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Abstract. The task of chunking involves dividing a 
sentence into smaller phrases by identifying a limited 
amount of syntactic information. This process involves 
grouping together consecutive words to form phrases, 
also known as shallow parsing. Chunking does not 
provide information on the relationships between these 
phrases. This paper describes our approach to building 
chunking models for Arabic text using deep learning 
techniques. We evaluated several training models and 
compared their results using a rich data set. The results 
we obtained were highly encouraging when compared to 
previous related studies. 
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1 Introduction 

Text parsing is a critical aspect of natural language 
processing (NLP) and has received significant 
attention since the early days of NLP. The 
information generated by parsing is valuable for 
various NLP applications, such as automatic 
summarization, author profiling and named entity 
recognition [1]. Parsing can either be shallow or 
deep. Shallow parsing, also known as chunking, 
focuses on identifying the boundaries of larger 
constituents or phrases, while deep parsing goes 
further by identifying both the constituents and their 
internal structure. The two types of parsing require 
different amounts of information and produce 
different results. 

The chunking task can be approached through 
two main methods: the grammar-based approach 

and the machine learning approach [2] The former 
uses a set of grammatical rules, while the latter 
employs machine learning techniques and relies 
on annotated data. This paper details our 
experiments on chunking Arabic text using various 
deep learning architectures. The structure of this 
paper is as follows: 

In Section 2, we outline the fundamental 
concepts of the chunking task. Section 3 discusses 
the syntactic ambiguities in Arabic. Section 4 
reviews prior research on chunking in Arabic. In 
Section 5, we describe our deep learning models 
and approach to chunking Arabic text. Section 6 
presents the evaluation process and results 
obtained. Finally, in Section 7, we present our 
conclusions and suggest avenues for 
future research. 

2 Chunking Task Background 

In 1991, Steven Abney proposed an approach to 
parsing that involves identifying groups of words 
that are syntactically correlated [3]. He argued that 
when we read, we do so in chunks, and therefore 
chunking involves dividing a sentence into smaller 
parts that are syntactically related. Chunking can 
be seen as an intermediate step towards full 
parsing as it provides part of the complete syntactic 
structure of a sentence. 

Initially, the chunking task focused on 
recognizing noun phrases (NPs), which is known 
as noun phrase chunking. Lance Ramshaw and 
Mitch Marcus tackled NP-chunking using a 
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machine learning method [4]. They recognized 
various chunks but categorized every chunk that 
was not a NP as a VP chunk. 

This work inspired many other studies that have 
investigated the application of learning methods to 
noun phrase chunking. Later, researchers focused 
on other constituents of sentences such as VP, PP, 
ADJP, or ADVP to provide a more comprehensive 
description of the sentence. The following example 
shows a chunked Arabic sentence [5]. 

3 Sources of Ambiguity in Arabic 
Language 

Arabic, like all Semitic languages, has a complex 
morphology and a vast vocabulary, making it more 
challenging to parse than other natural languages 
[6]. In addition to common linguistic features like 
coordination, anaphora, and ellipsis found in Latin-
based languages, Arabic has unique 
characteristics that pose difficulties in the parsing 
process [7]. 

3.1 Unvocalisation 

The lack of vowels in written words, known as 
unvocalization, leads to grammatical ambiguity. 
Words without vowels in their written 
representation can't effectively differentiate 
between different grammatical interpretations and 
meanings, as a single word can have multiple 
grammatical variations. 

As a result, unvocalized text is more ambiguous 
than text with vowels [8, 9]. According to Debili's 
statistics (Debili et al., 2002), 74% of Arabic words 
have more than one vocalization option. 

The ambiguity rate for grammatical 
interpretation is higher in unvocalized words, with 
an average rate of 8.7, compared to an average 
rate of 5.6 for vocalized words. Table 1 provides an 
example of a single unvocalized word with its 
various vocalized forms. 

3.2 Agglutination 

In Arabic, there is a distinct occurrence known as 
agglutination, where words such as articles, 
prepositions, pronouns, etc. can be attached to 

adjectives, nouns, verbs, and particles that they 
are associated with. 

This leads to complex syntax, resulting in 
unusual sentence structures. In fact, an 
agglutinative form can even make up an entire 
sentence, as demonstrated in table 2. In such 
instances, specific processing is necessary to 
determine the correct syntactic structure of 
the sentence. 

3.3 Words Order 

The arrangement of words in Arabic is flexible. 
Typically, the word that is intended to be 
emphasized is placed at the beginning of the 
sentence and the word with the most meaning or 
tone is placed at the end. This freedom in word 
order results in artificial syntactic confusion and 
makes constructing grammar more difficult. 

To account for all possible correct word 
arrangements in a sentence, grammar rules must 
include all combinations. Table 3 demonstrates the 
impact of changing the order of words. The order 
of words in this sentence can be rearranged, 
resulting in the two structures shown in Table 4 
and 5. 

3.4 Recursive Structure 

The frequent use of recursive structures is another 
characteristic of Arabic texts. The presence of 
nested structures is common in Arabic as well as 
in other natural languages, but it occurs more 
frequently in Arabic due to some propositions 
being able to play a role within other propositions. 
For example: 

الشرطة هي التي قبضت على المجرم الذي ضل هارباً 
ة طويلةمد . 

(The police have arrested the criminal who 
remained on the run for a long time). 

 

Fig. 1. An instance of chunking in modern 
standard Arabic 
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It is a nominal sentence, while the proposition 
 :is also a nominal sentence (خبر)

 هي التي قبضت على المجرم الذي ضل هارباً مدة طويلة

(Have arrested the criminal who remained on 
the run for a long time). 

In the aforementioned example, it is even 
challenging to segment the text into sentences 
because of the numerous propositions that are 
interdependent and do not belong to the same 
syntactic level. This lack of independence leads to 
Arabic sentences being of unlimited length. 

4 Related Works 

Compared to the research conducted in English 
and other languages, there is a scarcity of studies 

on the Arabic chunking problem. Only four works 
can be found that specifically address the Arabic 
chunking task. In 2004, Mona Diab and colleagues 
[11, 12] carried out tokenization, POS tagging, and 
used an SVM-based method for Arabic 
text chunking. 

They utilized an existing SVM tool [13]. The 
features used in their system were words and POS 
annotations, along with a context window of -2/+2. 
The system was evaluated on 400 sentences and 
produced a chunking performance of 92.06% 
precision, 92.09% recall, and 92.08 F-measure. 
This research was the first of its kind. Diab later 
used the same SVM tool and trained their model 
using the Arabic Treebank with a modified POS tag 
set [12]. 

They reported an F-measure chunking 
performance of 96.33%. Mohammed and Omar 

Table 1. An illustration of ambiguity due to the unvocalization phenomenon 

Unvocalized Word Vocalized Forms Buckwalter Transliteration Translation 

 فهم

 fahima He understood فَهِمَ 
مَ   fah~ama He explained فَهَّ
 fuhima It has been understood فهُِمَ 
 fahomN Comprehension فَهْمٌ 
 fahumo Then them فَهُمْ 
 faham~a Then started فَهَمَّ 
… … … 

Table 2. A sample of a sentence in an agglutinative form (one word) 

Sentence Buckwalter transliteration Gloss 

 .wastaqbalahum (Then he welcomed them) واستقبلهم

Table 3. Arabic sentence, order 1 

Arabic sentence  ذهب الولد بعلملاإلى 

English translation to the stadium the boy went 

Form complement subject verb 

Table 4. Arabic sentence, order 2 

Arabic sentence  الولد ذهب بعلملاإلى 

English translation to the stadium went the boy 

Form complement verb subject 

Table 5. Arabic sentence, order 3 

Arabic sentence بعلملاإلى  ذهب .الولد 

English translation the boy went to the stadium 

Form subject verb complement 
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[14] describe the development of an Arabic shallow 
parser based on a rule-based approach. 

The chunking which constitutes the main 
contribution are achieved on two successive 
stages that include grouped sequences of adjacent 
words based on linguistic properties to identify 
each of NPs, VPs and PPs. Since the aim of the 
research is to generate results at two levels, the 
final results adopted were based on the second 
level results. 

Tested on only 70 sentences, their system 
achieved F-measure of 97%. Ben-Fraj and 

Kessentini [15] proposed an approach for chunking 
Arabic texts based on a combinatorial 
classification process. 

It is a modular chunker that identifies the chunk 
heads using a combinatorial binary classification 
before recognizing their types based on the parts-
of-speech (POS) of the chunk heads, 
already identified. 

For the experimentation, the authors used 226 
sentences as training data. They obtained 80.46% 
accuracy for the full chunking process. 

Table 6. Comparative summary of related works 

Works Approach Training Data Testing data Results 

[12] Machine learning-Based 18 970 sentences 2337 sentences F-measure 91.44% 

[14] Grammar-Based - 70 sentences F-measure 97% 

[15] Machine learning-Based 2300 words 283 sentences Accuracy 80.46% 

[16] Machine learning-Based 10 100 sentences 2524 sentences 

Accuracy 96.54% 
F-measure 76,23% 

Recall 73,86% 
Precision 81,57% 

 

Fig. 2. Proposed method architecture 

Table 7. Features list 

Feature Description 

w[t] the word being proceeded 

w[t+1] the word on right vicinity at position t+1 

w[t+2] the word on right vicinity at position t+2 

pos[t] the POS annotation of w[t] 

pos[t+1] the POS annotation of w[t+1] 

pos[t+2] the POS annotation of w[t+2] 

Computación y Sistemas, Vol. 28, No. 2, 2024, pp. 517–527
doi: 10.13053/CyS-28-2-4560

Nabil Khoufi, Chafik Aloulou520

ISSN 2007-9737



Khoufi et al. developed a machine-learning 
based model for Arabic text chunking [16]. They 
utilized CRFs (Conditional Random Fields) for 
training the model. 

The training data was derived from the PATB 
syntactic trees (80% of the ATB) and included 
words and their part of speech annotations as 
features, with a context window of -2/+2 words 
centered around the word being processed. 

The model also considered bigrams and 
trigrams of words and POS annotations. 

The model was tested on 20% of the PATB 
corpus, representing 2524 sentences, and 
achieved an accuracy of 96.54%. 

A summary of their study of Arabic chunkers is 
presented in Table 6. 

5 Proposed Method 

This section presents the design of our 
proposed method. Our approach is based on deep 
learning technology for chunking Arabic text, as 
opposed to a rule-based method. 

This is because constructing a grammar that 
encompasses all the exceptional and specific 
syntactic structures in Arabic is highly challenging, 
if not impossible.  Our method involves using an 
annotated corpus, a set of features, and a model, 
which will be discussed in the subsequent section. 

Table 8. An instance of an annotated sentence based on the IOB notation model 

Sentence . 2016 صفاقس عاصمة الثقافة العربية  

Transliteration . 2016  AlErbyp  AlvqAfp  EASmp  SfAqs  

Traduction . 2016  Arab  Culture  Capital  Sfax  

Annotation IOB O I-NP I-NP I-NP B-NP B-NP 

 

Fig. 3. A segment of the training corpus in its original XML tree format 
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Figure 2 illustrates the design of our approach, 
where a portion of the annotated corpus (80%) 
undergoes pre-processing using features, the 
Word2Vec model, and the IOB notation scheme. 

This generates a model that is used to analyze 
sentences. The model's performance is then 
evaluated using the remaining portion of the 
annotated corpus (20%) through cross-validation. 
Detailed information regarding our method can be 
found in subsequent sub-sections. 

5.1 Our Features 

The selection of features is crucial in machine-
learning algorithms as it has a significant impact on 
the accuracy of labeling. Features determine what 
information is extracted from the annotated corpus 
during the training phase. In this study, we chose 
to use the word itself (W) and its Part-of-Speech 
(POS) annotation as our features. 

These features capture the characteristics of 
the word at position t by utilizing information from 
the surrounding words. The features utilized for the 
training phase are shown in Table 7. 

5.2 Used Tag Set 

For our experiment, we employ the tag set of the 
PATB, which consists of 23 tags: S, NP, VP, SQ, 

PP, SBAR, SBARQ, NX, PRN, PRT, QP, ADJP, 
ADVP, FRAG, WHNP, WHPP, WHADJP, 
WHADVP, CONJP, INTJ, NAC, UCP, X. 

In addition to these tags, we use the IOB 
notation model, where each word is tagged with a 
chunk label and one of three additional tags: 

− B for the first word of a chunk,  

− I for a non-initial word in a chunk,  

− and O for a word outside of any chunk. 

This increases the number of tags in the tag set 
to 46, as each tag in the tag set becomes either an 
I or B tag. For example, NP can be represented as 
two chunk types, I-NP or B-NP. Table 8 provides 
an example of an Arabic sentence tagged using 
the IOB scheme, with the English Translation 
shown in the right-to-left direction. 

5.3 Training Corpus 

The Penn Arabic Treebank was established by the 
Linguistic Data Consortium (LDC) at the University 
of Pennsylvania [17]. It is composed of data 
obtained from standard and modern Arabic 
linguistic sources, consisting of 402,291 tokens 
and 12,624 sentences. 

The texts in the corpus do not contain any 
vowels, as is typical in most written Arabic texts. In 
our experiments, we used version 3.2 of this 
corpus. In order to perform the training phase, the 
training corpus must be pre-processed to 
incorporate the IOB notation scheme and the 
selected features along with their context window. 

This pre-processing step transforms the PATB 
corpus from its original tree format into a vector 
format. Figure 3 displays the original format of the 
training corpus. 

5.4 Training Experiments 

For the training stage, we utilize the Word2Vec 
model for constructing word embeddings. 
Word2Vec is a widely used method for building 
word embeddings and was first introduced by [18]. 
There are two variations of the Word2Vec model 
for learning word embeddings: 

The Skip-gram and CBOW (Continuous Bag of 
Words) models. Each of these models consists of 
three layers: an input layer, a hidden layer, and an 

 

Fig. 4. Evaluation results comparison 

 

Fig. 5. Accuracy results 
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output layer, with the output layer consisting of 
neurons with a SoftMax activation function. 

− The CBOW architecture enables prediction of 
a word based on its context, using a word 
window to the left and right. This model 
assumes that the order of the context words 
has no effect on the projection, and the 
projection layer is shared among all words. 
Learning word embeddings with the CBOW 
architecture involves predicting a word based 
on its context, by calculating the vector 
obtained by summing the embeddings of the 
context words, and then applying a log-linear 
classifier to predict the target word.  

− The Skip-gram architecture is also a three-
layer log-linear neural network. Unlike the 
CBOW model, it allows for predicting a context 
window given the word at the center of the 
context. The central word serves as the input 
to the network, and the words in the context 
form the output. The goal is to predict, for a 
given word, its context, so that the embedding 
of any word is close to the embeddings of 
words in the same context. 

In this study, we utilized the CBOW architecture 
for word embedding construction as it is a widely 
used method in NLP and has produced positive 
outcomes in previous NLP studies such as [19]. 
Today, Recurrent Neural Networks (RNNs) are the 
most commonly used systems in various machine 
learning tasks. 

They are frequently utilized in computer vision 
(such as image classification, object detection, 
segmentation, etc.) and natural language 
processing (such as automatic translation, voice 
recognition, language models, etc.). In our Arabic 
chunking task, we experiment with three different 
RNN architectures (LSTM, BILSTM, GRU), which 
we present below, to compare their performance. 

5.4.1 LSTM 

Long Short-Term Memory (LSTM) is a deep 
learning-based RNN architecture that has 
feedback connections, unlike regular feedforward 
neural networks. LSTM can handle not just 
individual data points (such as images), but also 
sequential data (such as speech or video) [20]. 

LSTMs are designed to address the vanishing 
gradient problem that occurs in traditional RNNs, 
which can make it difficult for the network to 
capture long-term dependencies in sequential 
data. In an LSTM, the network has a hidden state 
that is updated at each time step. 

The update is controlled by three gates: the 
input gate, the forget gate, and the output gate. 
The input gate determines how much of the new 
input should be added to the current hidden state, 
the forget gate determines how much of the 
previous hidden state should be forgotten, and the 
output gate determines how much of the new 
hidden state should be output. 

Applications of LSTM include unsegmented 
handwriting recognition [21], speech recognition 
[22], and network traffic anomaly detection or 
intrusion detection systems (IDSs). 

5.4.2 BILSTM 

Bidirectional Long Short-Term Memory (BILSTM) 
is a type of recurrent neural network architecture. 
In a traditional LSTM, the input sequence is 
processed in one direction, from the beginning to 
the end. However, in a BILSTM, the input 
sequence is processed in two directions 
simultaneously: one forward and one backward. 

The BILSTM consists of two LSTM layers, one 
processing the input sequence in the forward 
direction and the other in the backward direction. 
The outputs of both the layers are concatenated at 
each time step to form the final output of 
the BILSTM. 

 

Fig. 6. Results comparation between our DL models and 
CRF model 
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This allows the model to capture both the past 
and the future context of each input token, which 
can be useful in many sequence modelling tasks. 
The BILSTM has been widely used in various 
natural language processing tasks such as part-of-
speech tagging, named entity recognition, 
sentiment analysis, and machine translation [23], 
among others. It has been shown to outperform 
traditional LSTM models in many of these tasks. 

5.4.3 GRU 

Gated Recurrent Units (GRUs) are gating 
mechanisms in RNNs, first introduced in 2014 by 
Kyunghyun Cho et al. [24]. GRUs are similar to 
LSTMs, but have a simpler structure with fewer 
parameters, making them faster to train and less 
prone to overfitting [25]. In a GRU, the network has 
a hidden state that is updated at each time step. 

The update is controlled by two gates: the reset 
gate and the update gate.  

The reset gate determines how much of the 
previous hidden state should be forgotten, while 
the update gate determines how much of the new 
input should be added to the current hidden state. 

The update gate and reset gate are both 
sigmoid functions that take as input the current 
input and the previous hidden state.  

The output of these gates is then used to 
update the hidden state. Unlike LSTMs, which 
have separate memory cells, GRUs use a single 
hidden state to store information about the 
input  sequence. 

GRUs have shown comparable performance to 
LSTMs in tasks such as polyphonic music 

modelling, speech signal modelling, and natural 
language processing [26], and even better 
performance on smaller and less frequent 
datasets [27]. 

6  Evaluation Results and Discussion 

In order to evaluate the models, we divided the 
PATB corpus into two parts, with 80% consisting of 
10,100 sentences for training and 20% consisting 
of 2,524 sentences for testing.  

The unvocalized version of the Treebank was 
used for all experiments and all the data was 
sourced from the parsed trees in the Treebank. 

By using the unvocalized version of the 
Treebank, we ensure that our results are 
consistent and comparable with other studies that 
use the same corpus.  

We measured the performance of the model’s 
using precision, recall, F-measure and accuracy. 

These metrics allows us to have a 
comprehensive view of the performance of the 
models and help us in choosing the best model for 
our Arabic chunking task. This evaluation method 
allows us to assess the ability of the models to 
correctly predict the chunk tags for the 
sentence chunks. 

The results of these metrics are displayed in 
figure 4. When comparing the performance of the 
LSTM, GRU, and BILSTM models based on their 
precision, recall, and F-measure metrics, the 
results show that the BILSTM model achieved the 
highest precision (86.71%), recall (84.54%), and F-
measure (85.59%). 

This represents an enhancement of 6,37%, 
5,94% and 6,13% respectively over the LSTM 
model's precision (80.34%), recall (78.60%), and 
F-measure (79.46%).  

Similarly, the GRU model achieved an 
enhancement of 0.43%, 0.73%, and 0.63% 
respectively over the LSTM model's precision, 
recall, and F-measure by reaching a precision of 
80,69%, a recall of 79,33% and an F-measure 
of  80%.  

In addition, it's important to note that the 
BILSTM model achieved the highest performance 
in all three metrics, suggesting that it may be the 
most effective model overall. 

 

Fig. 7. Accuracy comparison between our DL models 
and our baseline 
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This could be explained by the ability of BILSTM 
model to capture both past and future context 
when processing sequential data. BILSTM model 
results are confirmed by the accuracy metric. 

Indeed, BILSTM model reached an accuracy of 
97.90% slightly exceeding LSTM and GRU 
models, respectively 97.21% and 97.46%. 
Accuracy values comparison are displayed in the 
following figure 5. It also interesting to compare 
obtained results with previous work which we 
consider as our baseline. 

We have developed a machine learning model 
for chunking Arabic using Conditional Random 
Fields (CRF) (Khoufi et al. 2015). We used the 
same data for training and testing the CRF model. 
Results comparisons are illustrated in the following 
Figure 6. 

As shown in Figure 5, the LSTM, GRU, and 
BILSTM models outperformed the CRF model, 
which achieved an accuracy of 81.57%, a recall of 
73.86%, and an F-measure of 76.23%. Indeed, 
among the DL-based models, BILSTM achieved 
the best results and significantly improved our 
baseline with a 5.14% increase in precision, a 
10.68% increase in recall, and a 9.36% increase in 
F-measure. 

Even the accuracy measurement confirms the 
superiority of the BILSTM model (97,90%) over the 
CRF model (96,54%), as demonstrated in Figure 7 
below. For a detailed idea about the performance 

of our model, we calculated the precision, the recall 
and the f-measure for the major chunking tags. 

These results are exposed in the following 
Table 9. In relation to the outcomes displayed in 
Table 9, our model has successfully identified 
significant portions with acceptable accuracy. 

We want to emphasize that the model has 
achieved a commendable overall performance in 
identifying chunks, which validates the obtained 
results. As shown in Table 9, the CONJP category 
is recognized with the highest precision of 98.87%, 
recall of 99.47%, and f-measure of 98.85%. 

This is reasonable due to the limited occurrence 
of conjunctions in Arabic. The model also performs 
well in recognizing PRTs, with a precision of 
95.82%, recall of 97.47%, and f-measure of 
96.64%. PRTs are typically associated with 
CONJP, which facilitates their identification. 

However, we have observed some difficulties in 
detecting PP and ADVP chunks, with f-measures 
of 65.87% and 56.61%, respectively. PPs consist 
of a preposition followed by an object of 
preposition, such as NP, and this relationship with 
other chunks may make it challenging to determine 
their boundaries. 

We attempted to compare our findings with 
those of other studies, but encountered difficulties 
in performing an accurate analysis because they 
used different metrics and datasets. 

However, our accuracy value was higher than 
that of (Ben Fraj et al. 2012), with a 17% increase. 

Table 9. Chunking performance of BILSTM model calculated on major chunking tags 

Tags Precision Recall F-measure 

NP 93,32% 95,55% 94,42% 

VP 93,82% 94,11% 93,96% 

PP 65,80% 65,94% 65,87% 

ADJP 91,25% 86,83% 88,99% 

ADVP 55,84% 57,41% 56,61% 

CONJP 98,87% 98,83% 98,85% 

PRT 95,82% 97,47% 96,64% 

PRN 52,22% 48,38% 50,23% 

O 96,67% 97,97% 97,32% 

S 92,88% 96,87% 94,83% 
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Also, the authors used only 2300 words as training 
data which is not sufficient to obtain a viable model. 

We found that the testing data used by 
(Mohamed et al. 2011) was insufficient to provide 
an accurate assessment of system performance, 
as they only tested on 70 sentences compared to 
our model's 2,524 sentences. Despite this, (Diab et 
al. 2007) achieved a higher F-measure of 96.33% 
using a testing set of 2337 sentences compared to 
our F-Measure. 

In summary of this study's results, it can be said 
that models based on deep learning techniques 
achieve good results in processing the chunking 
task of Arabic texts. These models, especially the 
BILSTM model, improved our results compared to 
the classical models that used traditional machine 
learning algorithms, such as the CRF model we 
used for our baseline. 

7 Conclusion 

In this study, we presented our approach for 
chunking Arabic texts through the use of deep 
learning models. The models we built are LSTM, 
BILSTM, and GRU, and they are constructed with 
morphosyntactic features and the IOB 
notation system. 

The training data for the models was obtained 
from the PATB corpus. Our models were trained 
on 80% of the PATB and tested on the remaining 
20%. Evaluation results shows the supremacy of 
BILSTM model for this task with an f-measure of 
85.59% and an accuracy of 97.90%. 
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