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Abstract. An approach to improve the explainability
(interpretability) of convolutional neural networks that
identify plant species from leaf images is proposed.
Specifically, a methodology is established to discover
the most determining diagnostic features used by a
convolutional neural network (CNN) in the identification
of 63 native plant species from Costa Rica. The result
is a CNN that not only identifies plant species but also
provides an explanation through a heat map and a
translation of that map into a table of diagnostic features
used in classical taxonomy, each with a weight that
describes the relative importance of each trait (e.g.,
apex, primary vein, and leaf base). To achieve this, a
CNN was trained using leaf images from 63 vascular
plant species from Costa Rica. Once the network was
trained, the Layer-wise Relevance Propagation (LRP)
technique was applied to a subset I of 50 leaves
images distributed uniformly across a set of 10 species
to visualize the representations (heat maps) learned
by the internal layers of the CNN. Then, a taxonomist
was asked to perform an equivalent task manually,
annotating the same 50 leaf images in I by graphically
highlighting the most significant features according to
their expert judgment (feature map). Finally, algorithmic
comparisons were made between the heat maps and
feature maps to determine the similarity between the
hottest areas used by the CNN and the features used
in classical taxonomy.

Keywords. Convolutional neural network, heat
map, layer-wise relevance propagation, deep learning,
interpretability, automated plant species identification.

1 Introduction

Motivated by the fact that deep learning algorithms
have poor explanatory power, this research
takes on the challenge of discovering the most
determining features used by a Convolutional
Neural Network (CNN) in the identification of
plant species. In general, this is a formidable
challenge that, as far as we know, has not
been addressed before, even for small sets of
species. Consequently, we limit the scope of this
exploratory work to a small subset of the estimated
12,000 native vascular plant species of Costa
Rica, namely, the 255 species represented in the
CRLEAVES dataset [13]. Having explanations
that justify the responses of such deep learning
algorithms is important for:

1. Demonstrating that the approach is robust
from a taxonomic perspective and therefore
more reliable.

2. Improving dichotomous or polytomous
identification keys used in traditional taxonomic
work, in case the CNN detects features not
being used by experts.

3. Enhancing the CNN in case very discriminative
features used in traditional taxonomy are
detected but not used by the CNN.
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Fig. 1. LRP for some leaves of Costa Rican plant species

In this research, the CRLEAVES dataset was
used to train a CNN capable of identifying plant
species in Costa Rica from images of their leaves.
Then, the Layer-wise Relevance Propagation
(LRP) technique was applied to a subset I of
leaves images, to visualize the representations
(heat maps) learned by the internal layers of the
CNN. Subsequently, the heat maps of specimens
of each species and a formally defined measure
of intra-specific variability were used to asses how
similar the “hot regions” in those heat maps were.

Finally, and more importantly, the heat maps
were compared to the identification criteria used by
an expert in the identification process for the same
subset I of leaves images. The rest of this article
is organized as follows:

Section 2 presents a summary of the
background regarding the visualization of relevant
regions used by deep learning algorithms in
decision-making and the interpretability of a
model based on a CNN. Section 3 summarizes
the methodology used. Section 4 presents the
results achieved and Section 5 summarizes the
conclusions and provides some recommendations
for future research.

2 Background

2.1 Plant Identification

Species conservation is closely related to their
correct identification [9, 20]. It is estimated that
there are around 400,000 species of vascular
plants in the world. This enormous biodiversity and
its vast intra and interspecific variability make their
identification a very complex task even for experts.

Typically, the task of plant identification
involves assigning a specific taxon to an
individual plant specimen based on the similarity
of its discriminative morphological characters
(diagnostic characters) to those of a particular
species. A human expert (taxonomist) uses these
characters to visually identify the species of a
particular plant.

The ultimate goal is to assign a plant species
to a particular specimen. Due to the inherent
complexity of the identification task, it has been
approached computationally, first with interactive
applications based on identification keys, then with
software based on machine learning techniques
[1, 2, 10], and more recently by applying deep
learning techniques [7, 8, 11, 12, 21].
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Table 1. Explanation vectors obtained from CNN

Specimen Margin Apex Main vein Base Complement Secondary veins
Croton draco_1_2_2 0.41 0.40 0.41 0.42 0.41 0.40
Guazuma ulmifolia_1_3_2 0.38 0.41 0.43 0.35 0.42 0.45
Hura crepitans_1_2_2 0.41 0.39 0.40 0.37 0.43 0.44
Hymenaea courbaril_2_1_2 0.47 0.51 0.38 0.42 0.45 0

Table 2. Explanation vectors assigned by the expert

Specimen Margin Apex Main vein Base Complement Secondary veins
Croton draco_1_2_2 0.22 0.33 0.55 0.65 0.11 0.33
Guazuma ulmifolia_1_3_2 0.23 0.18 0.35 0.88 0.035 0.088
Hura crepitans_1_2_2 0.45 0.23 0.23 0.57 0.23 0.57
Hymenaea courbaril_2_1_2 0.68 0.39 0.19 0.58 0.097 0

2.2 Interpretability of a Model based on a CNN

The main challenge in the field of eXplainable AI
(XAI) is explaining the decisions of an intelligent
system. This is referred to as the problem of
interpretability or explainability. In the context of
Machine Learning (ML), interpretability is defined
as the ability to explain results in understandable
terms to a human [6]. Miller [14] defines
interpretability as the degree to which a human can
understand the cause of a decision. Therefore,
we could say that an ML model is interpretable
if a human can understand its operations, either
through introspection or through a produced
explanation [4].

In general, two types of models can be
distinguished: those that are interpretable
by design (e.g., decision trees, Bayesian
models, k-nearest neighbors, and rule-based
learning models) and those that can be
explained through an external XAI technique
(post-hoc explainability technique). The latter
are aimed at models that are not easily
interpretable, as is the case of CNNs. Some
examples of external XAI techniques are text
explanations, visualizations, local explanations,
and example-based explanations [16].

Visual explanation techniques add explainability
to a model by highlighting which input variables (in
this case, pixels) have contributed to classifying the
given image by the CNN.

This scoring of pixels can be visualized as
a heat map that overlays the original image to
highlight the regions of the image that were
relevant in the prediction [17].

2.3 Visualizing the Decisions of a CNN

Visual explanation techniques aim to produce class
activation maps for input images. A class activation
map is a 2D grid of scores associated with a
specific output class and calculated for each pixel
in the input image, indicating the importance of
each pixel with respect to the considered class.

Some of the developed techniques include:
Class Activation Map (CAM) [18, 23], Saliency
Map (SM) [19, 22]) and more recently, Layer-Wise
Relevance (LRP). Layer-wise Relevance
Propagation (LRP) was originally described
by Bach et al. [3]. The idea is to calculate the
contribution of each pixel xd in an input image x
to the prediction f(x) made by a classifier f in an
image classification task.

Here classifier f : Rv → R has real valued
outputs which are thresholded at zero. For this
purpose, a relevance measure (Rd) is defined for
each pixel xd in the input image x, such that the
prediction f(x) is expressed as the sum of the
values of Rd:

f(x) ≈
v∑

d=1

Rd, (1)
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# Species Heatmaps

1 Ardisia revoluta

2 Bauhinia ungulata

3 Blakea maurofernandeziana

4 Brosimum alicastrum

5 Croton draco

6 Dipteryx panamensis

7 Erythrina poeppigiana

8 Guazuma ulmifolia

9 Hura crepitans

10 Hymenaea courbaril

Fig. 2. Heat maps generated with Layer-wise Relevance Propagation (LRP)

where, Rd > 0 expresses evidence of the presence
of the structure to be classified, while Rd < 0
expresses evidence against its presence. To obtain
this decomposition, the relevance concentrated

at the output of a neural network is iteratively
propagated backward through the network, using
local propagation rules, until the final propagation
maps the relevance back to the input image.
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Table 3. Intra-specific variability of explanation vectors

Species CNN Variability Expert Variability

Ardisia revoluta 0.34 0.032

Bauhinia ungulata 0.17 0

Blakea maurofernandeziana 0.29 0.073

Brosimum alicastrum 0.19 0.16

Croton draco 0.10 0.085

Dipteryx panamensis 0.11 0

Erythrina poeppigiana 0.22 0.035

Guazuma ulmifolia 0.17 0.078

Hura crepitans 0.37 0.19

Hymenaea courbaril 0.087 0

Average 0.20 0.065

Standard deviation 0.099 0.0044

Table 4. Discrepancy of explanation vectors by species

Species Discrepancy

Ardisia revoluta 0.62

Bauhinia ungulata 0.67

Blakea maurofernandeziana 0.77

Brosimum alicastrum 0.61

Croton draco 0.46

Dipteryx panamensis 0.68

Erythrina poeppigiana 0.56

Guazuma ulmifolia 0.75

Hura crepitans 0.49

Hymenaea courbaril 0.53

Average 0.61

Standard deviation 0.011

An in-depth overview of LRP can be found in
[3, 15]. Figure 1 shows the heat maps generated
using the LRP technique for some leaves from the
CRLEAVES dataset. It indicates the scientific name
of the species, along with the probability reached
by the model in the identification process. We can
deduce that for the species Croton draco, Hura
crepitans, and Blakea maurofernandeziana, the
shape, and especially the venation, appear to be
the most relevant features considered by the CNN
in the identification process, while for the species
Bauhinia ungulata, the shape seems to be the most
relevant feature.

3 Methodology

3.1 Preparatory Activities (Workflow)

The following preparatory activities were carried
out before the main experiment:

1. Selecting a visual explanation technique.
With the goal of implementing a feature
visualizer, experiments were conducted with the
following visual explanation techniques: Class
Activation Map, Saliency Map, and LRP. The
expert criteria of two taxonomists was used to
compare the heat maps of randomly selected
images from the CRLEAVES dataset. Section 4
gives more details about the chosen technique.

2. Selecting the species for the experiment.
The CRLEAVES dataset is composed of
approximately 7262 images that correspond to
255 plant species from Costa Rica. It includes
images of the adaxial (upper) and abaxial
(lower) sides of the leaf.

Discussions with the two taxonomists in
the working team were conducted to select a
subset of species and all of their corresponding
specimen images (CRLEAVESSUBSET dataset)
that show notable interspecific variability and
those the taxonomists were more familiar with
according to their expertise area.

Additionally, a randomly selected set of 10
species with 5 randomly selected specimen
images (CRLEAVES10 dataset) should be
chosen to annotate their images, obtain their
heat maps, and conduct the main experiment.

3. Defining and fine-tuning a CNN. With the
images in CRLEAVESSUBSET, a CNN was
trained and validated to identify those plant
species. The resulting architecture and the
training and validation results of the network are
briefly described in Section 4.

4. Designing and implementing a “hot
features” visualizer. Using the technique
chosen in preparatory activity 1., a “hot regions”
visualizer was implemented. This allowed the
generation of heat maps for each of the leaves
in the CRLEAVES10 dataset.
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Table 5. 63 species selected from the CRLeaves dataset for the experiment, based on abaxial leaf images

No. Species No. Species
1 Acnistus arborescens 33 Hyeronima alchorneoides
2 Aegiphila valerioi 34 Hymenaea courbaril
3 Anacardium excelsum 35 Manilkara chicle
4 Annona mucosa 36 Muntingia calabura
5 Ardisia revoluta 37 Ocotea sinuata
6 Astronium graveolens 38 Pachira quinata
7 Bauhinia purpurea 39 Persea americana
8 Bauhinia ungulata 40 Pimenta dioica
9 Blakea maurofernandeziana 41 Platymisciumparviflorum
10 Brosimum alicastrum 42 Platymiscium pinnatum
11 Calophyllum brasiliense 43 Posoqueria latifolia
12 Calycophyllum candidissimum 44 Psidium guajava
13 Cedrela odorata 45 Quercus corrugata
14 Cestrum tomentosum 46 Quercus insignis
15 Citharexylum donnell-smithii 47 Robinsonella lindeniana var. divergens
16 Clethra costaricensis 48 Samanea saman
17 Clusiacroatii 49 Sapium glandulosum
18 Coccoloba floribunda 50 Sideroxylon capiri
19 Colubrina spinosa 51 Simarouba glauca
20 Cordia eriostigma 52 Solanum rovirosanum
21 Croton draco 53 Stemmadenia donnell-smithii
22 Croton niveus 54 Swietenia macrophylla
23 Dalbergia retusa 55 Tabebuia impetiginosa
24 Dendropanax arboreus 56 Tabebuia ochracea
25 Dipteryx panamensis 57 Tabebuia rosea
26 Erythrina poeppigiana 58 Tabernaemontana litoralis
27 Eugenia hiraeifolia 59 Terminalia amazonia
28 Ficus cotinifolia 60 Terminalia oblonga
29 Genipa americana 61 Trichilia havanensis
30 Guazuma ulmifolia 62 Urera caracasana
31 Heliocarpus appendiculatus 63 Vernonia patens
32 Hura crepitans

5. Identifying features for feature maps. The
goal of this activity is to identify the n features
used by taxonomists in the identification of the
species in the CRLEAVESSUBSET dataset.

For this, five images of the leaves of
each species were shown to two botanical
taxonomists and they were asked to identify
the set of features (e.g., apex, base, and
main vein) needed to achieve a reliable

identification. The resulting n-dimensional
vector is called the explanation vector. The
decision had to be unanimous.

6. Annotating leaf images to create feature
maps. The objective of this activity is to capture
the expert’s knowledge used to identify plants
from their leaves. For each of the 50 images in
CRLEAVES10, a taxonomist used a customized
COCO ANNOTATOR image annotation tool [5]
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to generate a feature map, which is equivalent
to a manually produced heat map. The
feature map of an image I consists of image
I, an additional graphical layer with regions
associated with each of the n features, and
metadata (an explanation vector) that defines
the weight associated with each of the features.

COCO ANNOTATOR is a web-based tool with
a customizable interface that allows labeling a
region of an image, tracking object instances,
labeling disconnected objects, and storing and
exporting annotations in COCO format. The
COCO format is a JSON-based structure that
defines how labels and metadata are stored for
a set of images.

3.2 Experiment

The main objective of this experiment is to identify
the relative weights (explanation vectors) assigned
by the CNN to each of the features in the process
of identifying the specimens in the CRLEAVES10
dataset. For this, a “hot pixel” counter was
designed and implemented. It counts, for each
of the images, the pixels that are above a
threshold for each of the regions annotated by
the taxonomists, corresponding to each of the
considered features (apex, base, main vein, etc).

As an indicator of variability for criteria
(explanation vectors) obtained from the CNN, a
measure of intra-specific variability was defined
and computed. Finally, for each of the 10 species in
CRLEAVES10, a measure of discrepancy between
the explanation vectors obtained from the heat
maps and the (explanation vectors) assigned by
the taxonomist was proposed and computed.

3.3 Terminology

Explanation vector: given an image I of a
specimen, we define expl(I), the explanation of I,
as an n-dimensional vector v where entry vi is a
positive real number that represents the relevance
level of feature i in the identification process.
For each image I, two explanation vectors are
obtained: one is calculated from its heat map, and
the other from the corresponding feature map.

For instance, Table 1 displays, for some leaves,
the normalized explanation vectors obtained from
their heat maps. Table 2 presents the normalized
explanation vectors generated by the expert for the
same leaves in Table 1.

To quantify the intra-specific variability of the
criteria and the discrepancy between the criteria
used by the CNN and an expert, two metrics were
defined: intra-specific variability and discrepancy.

Intra-specific variability: Measures the level
of variability between the explanations provided
by an identifier (which can be an algorithm or a
human) for a set of images of the same species
X. Let A = {I1, I2, · · · , In} be a set of images of
a species X, we define var(A), the variability of A,
as the average (Euclidean distance), between the
explanation vectors (expl(I)) for each of the images
in A, that is:

var(A) =
2

n(n− 1)

∑
I,J∈A,I ̸=J

∥ expl(I)− expl(J)∥. (2)

Discrepancy: Measures the level of
discrepancy between the identifications made
by the CNN and those made by the taxonomist for
a given species X.

Let A = {I1, I2, · · · , In} be a set of images
of a species X, and let explE(I) and explCNN(I)
be the explanation vectors for image I, generated
from identifications made by the expert and the
CNN, respectively.

We define discr(A), the discrepancy between
the identifications made by the CNN and the
taxonomist for a species X, as the average
(Euclidean) distance, between the explanation
vectors for each of the images in A:

discr(A) =
1

n

∑
I∈A

∥ explCNN(I)− explE(I)∥. (3)

Red Intensity: quantifies the importance of a
pixel in the decision made by the CNN, calculated
from the heat map. Let X = (R,G,B) be a pixel in
image I in RGB, then we define the red intensity of
pixel X as:

RI(X) =
100 ·R

R+G+B
. (4)
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Table 6. Expert and CNN explanation vectors for 50 species

Leaf Margin Apex Main vein Base Complement Secondary veins
Ardisia revoluta_1_1_2 0.53 0.19 0.28 0.76 0.13 0.00
Ardisia revoluta_1_2_2 0.53 0.15 0.29 0.76 0.17 0.00
Ardisia revoluta_1_3_2 0.53 0.15 0.29 0.76 0.17 0
Ardisia revoluta_2_4_2 0.53 0.15 0.29 0.76 0.17 0.00
Ardisia revoluta_X_X_2(11) 0.53 0.19 0.29 0.76 0.135 0.00
Bauhuinia ungulata_2_3_2 0.34 0.86 0.34 0.17 0.00 0.00
Bauhuinia ungulata_2_4_2 0.34 0.86 0.34 0.17 0.00 0.00
Bauhuinia ungulata_X_X_2(1) 0.34 0.86 0.34 0.175 0.00 0.00
Bauhuinia ungulata_X_X_2(9) 0.34 0.86 0.34 0.17 0.00 0.00
Bauhuinia ungulata_X_X_2 0.34 0.86 0.34 0.17 0.00 0.00
Blakea maurofernadeziana_X_X_2(1) 0.18 0.18 0.88 0.18 0.35 0.00
Blakea maurofernadeziana_X_X_2(11) 0.18 0.18 0.88 0.18 0.35 0.00
Blakea maurofernadeziana_X_X_2(2) 0.17 0.086 0.86 0.17 0.43 0.00
Blakea maurofernadeziana_X_X_2(4) 0.17 0.086 0.86 0.17 0.43 0.00
Blakea maurofernadeziana_X_X_2(5) 0.17 0.086 0.866 0.17 0.43 0.00
Brosimum alicastrum_3_2_2 0.30 0.79 0.20 0.30 0.00 0.40
Brosimum alicastrum_X_X_2(12) 0.29 0.77 0.096 0.29 0.00 0.48
Brosimum alicastrum_X_X_2(18) 0.19 0.75 0.094 0.28 0.00 0.56
Brosimum alicastrum_X_X_2(19) 0.30 0.79 0.20 0.30 0.00 0.40
Brosimum alicastrum_X_X_2 0.31 0.72 0.21 0.41 0.00 0.41
Croton draco_1_2_2 0.22 0.33 0.55 0.65 0.11 0.33
Croton draco_2_2_2 0.22 0.33 0.55 0.65 0.11 0.33
Croton draco_X_X_2(14) 0.30 0.32 0.54 0.64 0.021 0.32
Croton draco_X_X_2(3) 0.26 0.32 0.53 0.64 0.021 0.36
Croton draco_X_X_2(5) 0.23 0.32 0.53 0.64 0.021 0.38
Dipteryx panamensis_X_X_2(1) 0.75 0.19 0.19 0.57 0.00 0.19
Dipteryx panamensis_X_X_2(15) 0.75 0.189 0.19 0.57 0.00 0.19
Dipteryx panamensis_X_X_2(6) 0.75 0.19 0.19 0.57 0.00 0.19
Dipteryx panamensis_X_X_2(9) 0.75 0.19 0.19 0.57 0.00 0.19
Dipteryx panamensis_X_X_2 0.75 0.19 0.19 0.57 0.00 0.19
Erythrina poeppigiana_X_X_2(11) 0.62 0.21 0.62 0.41 0.041 0.16
Erythrina poeppigiana_X_X_2(13) 0.61 0.20 0.61 0.41 0.00 0.20
Erythrina poeppigiana_X_X_2(4) 0.62 0.21 0.62 0.41 0.041 0.16
Erythrina poeppigiana_X_X_2(5) 0.62 0.20 0.61 0.41 0.00 0.20
Erythrina poeppigiana_X_X_2(9) 0.62 0.21 0.62 0.41 0.041 0.16
Guazuma ulmifolia_1_3_2 0.23 0.18 0.35 0.88 0.035 0.088
Guazuma ulmifolia_1_4_2 0.22 0.18 0.46 0.83 0.055 0.092
Guazuma ulmifolia_3_1_2 0.26 0.14 0.35 0.88 0.035 0.088
Guazuma ulmifolia_X_X_2(1) 0.26 0.17 0.35 0.88 0.00 0.088
Guazuma ulmifolia_X_X_2(16) 0.26 0.17 0.35 0.88 0.00 0.088
Hura crepitans_1_2_2 0.45 0.23 0.23 0.57 0.23 0.57
Hura crepitans_3_1_2 0.45 0.23 0.23 0.57 0.23 0.57
Hura crepitans_X_X_2(1) 0.62 0.21 0.21 0.51 0.00 0.51
Hura crepitans_X_X_2(16) 0.61 0.14 0.20 0.50 0.00 0.57
Hura crepitans_X_X_2(4) 0.62 0.23 0.21 0.51 0.00 0.51
Hymenaea courbaril_2_1_2 0.68 0.39 0.19 0.58 0.097 0.00
Hymenaea courbaril_2_3_2 0.68 0.39 0.19 0.58 0.097 0.00
Hymenaea courbaril_2_4_2 0.68 0.39 0.19 0.58 0.097 0.00
Hymenaea courbaril_3_1_2 0.68 0.39 0.19 0.58 0.097 0.00
Hymenaea courbaril_3_3_2 0.68 0.39 0.19 0.58 0.097 0.00
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Table 7. CNN explanation vectors for 50 leaf specimens in the CRLEAVES10 dataset

Leaf Margin Apex Main vein Base Complement Secondary veins
Ardisia revoluta_1_1_2.jpg 0.45 0.64 0.39 0.03 0.48 0.00
Ardisia revoluta_1_2_2.jpg 0.44 0.44 0.46 0.46 0.43 0.00
Ardisia revoluta_1_3_2.jpg 0.46 0.32 0.53 0.36 0.53 0.00
Ardisia revoluta_2_4_2.jpg 0.44 0.37 0.49 0.47 0.45 0.00
Ardisia revoluta_X_X_2(11).jpg 0.56 0.17 0.40 0.48 0.52 0.00
Bauhinia ungulata_2_3_2.jpg 0.43 0.48 0.47 0.39 0.46 0.00
Bauhinia ungulata_2_4_2.jpg 0.44 0.48 0.47 0.39 0.46 0.00
Bauhinia ungulata_X_X_2(1).jpg 0.48 0.46 0.39 0.51 0.37 0.00
Bauhinia ungulata_X_X_2(9).jpg 0.48 0.42 0.37 0.55 0.38 0.00
Bauhinia ungulata_X_X_2.jpg 0.54 0.43 0.28 0.57 0.35 0.00
Blakea maurofernandeziana_X_X_2(1).jpg 0.43 0.54 0.44 0.39 0.42 0.00
Blakea maurofernandeziana_X_X_2(11).jpg 0.42 0.57 0.34 0.41 0.32 0.34
Blakea maurofernandeziana_X_X_2(2).jpg 0.44 0.47 0.35 0.48 0.33 0.36
Blakea maurofernandeziana_X_X_2(4).jpg 0.43 0.48 0.44 0.46 0.43 0.00
Blakea maurofernandeziana_X_X_2(5).jpg 0.49 0.49 0.33 0.55 0.33 0.00
Brosimum alicastrum_3_2_2.jpg 0.41 0.50 0.33 0.55 0.32 0.27
Brosimum alicastrum_X_X_2(12).jpg 0.47 0.42 0.32 0.45 0.38 0.39
Brosimum alicastrum_X_X_2(18).jpg 0.47 0.33 0.29 0.56 0.35 0.39
Brosimum alicastrum_X_X_2(19).jpg 0.46 0.41 0.30 0.45 0.45 0.35
Brosimum alicastrum_X_X_2.jpg 0.40 0.51 0.42 0.37 0.38 0.35
Croton draco_1_2_2.jpg 0.41 0.40 0.41 0.42 0.41 0.40
Croton draco_2_2_2.jpg 0.40 0.39 0.42 0.42 0.40 0.42
Croton draco_X_X_2(14).jpg 0.45 0.42 0.34 0.48 0.37 0.38
Croton draco_X_X_2(3).jpg 0.42 0.39 0.40 0.51 0.37 0.33
Croton draco_X_X_2(5).jpg 0.38 0.40 0.47 0.42 0.41 0.37
Dipteryx panamensis_X_X_2(1).jpg 0.40 0.37 0.43 0.35 0.41 0.48
Dipteryx panamensis_X_X_2(15).jpg 0.42 0.38 0.41 0.48 0.40 0.36
Dipteryx panamensis_X_X_2(6).jpg 0.40 0.40 0.43 0.33 0.42 0.46
Dipteryx panamensis_X_X_2(9).jpg 0.41 0.42 0.39 0.40 0.40 0.43
Dipteryx panamensis_X_X_2.jpg 0.42 0.41 0.39 0.44 0.41 0.39
Erythrina poeppigiana_X_X_2(11).jpg 0.43 0.50 0.38 0.47 0.37 0.25
Erythrina poeppigiana_X_X_2(13).jpg 0.49 0.48 0.32 0.52 0.32 0.22
Erythrina poeppigiana_X_X_2(4).jpg 0.41 0.48 0.40 0.49 0.35 0.29
Erythrina poeppigiana_X_X_2(5).jpg 0.46 0.58 0.32 0.39 0.36 0.25
Erythrina poeppigiana_X_X_2(9).jpg 0.40 0.23 0.44 0.57 0.37 0.36
Guazuma ulmifolia_1_3_2.jpg 0.38 0.41 0.43 0.35 0.42 0.45
Guazuma ulmifolia_1_4_2.jpg 0.42 0.39 0.46 0.46 0.40 0.31
Guazuma ulmifolia_3_1_2.jpg 0.37 0.45 0.39 0.35 0.42 0.45
Guazuma ulmifolia_X_X_2(1).jpg 0.41 0.47 0.39 0.39 0.39 0.40
Guazuma ulmifolia_X_X_2(16).jpg 0.47 0.54 0.32 0.41 0.36 0.29
Hura crepitans_1_2_2.jpg 0.41 0.39 0.40 0.37 0.43 0.44
Hura crepitans_3_1_2.jpg 0.27 0.10 0.51 0.38 0.47 0.54
Hura crepitans_X_X_2(1).jpg 0.50 0.45 0.20 0.64 0.26 0.20
Hura crepitans_X_X_2(16).jpg 0.43 0.47 0.36 0.42 0.38 0.37
Hura crepitans_X_X_2(4).jpg 0.50 0.51 0.26 0.46 0.32 0.33
Hymenaea courbaril_2_1_2.jpg 0.47 0.51 0.38 0.42 0.45 0.00
Hymenaea courbaril_2_3_2.jpg 0.46 0.47 0.44 0.43 0.44 0.00
Hymenaea courbaril_2_4_2.jpg 0.45 0.44 0.48 0.40 0.46 0.00
Hymenaea courbaril_3_1_2.jpg 0.41 0.51 0.45 0.38 0.46 0.00
Hymenaea courbaril_3_3_2.jpg 0.45 0.43 0.45 0.46 0.45 0.00
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Fig. 3. CNN training and validation accuracy

Computing the explanation vectors: as
indicated before, for each image, two explanation
vectors are generated. One is explicitly determined
by the expert when they annotate the specimen
image; the other is obtained from the heat maps
and the regions defined by the expert for each
feature. Let Rk be the region annotated by the
expert for feature k. Entry v(k) of the explanation
vector v is obtained by traversing pixel by pixel
through region Rk and counting those pixels x
whose red intensity satisfies RI(x) ≥ α, divided by
A(Rk), the total number of pixels in region Rk, i.e.:

v(k) =
1

A(Rk)

∑
x∈Rk

(RI(x) ≥ α), (5)

where an appropriate value for α should be
determined experimentally. Since the explanation
vectors are at different scales, they were
normalized by dividing each of their entries by their
magnitude. Finally, to calculate the discrepancy
between the criteria used by the taxonomist and
the CNN, Equation 3 was applied to each of the
images in CRLEAVES10.

4 Analysis of Results

Selecting a visual explanation technique. The
LRP technique was chosen to generate the
heat maps.

This decision was based on the criteria of the
expert taxonomists who were part of the working
team. In their unanimous subjective assessment,
LRP produced clearer images then CAM and SM.

Selecting the species for the experiment.
Out of the 255 species in the the CRLEAVES
dataset, the two taxonomists in the working team
selected 63 species, which are listed in Table
5. Only images of the abaxial side of the
leaves were used because, for these species, the
abaxial side was considered more discriminant.
Then, from these 63 species, the following 10
were randomly selected: Ardisia revoluta, Bauhinia
ungulata, Blakea maurofernandeziana, Brosimum
alicastrum, Croton draco, Dipteryx panamensis,
Erythrina poeppigiana, Guazuma ulmifolia, Hura
crepitans, and Hymenaea courbaril. These 10
species were used to carry out activity 6 and the
main experiment described in the section 3.2.

Defining and fine-tuning a CNN. The CNN
used in this research was trained from scratch
for 200 epochs with the 63 selected images of
plant species. It consists of four convolutional
blocks (convolutional layer plus max-pooling layer),
a flatten layer, a dense layer, and a softmax layer
at the top of the network. While the objective of this
research has not been to optimize the performance
of a CNN to identify species of plants in Costa
Rica from leaf images, we achive a top-1 training
accuracy of about 95% and a top-1 validation
accuracy of about 80% as shown in Figure 3.

Designing and implementing a “hot
features” visualizer. The LRP library developed
to generate the heat maps was implemented as
described in [15] and in the tutorial: Implementing
Layer-Wise Relevance Propagation library1. This
tutorial explains how to implement LRP using
Tensorflow and Keras easily and efficiently.
The LRP library enables the creation of heat
maps using the LRP technique and the LRP-αβ
relevance propagation rule. For more details about
its definition and implementation, refer to [3, 15].
As a result, the CNN includes a visual explanation
mechanism based on the LRP technique.

1git.tu-berlin.de/gmontavon/lrp-tutorial
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Table 8. Refinement of discrepancy of explanatory vectors by species

Species CNN Discrepancy Expert

Ardisia revoluta Margin Base 0.62 Base Margin

Bauhinia ungulata Base Apex 0.67 Apex Margin

Blakea maurofernandeziana Apex Base 0.77 Main vein Margin

Brosimum alicastrum Base Apex 0.61 Apex Base

Croton draco Base Main vein 0.46 Base Main vein

Dipteryx panamensis Main vein Apex 0.68 Margin Base

Erythrina poeppigiana Base Apex 0.56 Main vein Margin

Guazuma ulmifolia Apex Margin 0.75 Base Main vein

Hura crepitans Base Margin 0.49 Margin Base

Hymenaea courbaril Apex Margin 0.53 Margin Base

Figure 2 shows the heat maps generated using
the LRP library for the 50 images in CRLEAVES10.
As can be seen, for some species, the apex is more
prominent, while for others, it is the base or even
the secondary veins.

Identifying features for feature maps. The
features defined by both taxonomists are: apex,
base, margin, main vein, secondary veins, and
complement (the leaf surface minus the union
of the regions of the five features). The
first five features are generally key for any
leaf-based identification, not only for species in the
CRLEAVES10 dataset, making it relatively easy to
achieve unanimity.

It is important to note that there a few features
that cannot be characterized by local leaf features
beacause of their global qualitative nature, for
instance, the shape of the leaf (heart-shaped,
sagittate, etc.). This is an inherent limitation to the
approach used in this research.

Annotating leaf images to create feature
maps. The dataset resulting from annotating
the 50 images in CRLEAVES10 was called
CRLEAVES10ANNOTATED. This dataset is
available here2.
2tecnube1-my.sharepoint.com/:f:/g/personal/gfigueroa itcr ac c
r/EoBbynu6o9hGhlMW03hmfOMBX5fdjUuKl01hKIdRM61Jqw
?e=bu1YEh

The 50 explanation vectors (v1, v2, v3, v4, v5,
v6) defined by the expert taxonomist are presented
in Table 6.

Experiment. Once the LRP heat maps
and annotated images were constructed, it
was possible to algorithmically quantify the 50
explanation vectors associated with the decisions
made by the CNN. After some experimentation with
different red intensity threshold values, α = 0.35
was considered a suitable value.

Table 7 presents the 50 explanation vectors
obtained. Consequently, we have an explanation
of the diagnostic features used by the CNN in
the identification process of the specimens in the
CRLEAVES10 dataset. A deeper analysis of the
explanation vectors in Table 7 takes us to address
the following questions: How much intra-specific
variability is present among the CNN explanation
vectors?

How does it compare to the intra-specific
variability among the expert explanation vectors?
Furthermore, for each species, how similar, on
average, are the criteria used by the CNN and the
expert? We used Eucliden distance to calculate
the distance between explanation vectors.

Since the explanation vectors are at different
scales, they were normalized to be compared with
each other.
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Additionally, as their inputs are positive,
the angle θ between the vectors satisfies
θ ∈ [0, π

2 [, therefore:

d(u, v) ∥u− v∥ =

√√√√ n∑
i=1

(
ui

∥u∥
− vi

∥v∥

)2

=

√√√√2− 2

n∑
i=1

uivi
∥u∥∥v∥

=

√
2− 2

u · v
∥u∥∥v∥

=

√
2
√
1− cos(θ) <

√
2.=

(6)

In other words, the distance between
two explanation vectors is upper-bounded by√
2 ≈ 1.41. Table 3 shows the results of applying

Equation 2 to calculate the the intra-specific
variability of the explanation vectors for each
species. As shown in Table 3, the intra-specific
variability of the explanation vectors assigned by
the expert is very low (values very close to zero),
as expected.

On the other hand, we can observe that the
explanation vectors generated from the CNN are
more variable but their values are considerably
closer to zero than to

√
2, indicating that the

relevance values assigned by the CNN to each of
the chosen features are similar among leaves of
the same species.

Note that the explanation vectors obtained by
the CNN for the species Hymenaea courbaril are
the least variable among themselves (intra-specific
variability value very close to zero), which is also
the case for the expert assessment. The species
for which the highest CNN intra-specific variability
was obtained is Hura crepitans, which is also the
one with the highest intra-specific Expert variability.

This high value may be due to the fact that, as
shown in Figure 2, the five images have heat maps
in which sometimes the apex stands out more (row
9, first and second maps from left to right) and
sometimes the secondary veins or other features.
This is confirmed in the explanation vectors for this
species in Table 6.

By applying Equation 3, we calculated the
discrepancy between the explanation vectors
annotated by the expert and those generated from
the CNN. Table 4 shows the results. As can be
observed in Table 4, the discrepancy between the
explanation vectors assigned by the expert and
those generated from CNN is, on average, 0.61.

Given that the maximum experimental value
of discrepancy is 1.41, we can state that both
explanation vectors are similar, leading us to
believe that the CNN, in its identification process,
assigns a relevance similar to that assigned by the
expert to the chosen features.

To refine the level of discrepancy, we can
observe Table 8, which shows, in descending
order, the two most prioritized features, on
average, used for the identification of the indicated
species, obtained from the explanation vectors of
both, the CNN and the expert.

As observed, in 6 out of the 10 species, the
CNN and the expert use at least one prioritized
feature in common. For the remaining 4 species
(highlighted in bold in Table 8), the CNN and
the expert use different prioritized features in
the identification process, and precisely for these
vectors, the discrepancy is high (closer to 1.4,
indicating lower similarity between the vectors).

5 Conclusion and Future Work

As a first step in defining and implementing
explanation components for a CNN, this research
has provided, for the first time, qualitative and
quantitative information about the main features
used by a CNN in the identification of 10 species
of vascular plants from Costa Rica. At the
end of the research, the following products have
been generated:

– A tabular explanation of the diagnostic features
used by the CNN in the identification process of
the specimens in the CRLEAVES10 dataset.

– A graphical explanation (heat map) that uses the
LRP technique for each of the 50 leaf images in
the CRLEAVES10 dataset.
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– Two quantitative measurements of variability in
the identification of specimens of the same
species, for 10 plant species from Costa
Rica, one using the CNN and one using the
expert’s criteria.

– A quantitative measurement of the
discrepancy/similarity between the criteria used
by a taxonomist and a CNN in the identification
of 10 plant species from Costa Rica.

– A workflow to add explainability to a CNN.

– A CNN that identifies 63 plant species from
Costa Rica based on their leaves with a top-1
validation accuracy close to 80%, which can be
used as a benchmark for studying other features
or training it for a larger number of species as the
CRLEAVES dataset grows.

– A relevance region visualizer based on the LRP
technique, which can be integrated into other
CNNs to generate the respective heat maps.

– A parameterized tool that quantifies the red
intensity of each annotated region in images
from CRLEAVESANNOTATED and the heat maps.

– A set of 50 annotated leaf images
(CRLEAVESANNOTATED), with annotated
discriminative features and their respective
relative weights for each feature.

With current techniques, it is not possible
to automatically generalize the results to any
CNN, but it is feasible to do so for a larger
number of species of the Costa Rican flora.
The essential task is to continue expanding the
CRLEAVES dataset and annotating it using the
COCO ANNOTATOR tool. It is important to
keep the feature visualizer up-to-date with libraries
that implement new visualization techniques and
include them in the workflow of future experiments.

Scaling up this work for a larger set of
species and specimens per species requires
streamlining the current workflow. An obvious
current bottleneck is the manual annotation of
leaf images. It would be ideal to develop and
fine-tune an intelligent tool to extract the regions
where each feature is present in the leaf image.
These annotations plus the corresponding heat
map would suffice to automatically compute the
corresponding explanation vector.

The ideas developed in this research could
be applied to other types of biological samples.
For example, the work described in [7] generated
a dataset of wood cut samples for 147 tree
species from Costa Rica. Additionally, a CNN was
developed to identify 75 species for which there are
at least five samples.

It would be very important to conduct similar
experiments to improve the interpretability of that
CNN and to measure intra-specific variability
and discrepancy between the criteria used by
taxonomists and the CNN.
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