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Abstract. Wildlife holds an important role within the 
Amazon biome. However, wildlife identification and 
documentation methods in the Amazonian wilderness 
pose considerable challenges for fauna biology and 
ecology professionals. This complexity arises from the 
demand for specialized expertise and the substantial 
investment of time required. This challenge is 
compounded by the remarkable resemblance between 
various animal species. In this study, we delve into the 
feasibility of diverse iterations of the YOLO (You Only 

Look Once) algorithm in order to detect wildlife species 
in the Peruvian Amazon. Our assessment covers a 
spectrum of YOLO versions, including YOLOv5x6, 
YOLOv5l6, YOLOv7-W6, YOLOv7-E6, YOLOv8I, and 
YOLOv8x. To empower our models, we embarked on a 
training journey using a dataset comprising 653 images 
thoughtfully collected from reputable sources in ecology 
and tourism marketing. This dataset encompasses six 
species: Ara ararauna, Ara chloropterus, Ara macao, 
Opisthocomus hoazin, Pteronura brasiliensis, and 
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Saimiri sciureus. Our efforts show the efficiency of the 
YOLOv5l6 model, which stands out prominently in all 
metrics evaluated. This model achieves a Precision rate 
of 86.1%; Recall of 84.7%, F1-Score measuring 85.39%, 
and mean Average Precision (mAP) of 88.1%. 
Noteworthy is the fact that this model also boasts the 
swiftest training time among its counterparts, with a total 
30.71 minutes. These findings offer promising prospects 
for refining our understanding of Amazonian wildlife 
species and establishing proactive measures to 
safeguard those that face potential vulnerability or 
endangerment. The YOLO algorithm's capabilities 
underscore the confluence of technology and ecological 
conservation, providing optimism for the preservation of 
the Amazon's intricate biodiversity. 

Keywords. Wildlife species, Peruvian Amazon, YOLO, 
object detection, transfer learning. 

1 Introduction 

Amazon biome is one of the main sources of 
biodiversity in the world's ecosystems [1]. Wildlife 
is an important component within its territory [2, 3]. 
While the species list is growing all the time, only a 
fraction of the Amazon’s enormous biodiversity is 
known to science [4, 5]. 

According to estimates only 90-95 per cent of 
mammals, birds and plants are known, only 2-10 
per cent of insects have been described, and only 
2,500 from the approximately 6,000 – 8,000 
amazon fish species have been described [6]. 
Eight countries share responsibility for the 
Amazon, one of them is Peru which is home of 
11.27 per cent of the biome. Peru stands out as 
one of the most biodiverse countries in the world. 

The extensive Amazonian forests cover 62% of 
the Peruvian territory and they are home to 
approximately 50% of the plant species registered 
by the Ministry of Environment-MINAM [7]. This 
remarkable diversity also includes numerous 
wildlife endemic species in the region. 

For example, 115 endemic bird species have 
been identified (representing 6% of the world total), 
109 mammal species (27.5% of the world total), 
185 amphibian species (48.5% of the world total) 
and 59 endemic butterfly species (12.5% of the 
world population) [8]. 

The efforts to conservate and manage fauna in 
the Amazon Biome does not still fill gaps of 
knowledge about tropical fauna [3, 9]. It is needed 

to strength accurate identification and monitoring 
of wildlife through discovering and documentation. 
Tradition-ally the identification is based on different 
biological assessments of biodiversity. 

However, identification and documentation 
methods of wildlife in the Amazon represents a 
considerable challenge for professionals engaged 
in population biology and ecology studies, as it 
involves a high cognitive load and significant time 
consumption [10]. This difficulty is attributed to the 
existence of multiple types of animals that exhibit 
high similarity to each other, making difficult their 
precise classification [11]. 

Over the past few decades, automated species 
identification has brought about a revolution in 
conventional methodologies [12]. Recent research 
has demonstrated the emergent use of artificial 
intelligence (AI) and more specifically computer 
vision in the identification and monitoring 
biodiversity species, is the case of MobileNetV3 a 
deep learning model that were successfully used 
enabling faster and more efficient analysis at 
identifying mangrove species [13]. 

The same technology has been used to detect 
plant species [14]. Similar technologies have 
contributed to detect camels on roads [15], as well 
as to identify rodent species [16]. Another example 
is the use of AlexNet model to identify ringed seal 
of the Saimaa, according to results the experiment 
get an accuracy of 91.2% in the individual 
identification of species [17]. 

In the same line, [18] proposed a framework for 
animal’s recognition which consisting of 2 
Convolutional neural network (CNN) based models 
for image classification, results show values close 
to 90% in the identification of 3 most common 
animals. [19] proposed the application of a 3-
branch VGG CNN in parallel with the aim of 
recognizing wild animal species. CNN has 
contributed to recognize wild boars [20] 
toads/frogs, lizards and snakes [21]. 

The transfer learning architecture called 
YOLOv3 has enabled the wildlife monitoring [11]. 
The advantages offered by CNN’s applications in 
image recognition have been applied for different 
purposes [22, 23, 24], constructed the wildlife 
dataset of Northeast China Tiger and Leopard 
National Park to identify and process images 
captured with camera traps. Using three deep 
learning object detection models YOLOv5, FCOS 
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and Cascade R-CNN, they found an average 
Accuracy of 97.9%, along with an approximate 
mAP50 of 81.2% for all three models. Along the 
same lines, [25] used a transfer learning approach 
to detect the presence of four endangered 
mammals in the forests of Negros Island (Viverra 
tangalunga, Prionailurus javanensis sumatranus, 
Rusa alfredi and Sus cebifron). 

The authors used the YOLOv5 model as a 
detection method. The trained model yielded a 
mean mAP50 of 91%. [26] proposed the 

identification of snake, lizard and toad/frog species 
from camera trap images using CNN. The results 
obtained by accuracy were 60% in the validation 
stage. [27] proposed a system to detect animals on 
the road and avoid accidents. 

To do this, the animals were classified into 
groups of capybaras and donkeys. The authors 
used two variants of pre-trained CNN models: 
Yolov4 and Yolov4-tiny. 

The results showed an accuracy of 84.87% and 
79.87% for Yolov4 and Yolov4-tiny, respectively. 

 
Fig. 1. General architecture of YOLO object detectors 

 
Fig. 2. Methodology used for the detection of wildlife species in the Peruvian Amazon 
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As shown, there are important advances at animal 
detection using deep learning technologies. 

However, they have not been applied to detect 
wildlife species in the Peruvian part of the Amazon 
biome yet. The main objective of this study was to 
evaluate the application of the YOLO algorithm in 
its versions YOLOv5x6, YOLOv5l6, YOLOv7-W6, 
YOLOv7-E6, YOLOv8I and YOLOv8x in the 
detection of wildlife species in the 
Peruvian Amazon. 

To achieve this, we have evaluated the 
aforementioned models using the following 
metrics: Precision, Recall, F1-Score and mAP50, 
applied to six species: Ara ararauna, Ara 
chloropterus, Ara macao, Opisthocomus hoazin, 
Pteronura brasiliensis and Saimiri sciureus. 

In addition, as part of our contribution to the 
scientific community, we provide a labelled dataset 
for classification and/or detection of these species. 
We have structured the remaining contents of the 
paper as follows: In Section 2, the methodology 
adopted to conduct the experiments is presented 
in detail. 

Results and discussions are addressed in 
Section 3, while our conclusions are presented in 
Section 4. 

2 Material and Methods 

We performed our experiments using the machine 
learning technique called transfer learning, which 
consists of using previously learned knowledge 
trained on large volumes of public images [28, 29]. 
Specifically, we have used the object detection 
algorithm in images and video called YOLO (You 
Only Look Once) in its versions YOLO-v5 [30], 
YOLO-v7 [31] and YOLO-v8 [32]. 

We trained and evaluated our models on a 
computer with these characteristics: AMD A12-
9700P RADEON R7, 10 COMPUTE CORES 
4C+6G at 2.50 GHz, 12 GB RAM, Windows 10 
Home 64-bit operating system and x64 processor. 

The development environment used was 
Google Colab with GPU accelerator type A100. 
Figure 1 shows the general architecture of YOLO, 
taking as reference the study presented by [33, 
34]. The main components of YOLO are 
listed below: 

– Backbone: The backbone is usually a 
convolutional neural network that extracts 
useful features from the input image [33]. 

– Neck: The neural network neck is used to 
extract features from images at different 
stages of the backbone. YOLOv4 make use 
of Spatial Pyramid Pooling (SPP) [35] and 
Path Aggregation Network (PAN) [36]. 

– Head: Is the final component of the object 
detector; this component is responsible for 
making the predictions from the features 
provided by the spine and neck [33]. 

In Figure 2, we show the methodology used for 
the detection of wildlife species in the Peruvian 
Amazon using transfer learning. It is composed of 
four phases, they are: Obtain images, images 
preprocessing, training models and testing and 
getting metrics. Each step of the proposed 
methodology is detailed below: 

Table 1. Number of images per wildlife species 

Species Quantity 

Ara ararauna 232 

Ara chloropterus 50 

Ara Macao 52 

Opisthocomus hoazin 100 

Pteronura brasiliensis 110 

Saimiri sciureus 109 

Total 653 

 

Fig. 3. Image labeling process in the labeling tool 

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 325–340
doi: 10.13053/CyS-28-2-4715

Luis Alberto Holgado-Apaza, Ruth Nataly Aragon-Navarrete, Coren Luhana Ancco-Calloapaza, et al.328

ISSN 2007-9737



2.1 Image Obtaining 

At this stage, we have searched for wild animals’ 
images by their scientific name. The images were 
collected from websites related to ecology studies 
and tourism marketing; such as Rainforest 

expeditions [37], Go2peru [38], Ararauna 
Tambopata [39]. 

Then, in order to download the images with 
high resolution, we have used the Fatkun Batch 
Download Image extension in its version 5.7.7 by 
the Google Chrome [40], as it was used in previous 

 
Fig. 4. Dataset division for learning transfer process 

 

Fig. 5. Images distribution by classes in datasets training, validation and test 
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studies [41]. Finally, we have selected and filter 
manually only the images in jpg format. 

2.2 Image Processing 

This stage encompassed the process of image 
curation, organization and labeling. The curation of 
images was made according to the species to be 
identified, since the search yielded images related 
to the keyword. In Table 1, It is shown the total 
summary of images by species in the first dataset 
after selection. 

We have performed the images labeling 
manually. For this purpose, we have used the 
labelImg tool [42]. In Figure 3, we show an 
example of this labeling task in the specie Saimiri 
sciureus. As a result of this process, a textual file 
is generated and it fulfills the mission to designate 
each image. 

Internally this file encompasses both the class 
to which the image belongs and the coordinates 
delimiting the bounding boxes containing the 
image. Finally, we have divided the dataset 
as follow: 

We divided the dataset into 85% (556 images) 
for training, 10% (65 images) for validation and 5% 
(32 images) for testing. Figure 4 shows this 
division graphically. 

In Figure 5 we show a summary of the 
distribution of classes in the datasets used to train, 

validate and test the species detection models 
based on the YOLO architecture. 

2.3 Trining Model 

During this phase we conducted out our 
experiments with the object detection algorithm 
YOLO in its versions: YOLOv5x6, YOLOv5l6, 
YOLOv7-W6, YOLOv7-E6, YOLOv8I and 
YOLOv8x. Within the file called 
‘custom_data.yaml’ we have defined the 
configuration of the path to the training, validation 
and test images. 

In the same file, we have additionally 
configurated the classes as follow: Scientific 
names: [Ara_ararauna, Ara_chloropterus, 
Ara_macao, Opisthocomus_hoazin, 
Pteronura_brasiliensis, Saimiri_sciureus]. 

2.4 Testing and Getting Metrics 

We performed our tests with a video adapted from 
the public videos: "Vive como sueñas | Reserva 
Nacional Tambopata" from the Ministry of 
Environment [43, 44] and the video "Manu & 
Tambopata'' from the Antara-Peru travel agency 
[45]. Figure 6 and Figure 7, respectively, show a 
screenshot of these videos. 

Table 2. Confusion matrix for three classes 

Prediction 

True A B C FN 

A n�� n�� n�� n�� + n�� 

B n�� n�� n�� n�� + n�� 

C n�� n�� n�� n�� + n�� 

FP n�� + n�� n�� + n�� n�� + n��  

Table 3. Configuration and training times for models 

Model Epochs Batch Input (resolution) Training time in minutes 

YOLOv5x6 70 16 640x640 57.94 
YOLOv5l6 70 16 640x640 30.71 

YOLOv7-W6 70 16 640x640 57.48 
YOLOv7-E6 70 16 640x640 60.36 

YOLOv8l 70 16 640x640 37.14 
YOLOv8x 70 16 640x640 62.20 

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 325–340
doi: 10.13053/CyS-28-2-4715

Luis Alberto Holgado-Apaza, Ruth Nataly Aragon-Navarrete, Coren Luhana Ancco-Calloapaza, et al.330

ISSN 2007-9737



We have used the metrics: Precision, Recall, 
F1-Score and Mean Average Precision (mAP), and 
additionally the confusion matrix in order to 
evaluate the performance of the models. 
Subsequently we proceed to detail each of these 
metrics: Confusion matrix: It is an ���, dimension 
table where n represents the number of classes or 
objects to be detected. 

This metric allows to evaluate the performance 
of a classification algorithm by counting the hits 
and mistakes in each one of the model classes. A 
confusion matrix for three classes is observed in 
Table 2, which can be extrapolated to object 
detection and classification problems with 
n classes. 

where: 

FN represents false negatives. 

FP represents false positives. 

��� represents the true positives (TP) for class A. 

��� represents the true positives (TP) for class B. 

��� represents the true positives (TP) for class C. 

The true negatives (TN) for class: 
A=��� + ��� + ��� + ���. 
The true negatives (TN) for class: 
B=��� + ��� + ��� + ���. 
The true negatives (TN) for class: 
C=��� + ��� + ��� + ���. 

Precision: This metric, also known as positive 
predictive value (PPV) indicates the proportion of 
cases correctly identified as belonging to a specific 
class (e.g., class C) among all cases where the 
classifier claims to belong to that class. 

In other words, accuracy answers the question: 
Considering that the classifier predicts that a 
sample belongs to class C, what is the probability 
that the sample actually belongs to class C? [46, 
47]. Equation 1 illustrates the calculation of 
this metric: 

Precision=
TP

TP+FP
, (1) 

where: 

TP=True Positive. 

FP=False Positive. 

Recall: This metric, is also referred to as 
Sensitivity or True Positive Rate (TPR) measures 
the ratio of positive correctly identified positive 
cases (for our case study it represents the species 
to be identified) by the algorithm [48] Equation 2 
shows the formula for calculating this metric: 

Recall=
TP

TP+FN
. (2) 

F1-Score: It is defined as a harmonic mean of 
precision and recall. The F1 score reaches its best 
value at 1 and its worst value at 0. Equation 3 
shows the formula for calculating this metric: 

F1 � 2 ∗ ��������� ∗ ������
��������� + ������ . (3) 

Average Precision (AP): This metric 
represents the relationship between precision and 
recall at different confidence thresholds, in addition 
to quantifying the ability of the detection model to 
discriminate between positive and negative 
classes. It is calculated from the Precision-Recall 
curve (PR Curve). Its value varies between 0 and 
1, where an AP of 1 indicates perfect detection and 
AP of 0 indicates random detection [49, 51]. 

 

Fig. 6. Screenshot of video: "Vive como sueñas  
Reserva Nacional Tambopata" 

 

Fig. 7. Screenshot of video: "Manu and Tambopata” 
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The mathematical operation for this calculation 
is shown in Equation 4: 

��� � � ���������
�

�
,  (4) 

where P and R refer to the precision and recall of 
the detection model that we detail in Equations (1) 
and (2), respectively. Mean average precision 
(mAP): We have calculated this metric by 
averaging the Average Precision (AP) values for all 
classes present in the dataset. 

Its value fluctuates between o and 1, where 1 
indicates perfect performance, i.e., all detections 
are correct and there are no false positives or false 

negatives. In Equation 5 we show the formula for 
the calculation of this metric:  

!�� � 1
�  " ���

#

�$�
. (5) 

3 Results and Discussions 

Table 3, shows the configurations we have made 
for each YOLO version we used within our 
experimental framework, along with their 
corresponding training duration measured in 
minutes. Our selection process adhered to the 
guidelines outlined in the official documentation. 

 
Fig. 8. Evaluation and performing metrics of the models during training. (a) YOLOv5x6 model, (b) YOLOv5l6 model, 
(c) YOLOv7-W6 model, (d) YOLOv7-E6 model, (e) YOLOv8l model and (f) YOLOv8x model 
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According to this, we have chosen the two best 
pre-trained models per version [52]– [55]. We have 
made a particular exception for YOLOv7 because 
the YOLOv7-D6 and YOLOv7-E6E versions, which 
have a slightly better AP value, required a high 
computational cost for training, so we opted to use 
the YOLOv7-W6 and YOLOv7-E6 versions. 

Figure 8 presents the metrics for evaluating and 
monitoring of the selected model’s performance 
during training. The metrics are focused on the 
prediction accuracy of the object bounding boxes 
(box_loss) coordinates, error in the prediction of 
the classes of the detected objects (cls_loss), 
precision and recall. 

It is noted that the YOLOv5 (Figure 8a and 8b) 
and YOLOv8 (Figure 8e and 8f) models exhibit 
remarkable stability and out-standing performance 
in the task of accurate bounding box localization. 
These models demonstrate a consistent tendency 
to reduce the loss associated with accuracy, which 
holds important relevance in image object 
detection applications. 

Specifically, in our domain study related to 
wildlife species identification, the results obtained 
by YOLOv5 and YOLOv8 show a superior ability to 
accurately localize the bounding boxes of the 
interest objects. 

Moreover, during the validation stage, it is 
observed that these models maintain their stability, 
which confirms their robustness and their potential 
for practical applications in the field of 
computer vision. 

With regard to the "cls_loss" metric, which 
reflects the discrepancy between model’s 
classification predictions and the actual labels of 
the object classes, it is graphically observed in 
Figure 8a and 8b that the YOLOv5 model manages 
to efficiently reduce this value down to epoch 50. 

This suggests that as the model is trained its 
performance is better in the classification accuracy 
of wildlife species in the Peruvian Amazon. 

Figure 9 shows the normalized confusion 
matrices during the training phase for the models 
utilized in our experiments. AA corresponds Ara 

 
Fig. 9. Standard confusion matrices. (a) YOLOv5x6 model, (b) YOLOv5l6 model, (c) YOLOv7-W6 model, (d) YOLOv7-
E6 model, (e) YOLOv8I model and (f) YOLOv8x model 
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ararauna species; AC, Ara cholopterus; AM, Ara 
macau; OH, Opisthocomus hoazin; PB, Pteronura 
brasiliensis and SS; Saimiri sciureus. 

In this graphic it is also observed that YOLOv8l 
y YOLOv5l6 models attain the highest values along 
the main diagonal. This diagonal represents 

instances in which the predicted labels by the 
aforementioned models align with the actual labels 
and suggests that in our dataset of Peruvian 
Amazon wildlife, the YOLOv8l and YOLOv5l6 
models effectively identify the six species studied. 
Table 4 presents the results of the obtained metrics 

Table 4. Results obtained per evaluation metric 

Model Class Precision Recall F1-Score mAP50 

YOLOv5x6 

All 0.822 0.787 0.804 0.839 
Ara_ararauna 0.842 0.786 0.813 0.857 
Ara_chloropterus 0.743 0.760 0.751 0.790 
Ara_macao 0.848 0.778 0.811 0.852 
Opisthocomus_hoazin 0.819 0.733 0.774 0.747 
Pteronura_brasiliensis 0.812 0.763 0.787 0.812 
Saimiri_sciureus 0.870 0.900 0.885 0.978 

YOLOv5l6 

All 0.861 0.847 0.854 0.881 
Ara_ararauna 0.842 0.857 0.849 0.867 
Ara_chloropterus 0.727 0.745 0.736 0.816 
Ara_macao 0.781 0.722 0.750 0.759 
Opisthocomus_hoazin 0.864 0.849 0.856 0.871 
Pteronura_brasiliensis 0.951 0.941 0.946 0.980 
Saimiri_sciureus 1.000 0.967 0.983 0.995 

YOLOv7-W6 

All 0.371 0.378 0.374 0.327 
Ara_ararauna 0.326 0.571 0.415 0.514 
Ara_chloropterus 0.373 0.480 0.420 0.349 
Ara_macao 0.080 0.218 0.117 0.065 
Opisthocomus_hoazin 0.240 0.267 0.253 0.225 
Pteronura_brasiliensis 0.493 0.229 0.313 0.327 
Saimiri_sciureus 0.714 0.500 0.588 0.483 

YOLOv7-E6 

All 0.776 0.739 0.757 0.808 
Ara_ararauna 0.851 0.821 0.836 0.864 
Ara_chloropterus 0.700 0.779 0.737 0.765 
Ara_macao 0.753 0.722 0.737 0.792 
Opisthocomus_hoazin 0.832 0.662 0.737 0.791 
Pteronura_brasiliensis 0.613 0.647 0.630 0.681 
Saimiri_sciureus 0.909 0.800 0.851 0.952 

YOLOv8I 

All 0.743 0.806 0.773 0.817 
Ara_ararauna 0.828 0.893 0.859 0.910 
Ara_chloropterus 0.604 0.720 0.657 0.645 
Ara_macao 0.736 0.722 0.729 0.732 
Opisthocomus_hoazin 0.737 0.733 0.735 0.823 
Pteronura_brasiliensis 0.654 0.891 0.754 0.863 
Saimiri_sciureus 0.897 0.877 0.887 0.930 

YOLOv8x 

All 0.819 0.745 0.780 0.790 
Ara_ararauna 0.843 0.714 0.773 0.836 
Ara_chloropterus 0.711 0.624 0.665 0.698 
Ara_macao 0.820 0.758 0.788 0.795 
Opisthocomus_hoazin 0.784 0.726 0.754 0.694 
Pteronura_brasiliensis 0.856 0.765 0.808 0.820 
Saimiri_sciureus 0.898 0.885 0.891 0.898 
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for each model in our experiments in detection of 
the six Peruvian Amazon wildlife species. The best 
values per species and metric are highlighted. 

It is important to stand out that the YOLOv5I6 
model has demonstrated an outstanding 
performance by obtaining the highest values of 
Presicion, Recall, F1-Score and mAP50 for three 
of the six species analyzed: Opistho-comus 
hoazin, Pteronura brasiliensis and 
Saimiri sciureus. 

The reference model demonstrated remarkable 
performance across evaluated metrics. It achieved 
a Precision rate of 86.4%, Recall of 84.9%, and an 
F1-Score of 85.6%, and a mAP50 of 87.1% for the 
first specie. 

For the second one, the model exhibited 
exceptional Precision rate of 95.1%, paired with a 
Recall of 94.1%, an F1-Score of 94.6%, and an 
mAP50 of 98.0%. 

The third specie yielded unprecedented results, 
attaining a perfect Precision of 100%, while 
sustaining a Recall of 96.7%, contributing to an 
impressive F1-Score of 98.3%. Remarkably, the 
mAP50 reached an astounding 99.5%. It's worth 

noting that this model consistently outperforms 
others, particularly evident in its remarkable 
mAP50 of 81.6% for the Ara chloropterus species. 

Summarizing, our experiments have evidenced 
that the YOLOv5I6 model proves highly effective in 
specific species detection and it is notably 
excelling in the cases of Opisthocomus hoazin, 
Pteronura brasiliensis and Saimiri sciureus, such 
us in Ara chloropterus specie registering the 
highest mAP50 value. 

On the other hand, the YOLOv5x6 model has 
also yielded remarkable results, particularly for the 
Ara macao species, in addition to obtaining higher 
values in the precision and F1 score metrics for Ara 
chloropterus. In Figure 10, we present a visual 
summary of the evaluated metrics for the six 
analyzed models. Our experiments highlight that 
the YOLOv5I6 model achieves the highest values 
in all of the evaluated metrics with a Precision rate 
of 86.1%, a recall of 84.7%, an F1-Score of 85.39% 
and an mAP50 of 88.1%. 

Attained values are closely trailed by those 
reported by the YOLOv5x6 model. Notably, the 
overall averages of the metrics used in this study 

 

Fig. 10. Overview of the metrics for the models analyzed 
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firmly indicate the YOLOv5I model as the optimal 
choice for our specific case. 

These findings resonate with the conclusions 
drawn by [24], who explored animal detection and 
classification through camera trap images. Their 
evaluation of YOLOv5, FCOS, and Cascade_R-
CNN_HRNet32 models yielded an impressive 
average Precision of 97.9%, along with an 
approximate mAP50 of 81.2% across all models. 

Likewise, [25] introduced a framework for 
detecting four endangered mammal species 
Viverra tangalunga, Prionailurus javanensis 
sumatranus, Rusa alfredi, and Sus cebifrons in the 
forests of Negros Island using the YOLOv5 model. 

Their effort resulted in an average mAP50 of 
91% and a commendable Precision of 91%. We 
posit that the disparities in the metric values 
observed are attributed to the size discrepancy 
between the species examined in our research and 
those in the referenced studies. 

Specifically, the species within our study 
context are comparably smaller than those 
encompassed in the aforementioned research. 
Our findings hold high significance for applications 
in wildlife monitoring and conservation. 

They underscore the effectiveness of the 
YOLOv5I6 model in detecting wildlife species 
within the expanse of the Peruvian Amazon. 
Furthermore, these outcomes establish robust 
basis for forthcoming research endeavors and 

initiatives aimed at safeguarding the biodiversity of 
Amazonian regions. 

Figure 11 provides an enlightening overview of 
numerical results of confidence in bounding boxes 
in the detection of wildlife species in the Peruvian 
Amazon. These results are screenshot captures 
obtained from the execution of our models on a 
video file in mp4 format (minute 1:00), derived from 
the videos "Vive como sueñas | Reserva Nacional 
Tambopata" [56] and "Manu & Tambopata" [57]. 

It is noteworthy that the YOLOv7-E6 model is 
notable for its ability to identify the highest number 
of species in the video under analysis. However, a 
more detailed evaluation of the confidence 
associated with the object bounding boxes yields 
more accurate data. 

We have observed that the YOLOv5I6 (b) 
model achieves a confidence of 83% for the 
Opisthocomus hoazin species, which represents 
the highest figure within this specific category. 
Concerning the detection of Ara arauna and 
Saimiri sciureus species, confidence levels of 90% 
and 75% are attained respectively. 

It is worth noting that these values are 
remarkably close to those obtained by the 
YOLOv5x6 version. At the captured moment 
depicted in the figure, it is evident that both the 
YOLOv5I6 and YOLOv5x6 models failed to identify 
the Ara macao species. 

 
Fig. 11. Detection outcomes with confidence values within bounding boxes for models. (a) YOLOv5x6, (b) YOLOv5l6, 
(c) YOLOv7-W6, (d) YOLOv7-E6, (e) YOLOv8l and (f) YOLOv8x 
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However, it is important to note that the 
YOLOv7-E6, YOLOv8I and YOLOv8x models 
successfully detected this species at the same 
minute of capture. These findings provide a visual 
and tangible perspective on how the 
models perform in wildlife detection in the 
Peruvian Amazon. 

These observations are crucial for 
understanding the applicability of the models in 
real world situations and highlight the significance 
of prediction confidence, as well as the selection of 
appropriate models based on detection objectives. 

4 Conclusions 

In this study we comprehensively assess the 
effectiveness of the YOLO algorithm in its versions 
YOLOv5x6, YOLOv5l6, YOLOv7-W6, YOLOv7-
E6, YOLOv8I, and YOLOv8x. 

Our evaluation centers on their suitability for 
detecting six wildlife species within the Peruvian 
Amazon, namely: Ara ararauna, Ara chloropterus, 
Ara macao, Opisthocomus hoazin, Pteronura 
brasiliensis, and Saimiri sciureus. 

To build a robust foundation for our analysis, we 
curated a specialized dataset by sourcing images 
from ecological and tourism outlets, including 
Rainforest Expeditions, Go2Peru, and Ararauna 
Tambopata. The meticulous curation process, 
executed under the guidance of a 
wildlife specialist. 

Our findings prominently showcase the 
prowess of the YOLOv5l6 model, which exhibits 
exceptional performance across all 
evaluated metrics. Notably, it achieves an 
impressive accuracy of 86.1%, a recall rate of 
84.7%, an F1-Score of 85.39%, and a mean 
Average Precision (mAP) of 88.1%. 

Remarkably, this model also boasts the 
shortest training duration at a mere 30.71 minutes 
among all models scrutinized. Furthermore, our 
experimental outcomes reveal a striking similarity 
between the achievements of the YOLOv5l6 model 
and those of the YOLOv5x6 model. 

This convergence of results underscores the 
consistency and reliability of our evaluation 

                                                      
1github.com/cheshire21/wild_species_detection_cnn 
2 www.youtube.com/@luisalbertoholgadoapaza919/videos 

methodology. These outcomes stand as promising 
and auspicious strides forward in fortifying 
initiatives aimed at identifying Amazonian wildlife 
species and vigilantly monitoring those that could 
potentially slip into states of vulnerability 
or endangerment. 

By showcasing the potential of advanced 
algorithms, we not only demonstrate the power of 
technology but also emphasize the significance of 
collective efforts in safeguarding the rich 
biodiversity of the Amazon rainforest. 

Data Availability Statement: We make our 
dataset and source code available to the scientific 
community at the following e-mail address1 
Additionally, you can watch the video used for the 
tests. There are also 6 videos that were generated 
for each model in the validation stage, these videos 
show the bounding boxes and their respective 
confidence value2. 
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