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Abstract. Hyperspectral images have been used for 
several years, since the information they provide is very 
useful in many areas of science. The present work 
focuses on the visualization of hyperspectral images of 
the visible range in the RGB color space. The images 
were obtained using a hyperspectral imaging system 
(HIS) that was built in the laboratory and a monochrome 
image sensor was used to capture the images. The 
visualization process was achieved by means of an 
algorithm programmed in MATLAB for the coloration of 
the monochrome images and the comparison of the 
colored images with images captured in the same 
wavelengths with an RGB sensor was carried out. 

Keywords. MATLAB, RGB, monochrome imaging, 
Imaging System, hyperspectral imaging. 

1 Introduction 

The popularity of hyperspectral imaging has 
increased in recent years, as it is very useful in 
many scientific fields, for example, remote sensing 
[20], agriculture [13], military applications [18], 
medicine [5], food [14], etc. Hyperspectral images 
are a map of reflectance [3] of different 
wavelengths, from either an object or scene, 
consecutively captured within a specified range of 
the electromagnetic spectrum. Hyperspectral 

imaging generates a hyperspectral data cube 
where the spectral information represents a third 
dimension (λ) of a two-dimensional spatial image 
(x, y) [17]. 

The main characteristic of hyperspectral 
images is that they allow the recording of unique 
spectral signatures, so they can be used by a 
classifier capable of recognizing an object's 
physical and chemical properties [16]. 

Hyperspectral imaging systems typically work 
with monochrome image sensors, resulting in 
grayscale images that contain the number of 
photons coming from the object [8]. Image 
colorization consists of adding color attributes 
to grayscale images and it is already a classic 
problem due to the loss of color information [21]. 

2 Related Work 

Various techniques for adding color to grayscale 
images are reported in the literature. One of the 
most used techniques is based on scribbling the 
colors you want to see in the image [12, 7, 23, 10, 
9, 6, 19]. 

Another method of colorizing grayscale image 
is segmentation, this technique helps to separate 
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certain regions of the image and thus add several 
colors [4, 22, 15]. 

There are many other methods for adding color 
to grayscale images; some are based on using 
example images to pick up the colors [2, 1]; others 
perform histogram regression to achieve color 
mapping [11]. In recent years, work has been done 
on simpler and more optimized algorithms using 
embedded systems such as FPGAs for hardware 
image processing and colorization [24] 

3 Methodology 

3.1 Hyperspectral Imaging System 

The hyperspectral imaging system (HIS) used (Fig. 
1) consists of a halogen lamp as a point source of 
light, a light collimating optical element, an optical 
lens array, 2 diaphragms, a diffraction grating, 
sensor image, an aluminum plate and a NEMA17 
stepper motor. 

The halogen lamp is encapsulated in a cube 
made of shell paper, lined with aluminum foil on 
the inside and sealed on the outside to best 
concentrate the light from the lamp. 

The aluminum plate has a thickness of 3mm, a 
width of 10cm and a total length of 40cm. This plate 
has holes that allow the fastening of laboratory 
elements. In the upper part, the image sensor, a 
diaphragm and a lens are coupled by means of 
rods and laboratory bases, the latter are necessary 
to form the image of the diffraction grating. At 
the bottom and at one of the ends, the stepper 

motor is coupled, which allows the plate an angular 
displacement necessary to capture images from 
the diffraction grating. 

3.2 HIS Working 

When the halogen lamp is turned on, light escapes 
from the cube and enters the light collimator 
element. Once the light has been collimated, it is 
passed through a diaphragm that allows you to 
control the amount of light that will reach the object. 

Once the light is adequate, it will hit the object 
of study, which will cause a part of the light to be 
absorbed by the object, while another part will be 
transmitted through the object. 

The light coming from the object is passed 
through an arrangement of optical lenses, which 
we have called ‘telescope’, with which a scaling of 
the image coming from the object is achieved. 

When the image has passed through the array 
of optical lenses, through the diffraction grating, 
which causes each of the light rays that form the 
image of the object to be diffracted into its different 
frequencies of the visible electromagnetic 
spectrum. The diffracted light can be observed 
both on the right side of the zero order, known as 
order 1, and on the left side of the zero order, known 
as -1 order. 

Each one of the three orders (-1,0,1) of the HIS 
can be detected by the image sensor, thanks to the 
fact that the aluminum plate has a NEMA17 
stepper motor coupled with a wheel, which allows 
an angular scanning motion around the 
diffraction grating. 

 
Fig. 1. Hyperspectral imaging system 
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The stepper motor is configured to work at 
half steps (∆S = 0.9°) and is controlled with a 
PIC16F877A microcontroller programmed in C 
language and an A4988 integrated circuit as power 
controller for the motor. 

Finally, each wavelength diffracted by the 
grating can be found with the following equation: 

𝜆 = (1𝑥10ି) sin 𝜃, (1) 

where λ is the diffracted wavelength and θ is the 
angle of maximum intensity of the 
diffracted wavelength. 

3.3 Image Capture 

Once the HIS is ready to work, the images 
of each of the wavelengths coming from the 
diffraction grating were captured. Image capture 
was performed twice. The first image capture was 
made using a commercial RGB image sensor 
(CANON camera), this to have a color reference 
for each of the wavelengths that make up the 
hyperspectral image cube. 

The second image capture was performed 
using a laboratory monochrome image sensor 
(ThorLabs camera). These images are the ones 
that will be used for hyperspectral analysis 
and visualization. 

3.4 HIS Characterization and Resolution 

As can be seen in Fig. 2, the HIS with the RGB 
sensor can detect between the wavelengths 
λ=400nm and λ=670nm. While with the 

monochrome sensor it is capable of detecting 
wavelengths between λ=400nm and λ=730nm. 

The total number of images captured in the 
range described above was 400 images with the 
RGB sensor and 500 images with the monochrome 
sensor. This difference in the total number of 
images captured is because the monochrome 
sensor is more sensitive than the RGB sensor. 

Knowing the value of the range of detected 
wavelengths and the total number of captured 
images, we can determine the resolving power of 
the HIS as follows: 

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  
𝑤𝑎𝑣𝑒𝑙𝑒𝑛𝑔𝑡ℎ 𝑟𝑎𝑛𝑔𝑒

𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 𝑖𝑚𝑎𝑔𝑒𝑠
.  (2) 

Substituting values into the equation 2 we get: 

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =  
270 𝑛𝑚

400 𝑖𝑚𝑎𝑔𝑒𝑠
= 0675

𝑛𝑚

𝑖𝑚𝑎𝑔𝑒
.  (3) 

An OCEAN OPTICS brand spectrophotometer 
was used for the characterization of the HIS and to 
obtain the spectral signature of the halogen lamp. 

3.5 Image Processing 

The set of captured images will be called 
hyperspectral data cube from now on. 

Once the information from the hyperspectral 
data cubes (RGB cube and monochrome cube) 
has been obtained, the information analysis was 
carried out with the help of MATLAB software. 

Because the original spatial dimension of RGB 
images is too large, these dimensions were first 
cropped to reduce digital processing work. For this, 
a region of interest (ROI) was selected, which only 

 

Fig. 2. HIS resolution 
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contains the useful information to carry out 
the analysis. 

Once the ROI of the RGB images has been 
selected, the maximum intensity value of the pixels 
that make up the ROI was obtained. As can be 
seen in fig. 4, the distribution of RGB colors in 
each wavelength corresponds to what is expected 
according to the electromagnetic spectrum in the 
visible range. 

It also allows us to know the intensity value in 
RGB that must be represented in the visualization 
of the monochrome hyperspectral cube. 

The analysis of the hyperspectral cube of 
monochrome data was also carried out, since it 
is necessary to know the spatial information 
contained in each image. 

The monochrome analysis revealed that not 
only the areas with the highest level of intensity 
contain the information, but also that the areas in 
black also have an intensity value, albeit at a very 
low level. This is important as these images are the 
ones that will be used for colorization and 

visualization. The maximum intensity values of 
each image were obtained as well as the average 
of these values. 

The spatial dimensions of the monochrome 
images are adequate for digital processing, so it 
was decided not to modify their original size. 

3.6 Detection and Masking 

As previously mentioned, the monochrome 
information is not limited to the area with the 
most light intensity, but information exists in all the 
pixels that make up the image. It is for this reason 
that a binary mask (Fig. 5j) was fabricated to 
limit the color mapping processing to only the 
region containing the object information. 

The process to obtain the binary mask is 
as follows: 

1. The information of the original image is 
obtained (Fig. 5a). 

 

Fig. 3. ROI selection 

 

Fig. 4. Maximum intensity per RGB channel 
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2. The search is made for the high frequencies 
that the image contains, these frequencies 
are found at the edges of the image, 
resulting in edge detection (Fig. 5b). 

3. The data in Fig. 5b is complemented, that 
is, white becomes black and black becomes 
white, thus obtaining Fig. 5c. 

4. To obtain Fig. 5d, we apply image edge 
detection again, but with the difference that 
the threshold value for detection is less than 
the one applied in step 2. 

5. Fig. 5e is the result of applying the 
multiplication of the data of Fig. 5c with the 
data of Fig. 5d. 

6. A “filling” of the missing information is 
applied to the edges obtained in Fig. 5e, 
thus obtaining Fig. 5f. 

7. To the image information of FIG. 5f, a 
complement is applied to the data resulting 
in   Fig. 5h. 

8. Fig. 5i is the result of applying a “filling” of 
the missing information in the data of 
Fig. 5b. 

9. Fig. 5h is multiplied with Fig. 5i, thus 
obtaining the binary mask (Fig. 5j). 

3.7 Adding Color Attributes to Monochrome 
Images 

Once the binary mask has been obtained, we will 
use it as a map of the pixels that will be assigned 

 

Fig. 5. Masking 

 

Fig. 6. Colorization algorithm 
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RGB values that will allow us to visualize the 
approximate color (also known as false color) of the 
monochrome hyperspectral images. 

The colorization process of monochrome 
hyper- spectral images is explained in the flowchart 
of fig.   6. 

 

4 Results 

The results obtained by applying the monochrome 
hyperspectral image colorization algorithm are 
shown in Fig. 7. 

Column 1) corresponds to the image resulting 
from the algorithm. The original information of the 
image captured with the monochrome sensor 
(ThorLabs camera) is in column 2). 

In column 3) is the image obtained with the RGB 
sensor (CANON camera) which is used for color 
comparison of the images. 

Finally, each of the different sections are used as 
a reference for the wavelengths captured with the 
HIS and were obtained with an OCEAN OPTICS 
brand spectrophotometer. 

5 Conclusion 

Based on the results obtained, it can be seen that 
the algorithm in charge of determining the area to 
be colored is not perfect and has errors that must 
be repaired, even so, this first algorithm helps us to 
understand the process to follow for coloring and 
displaying images. hyperspectral. 

One of the errors in the detection of the area can 
be seen in Fig. 7b, where the algorithm was not 
able to determine the entire edges of the 
image object. 

A recurring error occurs from subsection d) to 
subsection i), where the algorithm was able to 
detect the circumference of the object but failed to 
determine the area corresponding to number 3. 

It should be mentioned that the errors present 
in Fig. 7 are not strictly caused in the programming 
of the algorithm, since it works directly with the data 
obtained from the monochrome images, so if the 
information of the images is inaccurate then the 
algorithm will not work correctly. 

Finally, it should be noted that the images taken 
with the ThorLabs camera (Fig. 7 column 2) 
continue up to λ = 730nm but it is not possible to 
assign RGB attributes as there is no information to 
which it is related. 
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Colorization of black and white cartoon. Image 
and Vision Computing, Vol. 23, No. 9, pp. 767–
782. DOI: 10.1016/j.imavis.2005.05.010. 

5. Hussein, A. A., Yang, X. (2012). Colorization 
using edge preserving smoothing filter. 
Springer- Verlag, pp. 1681–1689. DOI: 10.1007/ 
s11760-012-0402-5. 

6. Kawulok, M., Smolka, B. (2011). Texture-
adaptive image colorization framework. 
EURASIP J. Adv. Signal Process, pp. 99. DOI: 
10.1186/1687-6180-2011-99. 

7. Khan, M. J., Khan, H. S., Yousaf, A., 
Khurshid, K., Abbas, A. (2018). Modern 
trends in hyperspectral image analysis: A 
review. IEEE Access, Vol. 6, pp. 14118–14129. 
DOI: 10.1109/ACCESS.2018.2812999. 

8. Lagodzinski, P., Smolka, B. (2014). 
Application of the extended distance 
transformation in digital image colorization. 
Multimedia Tools and Applications, Vol. 69, pp. 
111–137. DOI: 10.1007/s11042-012-1246-2. 

9. Leifman, G.,  Tal, A. (2012). Mesh 
colorization. EUROGRAPHICS, Vol. 31. No. 2, 
pp. 421–430. DOI: 10.1111/j.1467-8659.20 
12.03021.x. 

10. Liu, S., Zhang, X. (2012). Automatic grayscale 
image colorization using histogram regression. 
Pattern Recognition Letters, Vol. 33, No. 13, 
pp. 1673–1681. DOI: 10.1016/j.patrec.2012. 
06.001. 

11. Fang, L., Wang, J., Lu, G., Zhang, D., Fu, J. 
(2019). Hand-drawn grayscale image colorful 
colorization based on natural image. The Visual 
Computer, Vol. 35, pp. 1667–1681. DOI: 10.10 
07/s00371-018-1613-8. 

12. Lu, B., Dao, P. D., Liu, J., He, J., Shang. J. 
(2020). Recent advances of hyperspectral 
imaging technology and applications in 
agriculture. Remote Sensing, Vol. 12, No. 16, 
pp. 2659. DOI: 10.3390/rs12162659. 

13.  Ma, J., Sun, D. W., Pu, H., Cheng, J. H.,  
Wei, Q. (2019). Advanced techniques for 
hyperspectral imaging in the food industry: 
Principles and recent applications. Annual 
Review of Food Science and Technology, Vol. 
10, pp. 197–220. 

14. Martinez-Escobar, M., Leng-Foo, J., Winer, 
E. (2012). Colorization of CT images to 
improve tissue contrast for tumor 
segmentation. Computers in Biology and 
Medicine, Vol. 42, No. 12, pp. 1170–1178. 
DOI: 10.1016/j.compbiomed.2012.09.008. 

15. Shaikh, M. S., Jaferzadeh, K., Thörnberg, B., 
Casselgren, J. (2021). Calibration of a hyper-
spectral imaging system using a low-cost 
reference. Sensors, Vol. 21, No. 11, pp. 3738. 
DOI: 10.3390/s21113738. 

16. Ravikanth, L., Jayas, D. S. White, N. D. G., 
Fields P. G., Sun, D. W. (2017). Extraction of 
spectral information from hyperspectral data and 
application of hyperspectral imaging for food 
and agricultural products. Food Bioprocess 
Technol, Vol. 10, pp. 1–33. DOI: 10.1007/ 
s11947-016-1817-8. 

17. Shimoni, M., Haelterman. R., Perneel. C. 
(2019). Hypersectral imaging for military and 
security applications: Combining myriad 
processing and sensing techniques. IEEE 
Geoscience and Remote Sensing Magazine, 
Vol. 7, No. 2, pp. 101–117. DOI: 10.1109/ 
MGRS.2019.2902525. 

18. Jin, S. Y., Choi. H. J., Tai, Y. W. (2014). A 
randomized algorithm for natural object 
colorization. Computer Graphics Forum, Vol. 
33, No. 2, pp. 205–214. DOI: 10.1111/ 
cgf.12294. 

19. Veraverbeke, S., Dennison, P., Gitas, L., 
Hulley, G., Kalashnikova, O., Katagis, T., 
Kuai, L., Meng, R., Roberts, D., Stavros, N. 
(2018). Hyperspectral remote sensing of fire: 
State-of-the-art and future perspectives. 

Computación y Sistemas, Vol. 27, No. 4, 2023, pp. 1125–1132
doi: 10.13053/CyS-27-4-4608

Colorization of Monochrome Hyperspectral Images 1131

ISSN 2007-9737



Remote Sensing of Environment, Vol. 216, pp. 
105–121. DOI: 10.1016/j.rse.2018.06.020. 

20. Xia, M., Liu, X., Wong, T. T. (2018). Invertible 
grayscale. ACM Transactions on Graphics, 
Vol. 37, No. 6, pp. 1–10. DOI: 10.1145/3272 
127.3275080. 

21. Wang, X. H., Jia, J., Liao, H. Y., Cai, L. H. 
(2012). Affective image colorization. Journal 
of Computer Science and Technology, Vol. 27, 
pp. 1119–1128. DOI: 10.1007/s11390-012-
1290-4. 

22. Yatziv, L., Sapiro, G. (2006). Fast image and 
video colorization using chrominance blending. 

EEE Transactions on Image Processing, 
Vol. 15, No. 5, pp. 1120–1129, DOI: 10.1109/ 
TIP.2005.864231. 

23. Zhi, C. Cui, J., Deng, J., Du, W. (2020). An 
FPGA-based simple RGB-HSI space 
conversion algorithm for hardware image 
processing. IEEE Access, Vol. 8, pp. 173838–
173853. DOI: 10.1109/ACCESS.2020. 
3026189. 

Article received on 09/05/2023; accepted on 01/09/2023. 
Corresponding author is Omar Palillero Sandoval.

 

Computación y Sistemas, Vol. 27, No. 4, 2023, pp. 1125–1132
doi: 10.13053/CyS-27-4-4608

Martín. A. Vazquez-Castrejon, Omar Palillero-Sandoval, J. Jesús Escobedo-Alatorre, et al.1132

ISSN 2007-9737


