variables. For instance,
while One-Hot encoding has an n-dimensional
representation, the Node2Vec embedding’s size is
determined by a hyperparameter.

Additionally, unlike recursive networks that
accommodate input vectors of any dimension,
the Transformer architecture necessitates that the
input dimension aligns with the model’s dimension.
To navigate these constraints and ensure a
harmonious flow in the architecture, we introduced
an embedding module.

This module was conceptualized to bridge the
gap, linking the diverse inputs to the sequential
module in a seamless and expressive manner.
The core functionality of the embedding module
is centered around transforming the three inputs,
namely the previous variable value representation
ât−1, the current variable representation x̂t, and
the context ct.

Each of these inputs undergoes a linear
transformation to produce their respective

embedded vectors, the dimensions of which
are guided by configurable hyperparameters.
This flexibility in defining dimensions allows the
model to adapt effectively across a variety of
experimental setups.

After these transformations, the three
embedded vectors are concatenated to create
a unified representation that captures the
essence of all initial inputs while maintaining
structural consistency.

This concatenated vector is subsequently
linearly transformed to produce zt, a resultant
vector with a dimension defined by a specific
hyperparameter. This vector serves as the input
for the sequential module, ensuring it receives
information in a consistent and streamlined format
(see fig. 4).

3.3.4 Baselines

The policy gradient theorem can be generalized
to include a baseline. Within our framework, a
baseline b(ϕ) can be any function as long as it
does not vary with the assignment π. It serves
as a reference value (or baseline) against which
the number of satisfied clauses from a particular
assignment is compared.

Utilizing a baseline reduces the variance of
the gradient estimate, which in turn stabilizes
and accelerates the learning process. When
incorporating a baseline b(ϕ), the equation (3)
is adjusted reflecting the formulation of the
REINFORCE [27] algorithm:

∇θJ(θ|ϕ) = E [δ · ∇θ log pθ(π|ϕ)] , (5)

where the expectation is drawn from the
distribution pθ(·|ϕ) and δ = S(π|ϕ)− b(ϕ).

Acknowledging the importance of incorporating
a suitable baseline, we experimented with three
distinct baseline methods, in addition to the
approach that operates without a baseline. Each
of these methods aims to provide an estimate of
the expected number of satisfied clauses:

– Exponential Moving Average (EMA). This
technique employs the exponential moving
average to track the number of clauses satisfied
by the model’s assignment over time.
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Fig. 6. Average fraction of satisfied clauses as the radius
r increases for n =10, 20, 30, 40, 50, and 100. The
average spans the five different instances for each n,
and the plots are sequenced from left to right and top
to bottom

– Greedy Baseline. With the current model
parameters held constant, this baseline selects,
at each time step, the most probable value
for the current variable. It then calculates the
number of clauses satisfied by the assignment.

– Sampling Baseline. In contrast to the greedy
approach, this method draws B solutions and
sets the baseline value as the average number
of clauses satisfied by the drawn samples.

3.3.5 Exploration

To foster exploration within the model, and inspired
by [4], we integrate two distinct strategies.

– Logit Temperature. At each time step t, the
model’s output is adjusted as:

p̂xt =
p̂xt

T
, (6)

where T represents a temperature
hyperparameter. During training, T is set
to 1. However, during evaluation, when T > 1,
the output p̂xt becomes less pronounced,
thereby inhibiting the model from exuding
overconfidence.

– Logit Clipping. At each time step t, the model’s
output undergoes another modification:

p̂xt
= C · tanh(p̂xt

), (7)

where C serves as a hyperparameter, dictating
the range of the logits and subsequently the
entropy of the resultant output.

4 Experimental Setup

We conducted a series of experiments to
assess the potential of a sequential model
for approximating solutions to the MaxSAT
problem. Our goal was to discern the architectural
and procedural elements that enhance the
optimization process to maximize the number of
satisfied clauses.

Unlike the traditional SAT solvers, where the
aim is to find a complete assignment that satisfies
all clauses or determine its non-existence, our
focus was on obtaining solutions that closely
resemble optimality.

In our study, we carefully examined three pivotal
elements: the decoder architecture, the baseline
used to mitigate variance during optimization,
and the embedding technique used to represent
variables and incorporate semantic information.
We posited that these components significantly
influence the performance of the autoregressive
model and, consequently, the quality of the
MaxSAT solution.

To rigorously evaluate the contributions of these
elements, we organized our experiments into three
stages of hyperparameter searches. In the initial
stage, the spotlight was on different decoder
architectures, using a fixed zero baseline and
rudimentary variables’ representation to isolate the
effect of the decoder structure on performance.

The subsequent stage introduced an extra
layer of complexity by incorporating the various
baselines into the hyperparameter search. Lastly,
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Fig. 7. Average number of best trials. The average is
over the five different instances and the three different
search assumptions

the Node2Vec embedding method was integrated
into the final stage, broadening the search
parameters and allowing for a comprehensive
assessment of these elements’ combined influence
on model behavior.

Throughout these stages, we integrated several
other hyperparameters into our searches, such
as learning rate, number of layers, embedding
dimensionality, logit clipping, logit temperature,
and more. It is worth noting that crafting
Node2Vec representations involves its own
intricate procedure, detached from the parameter
tweaking of the sequential model.

Consequently, we executed an independent
hyperparameter search specifically for the
Node2Vec embedding process, ensuring the
availability of high-quality embeddings when
required. By systematically varying these
elements and exploring their interactions through
the hyperparameter searches, our intention was
to pinpoint the most efficient configurations for
the autoregressive model in addressing the
MaxSAT problem. This methodology enabled
a examination of each component’s individual
contributions and their synergistic effects, steering
the optimization process towards near-optimal
solutions. Furthermore, to bolster the rigor and
impartiality of our assessments, our experimental
setup was tested across a diverse set of random
3-SAT instances.

4.1 Dataset

We generate a random k-SAT dataset comprising
not necessarily satisfiable random formulas. For
producing a random k-SAT instance with n
variables and m clauses, we begin by choosing
a small integer for k. Subsequently, for each
clause ci, where i ∈ {1, 2, . . . ,m}, we sample k
variables uniformly at random without replacement.
Each variable is then negated with a 50%
independent probability.

The dataset encompasses 5 instances for
each of the following configurations: for n ∈
{10, 20, 30, 40, 50, 100}, formulas with radius r ∈
{1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5} and k = 3. Here,
the radius signifies the ratio between the number of
clauses m and the number of variables n.

4.2 Hyperparameters Searches

Our ablation study encompassed three distinct
rounds of hyperparameter searches for each
instance. The inaugural search assumption
was concentrated on the exploration of various
decoders—LSTM, GRU, and Transformer—along
with adjusting associated hyperparameters.
However, during this phase, we did not
contemplate baselines beyond the zero value
nor did we consider variables’ representation
techniques beyond One-Hot encoding.

To compare against the first round, the
subsequent round introduced an additional degree
of flexibility by integrating all the proposed
baselines. This phase also presented the option
of eschewing the utilization of any baseline, i.e.,
making the baseline equivalent to zero. Despite
this change, the variables’ embedding technique
remained unaltered as One-Hot encoding.

In the third assumption, the exploration
expanded to include Node2Vec embeddings, which
are adept at capturing intricate relationships
among variables and clauses. This provided a
platform to ascertain the influence of variables’
representation on the model’s performance.

It’s noteworthy that this investigation also
encapsulated all previously delved into elements,
including decoder architectures, baselines, and
One-Hot encoding embeddings. As mentioned
before, each of these rounds integrated additional
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Fig. 8. Fraction of times Transformer decoders, non-zero baselines, and Node2Vec embeddings are present in the
best trials for different values of n, r, and search assumptions. Sub-figures a), b), and c), correspond to the fraction of
times a Transformer decoder is present in the best trials when the search assumption was architecture, baseline, and
Node2Vec, respectively. Sub-figures d) and e) show the fraction of times a non-zero baseline is present in the best trials
when the search was baseline and Node2Vec, Sub-figure f) presents the fraction of times a Node2Vec embedding was
present in the best trials in the Node2Vec search

hyperparameters into the searches, such
as the learning rate, the number of layers,
embedding size, logit clipping, logit temperature,
among others.

For the systematic execution of each
hyperparameter search, we leveraged the
Tune [21] and Optuna [1] frameworks. The
Tree-structured Parzen Estimator (TPE) [7]
was employed as our hyperparameter search
algorithm, complemented by the Asynchronous
HyperBand Scheduler (ASHA) [20] to preemptively
terminate unpromising trials.

The configuration for the ASHA scheduler was
set with a grace period of ((2 ·n)+m)×4 samples,
and a cap at ((2 · n) +m) × 64 samples. The TPE
was designed to conduct 50 trials, with each batch
constituted by 32 replicas of the identical instance.

The primary objective was to pinpoint
the optimal configuration that maximized the
satisfied clauses during the model’s evaluation

Fig. 9. Average fraction of times the different baselines
are present in the best trials

phase. Pertaining to the hyperparameter search
associated with the Node2Vec representations, we
deployed the TPE for a total of 35 trials.

The ASHA scheduler in this context operated
with a grace period of 5, peaking at 25 epochs. To
guarantee a robust representation of the variables,
the embedding size was set at 128.
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4.3 Evaluation

To evaluate the performance of a specific model
configuration on a given instance (i.e., a trial
within a hyperparameter search), we adopted the
following procedure: After processing every 320
samples, which comprise 10 batches with each
batch having a size of 32 during the optimization
process, we sampled 128 potential assignments
(that is, we ran an episode on a single batch of
size 128).

Subsequently, we computed the number
of clauses satisfied (sat) by each of these
assignments. The count of sat clauses at this point
is determined by the highest number of sat clauses
among the 128 assignments. The performance
metric for the model, represented by the number of
sat clauses achieved by a particular configuration,
is the maximum number observed throughout the
entire trial.

Furthermore, the number of sat clauses
attained during a hyperparameter search on a
given instance is derived from the maximum
number of sat clauses observed across all 50
trials. Any trial that matches this maximum value
is deemed as a best trial.

5 Results

After obtaining the number of sat clauses and
identifying the best trials from the hyperparameter
searches conducted for each combination of n,
r, and search assumption (architecture, baseline,
and Node2Vec embedding), we analyzed the
impact of these search assumptions on the number
of clauses the model satisfies.

Additionally, we delved into the architectures,
baselines, and variables’ representations involved
in the top trials as both the number of variables and
radius increased. This provided valuable insights
into the configurations that yield superior solutions
in terms of satisfied clauses.

5.1 Does the Search Assumption Impact the
MaxSAT Solutions?

We used line graphs to illustrate the fraction
of satisfied clauses achieved by each search
assumption as the radius r increased. Moreover,
a 99%-ile confidence interval was included to
highlight the uncertainty in the results. Figure 5
shows the average fraction of sat clauses over
different n values.

The graph reveals that, on average, integrating
baselines into the search led to an increase in the
number of satisfied clauses. This trend persisted
across various r values. Additionally, incorporating
Node2Vec representations into the search process
yielded further enhancements in the number of
satisfied clauses. This evidence suggests that the
inclusion of baselines and Node2Vec embeddings
can markedly improve the performance of the
search algorithm.

To offer a more granular understanding of the
influence of different search assumptions on the
optimization process, we have included additional
graphs for each n value. Figure 6 illustrates the line
graphs for n = 10, 20, 30, 40, 50, and 100.

Examining these charts, we discern an
interesting observation for smaller n values, such
as 10, 20, and 30. For these cases, the benefit of
integrating baselines or Node2Vec into the search
space is less discernible.

For instance, with n = 10, all search
methodologies produce similar outcomes,
suggesting our optimization procedure is adept
at identifying robust solutions irrespective of
search assumptions.

When scrutinizing the outcomes for n = 20 and
30, we notice that the methods using Node2Vec do
not consistently excel beyond other assumptions.
For n = 20, the most optimal outcomes,
on average, emerge when only baselines are
integrated into the search space.

Likewise, for n = 30, no singular assumption
consistently prevails across varying radii. This
insinuates that, with smaller instances and an
insufficient number of trials in the hyperparameters
search, a more streamlined search space might
occasionally offer superior outcomes. Yet, we
posit that augmenting the number of trials in the
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Fig. 10. Fraction of times the context was used in
the best trials for the different values of n and r in
the Node2Vec searches. Results are normalized by
the fraction of times the Node2Vec representations
were chosen

hyperparameters search could bolster results for
both the baseline and Node2Vec assumptions.

Conversely, for greater n values, namely 40,
50, and 100, the merit of embedding baselines in
the search space becomes evident. These visuals
clearly depict an augmented fraction of satisfied
clauses when baselines are incorporated, attesting
to the efficacy of this approach for more extensive
problem instances.

Moreover, the integration of Node2Vec
embeddings into the search space results in
general in even more pronounced improvements in
satisfied clauses, emphasizing the advantages of
incorporating instance-specific information into the
optimization process. In light of the aforementioned
analyses and observations, it becomes evident
that search assumptions significantly influence
MaxSAT solutions. These revelations accentuate
the importance of employing baselines and
leveraging Node2Vec embeddings, particularly
when addressing problems of larger scales.

5.2 Which Configuration is Better?

To determine the most effective configurations,
we counted the number of best trials as both
n and r increased. Figure 7 demonstrates
that for simpler instances—those with smaller
n and r values—many trials achieve the sat

number of clauses (i.e., the maximum number of
satisfied clauses achieved by the model during a
specific search).

This indicates consistent model performance
even with randomized hyperparameters during
the hyperparameters searches’ warm-up phase.
However, for more complex instances (larger n
or r values), reaching the maximum number of
satisfied clauses is challenging, and only specific
configurations yield the best results.

Figure 8 provides insights into how frequently
Transformer decoders, non-zero baselines, and
Node2Vec representations appear in the best
trials across the values of n, r, and search
assumptions. For different search assumptions,
sub-figures 8(a-c) show the prevalence of
Transformer decoders.

With increasing n and r, the Transformer
decoder becomes more favored over LSTM and
GRU architectures, especially when the search
includes baselines or variables’ representation
based on Node2Vec. Sub-figures 8(d-e) reveal
a consistent preference for non-zero baselines
across varying n and r values when available in
the search space.

This suggests their pivotal role in optimizing
MaxSAT solutions. Sub-figure 8(f) illustrates
the preference for Node2Vec representations
during Node2Vec searches. When available,
these embeddings are often chosen, signaling
the importance of instance-specific information,
particularly for more intricate instances.

While simpler instances often exhibit a range
of top-performing configurations, as revealed in
fig. 7, complex ones with larger n or r values are
more reliant on specific elements like Transformer
decoders, non-zero baselines, and Node2Vec
embeddings. This underscores the significance
of these elements for handling intricate instances.
Figure 9 offers a breakdown of how often different
baselines feature in top trials.

It becomes clear that non-zero baselines play
a substantial role in achieving optimal solutions.
The pie chart highlights the dominance of the
EMA approach in both searches, with greedy and
sample baselines also being prominent. These
data emphasize the merit of considering diverse
baseline strategies in optimization processes.
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During our experiments, models had the option
to either utilize or ignore the context when
Node2Vec variables were selected. Figure 10
portrays how often context was incorporated
in top trials, normalized for instances when
Node2Vec-type variables were selected. While its
adoption slightly increases with n and r, context is
not consistently present in top trials. We theorize
that refining the context design might bolster the
information from Node2Vec variables, potentially
enhancing the solutions.

6 Conclusion and Future Work

We conducted a series of experiments across
a diverse set of random 3-SAT instances to
assess the potential of a sequential model for
approximating solutions to the MaxSAT problem
optimizing the parameters of the parametric model
by maximizing the expected value of the number
of satisfied clauses to predict a distribution
over the possible solutions using the policy
gradient method.

Our goal was to discern the architectural
and procedural elements that enhance the
optimization process to maximize the number of
satisfied clauses.

The experiments presented demonstrated
the potential advantages of using certain
configurations and search assumptions, such
as the inclusion of baselines and the Node2Vec
embeddings, in improving the efficiency and
accuracy of the model for MaxSAT solutions.

The clear influence of Transformer decoders,
particularly for more complex instances,
emphasized the utility of architectures that can
capture long-range dependencies in the problem.
This is pivotal for tasks such as MaxSAT where
inter-variable relationships can have a significant
impact on the overall satisfaction of clauses.

The introduction and evident advantage of
non-zero baselines, especially the EMA approach,
signaled the importance of stable and guided
optimization. In the same way, Node2Vec
embeddings benefit the model, especially as n
and r increase. However, one surprising outcome
was the inconsistent utilization of context with
Node2Vec variables in top trials.

We postulate that an improved context design,
which is a promising avenue for improvement,
could supplement rich semantic information,
potentially leading to enhanced solutions. Moving
forward, several research directions emerge from
the insights and limitations of our current approach:

– Advanced Variables Representations.
Instead of relying solely on Node2Vec, we
propose exploring more sophisticated graph
embedding techniques, especially Graph Neural
Networks, to better capture the structural
intricacies of the MaxSAT instance.

– Refining Context Usage. The ambiguous
outcomes from our usage of context with
Node2Vec variables highlight the need for
further investigation. A more refined integration
approach, such as a time-dependent context
updated at each time step using attention
mechanisms, is worthy of exploration.

Coupling this with alternative graph
embedding methods may offer richer structural
insights into the SAT formula.

– Alternative Architectural Decoder
Considerations. The Transformer model’s
efficacy, especially for complex instances,
leads us to believe there’s potential
in transformer-tailored architectures for
combinatorial optimization tasks.

For instance, a specialized decoder design
that isn’t reliant on consuming all previous
inputs directly, and instead uses context more
effectively, might yield better results.

– Expanded Dataset Variability. While our
current experiments leaned on random 3-SAT
instances, there’s merit in diversifying our
test cases. This includes exploring other
MaxSAT problem types and integrating
real-world instances to gain a comprehensive
understanding of the model’s capabilities.

– Enhanced Exploration Techniques. The
logit temperature and clipping methods served
us well in this study. Yet, integrating other
exploration or regularization techniques, like
the entropy bonus in computing the policy
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gradient loss, might elevate the quality of the
models outputs.

– Improve Post-Processing. Post-model solution
refinement is a promising direction. Leveraging
larger samplings, advanced techniques like
beam search, or tailored search strategies could
maximize solution quality further.

– Contemplation of Variable Ordering.
Throughout our experiments, the variables
were introduced to the model in ascending order
based on their index. Investigating other types
of variable ordering, especially those based on
advanced strategies, may prove advantageous
in the search for optimal assignments.
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under projects: 20200651, 20210316, 20220002,
20230232, 20220798 and 20211096 to carry out
this research. O. Gutiérrez thanks CONAHCYT
for the scholarship granted towards pursuing his
graduate studies.

References

1. Akiba, T., Sano, S., Yanase, T.,
Ohta, T., Koyama, M. (2019). Optuna:
A next-generation hyperparameter
optimization framework. Proceedings of
the 25th ACM SIGKDD International
Conference on Knowledge Discovery
and Data Mining, pp. 2623–2631. DOI:
10.1145/3292500.3330701.

2. Avellaneda, F. (2020). A short description of
the solver EvalMaxSAT. MaxSAT Evaluation,
Vol. 8.

3. Bacchus, F. (2022). MaxHS in the 2022
MaxSAT evaluation. MaxSAT Evaluation 2022,
Vol. B-2022, pp. 17–18.

4. Bello, I., Pham, H., Le, Q. V.,
Norouzi, M., Bengio, S. (2016). Neural
combinatorial optimization with reinforcement
learning. 5th International Conference

on Learning Representations. DOI:
10.48550/arXiv.1611.09940.

5. Bengio, Y., Lodi, A., Prouvost, A.
(2021). Machine learning for combinatorial
optimization: A methodological tour d’horizon.
European Journal of Operational Research,
Vol. 290, No. 2, pp. 405–421. DOI:
10.1016/j.ejor.2020.07.063.
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