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Abstract. Voice gender recognition systems is a term
that refers the automatization of gender detection by an
acoustic signal of voice. These systems can be trained
in uncontrolled environments, whose audios present
different types of noises and speaker characteristics.
However, the current systems present a bias in the
training language, which is usually mainly English. The
present work focused on the gender recognition of
adult and teen voices in a group of tonal languages
and Spanish under uncontrolled environments. The
features used were 7 derived from pitch, and two from
the mean of the fourth formant and vocal tract length.
Two scenarios were built: a training-test scenario on
one dataset, and a second validation scenario using
the other dataset. The metrics used were accuracy,
recall, F1-score, and area under the ROC curve.
The algorithms used were Multilayer Perceptron and
Random Forest. Despite the bias in the datasets, the
biological features and the algorithms were robust to
language change.

Keywords. Voice gender recognition, fundamental
frequency, vocal tract length, tonal language,
Spanish language.

1 Introduction

A person’s gender can be studied through two
approaches: essentialist or constructivist [29]. In
the former, biological traits are considered decisive
in distinguishing one gender from another. The
word gender is used as a synonym for sex. In the
constructivist approach, gender is perceived as a
social construction and is associated with certain
expectations, conditioning factors, and customs
of the social niche to which the person belongs.
Systems that automate gender recognition by voice
use the essentialist approach. Due to the main
characteristic is the differences present in the
biology of the vocal tract as well as in their vocal
cords [26].

Gender recognition by voice can be
classified into two environments: controlled
and uncontrolled. The former is usually delimited
by a protocol and medical purposes. Recorded
voices use specialized microphones. An example
of this is the work [6]. On the other hand, it
is also usual that these voices only pronounce
certain types of phrases. Such is the case of
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[1]. Where they proposed a new feature that they
called modified voice contour. It consists of the
area under the curve of the voice contour for a
standardized phrase. This characteristic is based
on the differences present between the lengths of
the vocal cords between men and women [23, 26].

Voice Gender recognition systems in
uncontrolled environments are characterized
by the fact that the audios analyzed present the
following variations:

— Technical aspects: Recording device, quality
of the recording device and audio duration.

— Environment-related: Presence of multiple
environmental noise.

— Speaker-related: Whether the speaker reads
or is a natural sentence, the age, health,
emotional state, accent and language of
the person.

The present work focuses on gender recognition
in adults and adolescents in tonal languages and in
the Spanish language. Subsequently, it validates
each trained and tested model in one language
with the untrained language. The relevance of this
work lies in the following points:

— Two datasets for gender recognition were
constructed one in Spanish and the other
being a mixture of various tonal languages.
Both are available [4, 5].

— The recognition of gender in adults and
teens is a variant of the recognition of age.
Therefore, a classifier of the adulthood of a
voice stacked with an age recognition system
will improve its performance.

— The use of biological or biologically robust
features in languages allows for a more
interpretive study of speakers. Thus, models
can be constructed that can perform better in
gender recognition.

— Mitigate the bias present in gender
recognition systems trained and tested
in a single language by disseminating
datasets and research in multi-language and
uncontrolled environments.

This paper is organized as follows. Section 2 will
present a brief state of the art in gender recognition
under uncontrolled environments. Given the limited
variety of gender recognition work in languages
such as Spanish and tonal languages, the state of
the art is mainly based on the English language.
However, the methodology of gender recognition
is similar despite the difference in languages.
Section 3 is the Methodology, which is divided into
preprocessing, feature extraction, classifiers, and
train, test and validation, and finally experiments.
Section 4 discusses the results and discussions of
them in training, test and validation experiments
in both datasets. Finally, Section 5 presents the
conclusions and future work.

2 State of the Art

A widely used database for representing this
type of environment is Mozilla Common Voice
(Mozilla) [3]. Multiple recognitions of gender [1],
gender and age [21, 25], gender and accent [2]
have been made in this database. However,
the approach used in these works is through
deep learning, which requires a greater number
of elements to be trained and presents a greater
computational complexity. Such is the case
of [25], where gender and age recognition is
performed through a convolutional neural network
and a multi-attention module. English language
was used and the audios were grouped into the
labels F-teens, F-twenties, F-thirties, F-forties,
F-fifties, M-teens, M-twenties, M-thirties, M-forties,
M-fifties, and M-sixties. Resulting in an accuracy
of 76%. Another example is that of [21]. In this
work, the classification of gender and age group
was carried out using 18 different architectures
of temporal convolutional neural networks. The
Mozilla English corpus was divided into four
classes Young-Male, Young-Female, Adult-Male,
Adult-Female, Senior-Male and Senior-Female.
Among the 18 architectures, number 4 with 90092
parameters, 81% precision and 76% recall had the
best performance.

One of the most widely used corpus from mozilla
for gender recognition in the English language is
[16]. Among the first works that started to use it
is [28]. It focused not only on gender recognition
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(male and female), but also on the recognition of
age in the categories of young (under thirty years
old), matured (between thirty and fifty years old)
and old (over fifty years old). Furthermore, by using
audios from the Ryerson Audio- Visual Database
of Emotional Speech and Song (RAVDESS) [20],
their work was able to implement an emotion
recognizer in the following categories: happy, sad
and angry. Their work consisted of analyzing 6247
audios from the Common voice 5.1 corpus [16]
(for gender and age analysis) and 1440 from the
RAVDESS corpus (for emotion analysis). Each
of these audios were analyzed with Frequency
Spectrum Analysis (FSA) [14] and 20 features were
extracted. Subsequently, several machine learning
algorithms were trained and tested to choose the
ones that best detected each of the three features
(gender, age and emotion).

Briefly, both the training and the test were used
percentage split (80% train set and 20% test set) as
10-fold cross validation. Of all the algorithms used,
CatBoost obtained 96.4% and 95.4% accuracy
in gender recognition, using percentage split and
10-fold cross validation respectively. In the case
of age, the best model was Random Forest with
70.4% accuracy in percentage split and CatBoost
with 61.7% in 10-fold cross-validation. Finally, for
emotion recognition, XGBoost obtained 66.1% and
58.7% accuracy in percentage split and 10-fold
cross-validation respectively.

A variant of gender recognition but using the
same dataset is through deep learning algorithms
as in [11]. By using cepstral features and a
neural network consisting of five dense layers with
512, 256, 128, 128, and 128, respectively. Then,
64 neurons using ReLU as a nonlinear activation
function. Consecuently, each dense layer used
30% of dropout. For the last dense layer, two
output neurons were used for sex recognition using
a sigmoid function. With this system, it was
possible to obtain an accuracy of 94.32%.

There has been previous work exploring gender
recognition in languages other than English from
Mozilla. Such is the case of [10]. By using a
Convolutional Neural Network (CNN) as a classifier
and a set of cepstral features (Mel-frequency
cepstral coefficients (MFCC), Mel-spectrogram
and Chroma), significant accuracy metric was

obtained in several languages: Irish (98%),
Russian (97.5%), Swedish (96.7%), Japanese
(94.1%), Chinese (China) (93.5%), German
(92.5%) and Chinese (Hong Kong) (88.5%).
Thus, there is evidence that there are features
that are robust to languages under uncontrolled
environments. However, in this work, a validation
of performance in a language other than the trained
language was not performed.

Despite the results obtained throughout the
gender recognition in the English language. There
is no significant presence of gender recognition
work in languages such as Spanish nor in tonal
languages i.e. languages where different tonal
inflections can change the word’s meaning [27].
On the other hand, one of the problems following
gender recognition is the performance of the
system in a new language. One way in which
the problem can be solved is by studying the
biological characteristics of the speakers that are
robust in the presence of language diversity. An
example of these characteristics is fundamental
frequency, i.e. the frequency at which the vocal
cords vibrate. This is statistically lower in adult
men than in women. Nevertheless, it is not a
significant classifying feature when the voices are
grouped by age. However, the length of the vocal
tract, that is, the length from the space between
the vocal cords (called the glottis) to the lips, is
a statistically different features between teens and
adults [19, 24, 13].

3 Methodology

This paper presents a model of gender recognition
of teens and adults by voice. The model consists
of three phases: preprocessing, feature extraction
and classification. An overview of the system
architecture can be seen in Figure 1. The
stages of the model will be described in the
following subsections.

3.1 Preprocessing

The analysis of voiced and unvoiced speech is
essential for gender recognition processes. In this
work, the Python programming language was used
for voice processing using the Parselmount-Praat
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Fig. 1. Proposed methodology for gender recognition. The labels AM, AF, TM and TF denote Adult Male, Adult Female,
Teen Male and Teen Female, respectively

library [17]. This library uses the algorithms
implemented in the Praat software [9]. The
extraction of the voiced parts of each audio follows
the Boersman algorithm [9, 12] and autocorrelation
pitch calculation proposed in [8]. Also,the
parameters used here will be based on those used
in [22]. The procedure is the following:

1. A voiced speech detection filter is used
throughout the audio. The script first creates
a point process object from the sound object.
A text grid object is then created from this
point process object with information on the
voiced/unvoiced parts. Consequently, two
copies of the original sound objects are
created, one with the voiced parts silenced
and one with the unvoiced parts silenced,
using the voiced-unvoiced information from
the text grid object. For this work, only the
copy with voiced speech is considered for the
next step.

2. The four standard parameters are provided
to calculate a series of pitch candidates
per window.

— Time step (ts): It is the frame duration in
seconds. PRAAT analyzes:

ts =
0.75

Pf
, (1)

audios samples per second. The variable
Pf is the Pitch floor.

— Pitch floor (Pf ): It is the frequency
threshold (in Hertz). Frequencies bellow
Pf will not be considered. The standard
value used was set on 75 Hz.

— Window length(WL): The length of the
analyzed window in seconds. WL is
described by the following equation:

WL =
3

Pf
. (2)

For this analysis, WL = 0.04s.
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— Very accurate: If the value of this option
is set to off, the window is a Hanning
window with a length of WL. If is it on,
the window is a Gaussian window with a
length of 2WL. The value used was on.

3. A post-processing algorithm seeks the
cheapest path through the candidates
according to a functional proposed in [8]. The
settings that determine the cheapest path are:

— Pitch ceiling (Pc): Candidates above this
frequency will be ignored. The standard
value used was Pc = 350Hz.

— Silence threshold (St): Frames that
do not contain amplitudes above this
threshold (relative to the global maximum
amplitude), are probably silent. The
standard value used was St = 0.03.

— Voicing threshold Vt: The strength of
the unvoiced candidate, relative to the
maximum possible autocorrelation. If
the amount of periodic energy in a
frame is more than this threshold, then
the frame is considered as a voiced
frame; otherwise as unvoiced frame. The
standard value was Vt = 0.45.

— Octave cost (Oc per octave): Degree of
favouring of high-frequency candidates,
relative to the maximum possible
autocorrelation. The standard value was
Oc = 0.01 per octave.

— Octave-jump cost (Qj): Degree of
disfavouring of pitch changes, relative to
the maximum possible autocorrelation.
The value used was Qj = 0.35.

— Voiced/Unvoiced cost (Uc): Degree
of disfavouring of voiced/unvoiced
transitions, relative to the maximum
possible autocorrelation. The value used
was Uc = 0.14.

3.2 Feature Extraction

The features can be divided into two groups:
derived from the pitch and the length of the vocal
tract. For the first features, the minimum pitch
(min pitch), first quartile of pitch (q1 pitch), mean

pitch (mean pitch), median pitch (median pitch),
third quartile of pitch (q3 pitch), maximum pitch
(max pitch) and standard deviation of pitch
(stddev pitch) were extracted using the Pitch
contours extracted in the preprocessing phase.
In the case of vocal tract length (V LT ), it was
determined by the expression:

V TL =
(2n− 1)c

4Fn
, (3)

where Fn is the n formant of the human vocal
tract, c is an approximation of the speed of sound
(35000 cm

s ). This equation is derived from modeling
the vocal tract as a tube [18]. For the purposes
of this paper, for each of the audio windows
containing voice speech, the fourth formant F4

was calculated and then averaged (mean F4).
Finally, this value was substituted into Equation
3 to obtain a estimation of the vocal tract length
(vocal tract length). In general, Equation 3 is used
for specific vowel sounds in languages. However,
It is possible to consider the whole audio as a
single sound by averaging F4 and set maximum
formant as 5000 Hz for men, 5500 for women, and
8000 Hz for teens. The above was proposed in
this way, since this calculation can be generalized
to any sentence spoken by the speaker. It is
obvious that it will not approximate the actual value
of the person, but statistically it shows a difference
between adults and childrens. This gives the vector
of 9 features and the labels Adult Male (AM), Adult
Female (AF), Teen Male (TM) and Teen Female
(TF) as is shown in Figure 1.

3.3 Classifiers

The classifiers used in this work are as follows:

— Multilayer Perceptron: A classifier that uses
backpropagation to classify instances. The
nodes in this network are all sigmoid. The
parameters used were the standard WEKA
parameters: Learning rate was set to 0.3,
Momentum was set at 0.2, Number of Epochs
was set to 500 (see Figure 2).

— Random Forest: Random forest is a robust,
general-purpose algorithm that can be used
for both regression and classification tasks.
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This algorithm works by training multiple
decision trees on different subsets of the
data, using a technique called bootstrap
aggregating, or bagging, to create a diverse
set of trees. This diversity helps to reduce
overfitting. By averaging or voting the
predictions from all the trees, the random
forest is able to make more robust predictions
than an individual decision tree. WEKA
standard parameters were used: Max Depth
was set to 0, number of features was set to 0,
number of trees was set to 100, and seed was
set to 1.

Fig. 2. Multilayer perceptron network architecture. It
consists of an input layer of 9 inputs, a hidden layer
of 6 neurons with sigmoid activation function, and an
output layer with 4 neurons with sigmoid functions per
activation function

3.4 Train, Test and Validation

Within uncontrolled environments, it is usual to find
datasets with significant imbalances [21]. One way
is to use techniques such as SMOTE [7], which
allow the construction of artificial instances. In
this work, the imbalances in the datasets were
preserved to check the separability of the features
obtained. In addition, two types of tests were
used: Percentage split and cross validation. The
Weka software [15] allows automated learning

to be performed using the percentage split
cross-validation options. The first option consists
on divided the dataset into two: traininig set of
80% of the original dataset and test set with
the remaining 20%. The second option consists
of that the data set is randomly divided into n
parts. Then, n − 1 of those parts are allocated
for training and one part is reserved for testing.
This procedure is repeated n times and each time
a different test set is reserved for testing. For
this work, 10-fold cross-validation (90% training set
and 10% test set) was used. Finally, for the 10
classification performed, a weighted average of the
performance metrics is made. For this work, the
metrics used were accuracy, recall (R), F1-score
(F1), and Area under ROC curve (ROC Area). In
addition, the normalized confusion matrices of the
results obtained in each classifier are shown.

3.5 Experiments

The proposed experimentation is illustrated in
Figure 3. The first step consists in the choice
of an algorithm (MLP or RF). Then, the selected
algorithm is trained and tested on one of the
datasets (Tonal or Spanish) using one of the
two proposed options (10-fold cross validation
or Percentage split). Finally, a validation is
performed with the dataset that was not chosen
for training and testing. To evaluate the eight
models obtained, the metrics Recall (R), F1-score
(F1), Area under the ROC curve (ROC Area) and
accuracy were chosen.

The analyzed audios were taken from Mozilla
Common Voice [3]. Tonal languages considered
were Thai, Vietnamese, Punjabi and variants of
Chinese (China, Hong Kong and Taiwan). In
the case of Non-Tonal language, Spanish was
considered. A complete description of each
language can be found at Table 1. The tonal audios
dataset (207622 audios with a mean duration of
4.08 seconds with a standard deviation of 1.64
seconds) consist of 32.95% adult females (AF),
60.24% adult males (AM), 5.30% teen males (TM),
and 1.51% teen females (TF). Spanish dataset
(213477 audios with a mean duration of 5.06
seconds with a standard deviation of 1.51 seconds)

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 353–364
doi: 10.13053/CyS-29-1-4495

Enrique Díaz-Ocampo, Areli Karina Martínez-Tapia, et al.358

ISSN 2007-9737



Fig. 3. General scheme of the proposed experiment

has 70.8% AM, 25.21% AF, 2.47 TM, and 1.52%
TF.

Figures 4a and 4b show the scatter plot of the
proposed characteristics in the two datasets. The
statistics derived from the fundamental frequency
provides a degree of separation between males
and females. However, it does not separate the
gender of teens. In the case of vocal tract length
and the mean of fourth formant, it does generate a
more visible separation in the four classes.

Figure 5a and Figure 5b show the correlation
matrix of the chosen characteristics. It can be
seen that VTL has an inverse relationship with
all the other characteristics. In the case of the
statistics derived from pitch and mean F4, they
present a positive correlation. This diagram shows
the relevance of VTL.

Since the maturation of the vocal folds is
achieved until adulthood, so the frequencies
emitted by a child could be within a higher range
and could be confused by the classifier. However,
the length of their VTL will be significantly shorter
than that of an adult.

4 Results and Discussion

For the discussion section, it was divided into
four subsections: Results training and testing in
the same language, and results training with one
language and testing with a different one.

4.1 Results in Training and Test in Tonal
Languages

The results of the experimentation in the training
and test of gender recognition can be found at
Table 2. Given the bias in the datasets constructed,
8 models were built with their respective algorithms
and test forms (Percentage split with 80% train
and 20% test and 10-fold cross-validation). It is
highlighted that the models that used the Random
Forest algorithm obtained better accuracy metrics.

Given the large number of examples of adult
voices, the four models of tonal were expected
to obtain higher metrics in the adult classes
compared to the teen classes. Thus, one way
to compare the models is to study detection in
teens. Under this approach, for the percentage
split models, MLP 80-20 trained-tonal obtained
better F1-score metrics (74.1% in F1-TF and
92.2% in F1-TM) than RF 80-20 trained-tonal. On
the other hand, RF 80-20 trained-tonal obtained
better Recall metrics (75.4% in R-TF and 93% in
R-TM). In the case of cross validation models, RF
10-cross trained-tonal obtained better metrics in
both F1-score (77.7 % in F1-TF and F1-TM 93.1 %)
and Recall (73.7 % in R-TF and 91.6 % in R-TM).

4.2 Results in Training and Test in Non-Tonal
Languages

In the case of Spanish (see Table 2), both in the
percentage split and cross validation models, RF
obtained better metrics in F1-score and Recall. In
particular, RF 80-20 trained-spa obtained 88.7 %
in F1-TF and 90.2 % in F1-TM and 73.7 % in
R-TF and 91.6 % in R-TM. RF 10-cross trained-spa
obtained 88.4 % in F1-TF and 88.7 % in F1-TM and
88.7 % in R-TF and 90.2 % in R-TM.

4.3 Results of the Models Trained in Tonal and
Validated in Spanish

The results of the classifiers can be found in Table
3. Among the highlights of these results is the fact
that there was no significant difference (in terms
of metrics) of a specific algorithm model tested
in percentage split and in cross validation (see
Table 3 and Figure 6). On the other hand, RF
80-20 trained-tonal valid-spa obtained the highest
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(a) Scatter diagram of the features in Tonal languages. (b) Scatter diagram of the features in Spanish.

Fig. 4. Scatter diagram of both datasets

Table 1. Distribution of the audios of adult females (AF), adult males (AM), teen males (TM), and teen females (TF) in
the two datasets

Languages TM
Audios

AM
Audios

TF
Audios

AF
Audios

Sum of
Audios

TM
Speakers

AM
Speakers

TF
Speakers

AF
Speakers

Total of
Speakers

Spanish 5277 151133 3254 53813 213477 290 2637 145 892 3964
Tonal languages 11000 125076 3125 68421 207622 275 1867 152 877 3171

Description of Tonal Languages
Thai 2535 47912 1860 26876 79183 72 417 100 353 942

Chinese (china) 4077 21288 234 4632 30231 135 666 22 149 972
Chinese (HONK KONG) 1134 30688 298 20226 52346 24 325 11 190 550

Chinese (Taiwan) 3220 20410 597 16575 40802 40 416 16 177 649
Vietnamese 34 3579 136 110 3859 4 31 3 7 45

Punjabi 0 1199 0 2 1201 0 12 0 1 13
Sum of Tonal languages 11000 125076 3125 68421 207622 275 1867 152 877 3171

accuracy (93.72%), which is due to the fact that it
recognized a larger number of adults.

This can be deduced by analyzing the R-AF,
R-AM and F1-AF F1-AM values. However, it
was decided to make this phenomenon explicit by
analyzing the normalized confusion matrices (see
Figure 4a) where 80.14% of AF and 99.28 % of AM
were recognized correctly.

It is worth noting that although RF obtained
better gender recognition in adults, MLP
recognized adolescents better. MLP recognized
82.94% of TF and 96.07% of TM correctly.

4.4 Results of the Models Trained in Tonal and
Validated in Tonal Languages

The models trained in Spanish and subsequently
validated in the tonal languages provided similar
behavior in their gender recognition results
(see Table 3). To begin with, there was no
significant difference between percentage split
and cross validation training. Next, there was
no significant difference in the F1-score metric
in adolescent recognition for the MLP 80-20
trained-spa valid-tonal (70.4% in F1-TM and
91%F1-TF) and RF 80-20 trained-spa valid-tonal
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(a) Correlation matrix of the features of Tonal language dataset. (b) correlation matrix of the features of Spanish language dataset.

Fig. 5. Correlation matrix of both datasets

Table 2. Distribution of metrics Recall (R), F1-score (F1), Area under the ROC curve (ROC Area) in the four classes
Adult female (AF), Adult Male (AM), Teen female (TF) and Teen male (TM) in the training-test scenario

Classifier R-AF R-AM R-TF R-TM F1-AF F1-AM F1-TF F1-TM ROC
Area-AF

ROC
Area-AM

ROC
Area-TF

ROC
Area-TM Accuracy

MLP 80-20 trained-tonal 0.947 0.977 0.712 0.889 0.946 0.974 0.741 0.922 0.991 0.993 0.985 0.993 0.9590
RF 80-20 trained-tonal 0.949 0.978 0.757 0.93 0.948 0.975 0.72 0.907 0.991 0.993 0.965 0.994 0.9607

MLP 10-cross trained-tonal 0.944 0.978 0.719 0.905 0.946 0.973 0.767 0.924 0.99 0.993 0.985 0.993 0.9591
RF 10-cross trained-tonal 0.949 0.979 0.737 0.916 0.951 0.975 0.777 0.931 0.991 0.993 0.973 0.995 0.9621

MLP 80-20 trained-spa 0.958 0.987 0.837 0.919 0.948 0.99 0.891 0.873 0.99 0.992 0.996 0.994 0.9755
RF 80-20 trained-spa 0.964 0.998 0.87 0.933 0.963 0.989 0.887 0.902 0.996 0.996 0.993 0.993 0.9792

MLP 10-cross trained-spa 0.960 0.987 0.851 0.91 0.958 0.989 0.861 0.868 0.99 0.992 0.996 0.988 0.9761
RF 10-cross trained-spa 0.965 0.989 0.869 0.923 0.964 0.99 0.884 0.887 0.996 0.996 0.992 0.991 0.9792

(70.8% in F1-TM and 90.9%F1-TF) models.
Finally, analyzing the confusion matrices (see
Figure 6b), we can determine that RF 80-20
trained-spa valid-tonal best detected adults
(96.06% AF and 93.23% AM) and 87.02% TM,
while MLP 80-20 trained-spa valid-tonal detected
82.94% TF. 87.02% of TM, while MLP 80-20
trained-spa valid-tonal detected 82.94% of TF.

5 Conclusions and Future Work

Gender recognition by voice in adults and
teens under uncontrolled environments is an
open problem due to three types of aspects:
those related to the recording equipment
(technical aspects), those related to the recording
environment, and those related to the speaker.

While progress has been made in the English
language, the wide variety of languages present in

Mozilla Common Voice have yet to be analyzed.
The present work focused on gender recognition
of adults and teens from Spanish and Tonal
languages of the corpus of Mozilla Common Voice.
The classes were Adult-Male, Adult-Female,
Teen-Male, Teen-Female. Nine features (7 derived
from the fundamental frequency and the last two
were mean of fourth Formant and the vocal tract
length) in two different datasets were used. The
training-test scenarios were studied in a single
dataset and their subsequent validation in the
second dataset. The metric used to evaluate them
were the recall, F1-Score, area under de ROC
Curve and accuracy.

The results obtained show that the statistics
derived from the pitch as well as the fourth formant
and the length of the vocal tract were robust to
language change. Futhermore, the estimation of
the vocal tract by averaging the fourth formant
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(a) Normalized confusion matrix of models validated in Spanish
dataset.

(b) Normalized confusion matrix of models validated in Tonal
dataset.

Fig. 6. Normalized confusion of the models tested in one dataset and validated in the second dataset

Table 3. Distribution of metrics Recall (R), F1-score (F1), Area under the ROC curve (ROC Area) in the four classes
Adult female (AF), Adult Male (AM), Teen female (TF) and Teen male (TM) in the validation scenario

Classifier R-AF R-AM R-TF R-TM F1-AF F1-AM F1-TF F1-TM ROC
Area-AM

ROC
Area-AF

ROC
Area-TF

ROC
Area-TM Accuracy

MLP 80-20 trained-tonal valid-spa 0.744 0.922 0.722 0.888 0.838 0.952 0.793 0.895 0.978 0.974 0.996 0.992 0.923092
RF 80-20 trained-tonal valid-spa 0.801 0.993 0.693 0.883 0.874 0.962 0.772 0.893 0.982 0.98 0.973 0.986 0.937244

MLP 10-cross trained-tonal valid-spa 0.744 0.992 0.722 0.888 0.838 0.952 0.793 0.895 0.978 0.974 0.996 0.992 0.923092
RF 10-cross trained-tonal valid-spa 0.801 0.993 0.693 0.883 0.874 0.962 0.772 0.893 0.982 0.98 0.973 0.986 0.937244

MLP 80-20 trained-spa valid-tonal 0.96 0.912 0.829 0.861 0.901 0.945 0.704 0.91 0.986 0.973 0.984 0.992 0.923957
RF 80-20 trained-spa valid-tonal 0.961 0.932 0.772 0.87 0.917 0.956 0.708 0.909 0.987 0.981 0.967 0.985 0.935892

MLP 10-cross trained-spa valid tonal 0.96 0.912 0.829 0.861 0.901 0.945 0.704 0.91 0.986 0.973 0.984 0.992 0.923957
RF 10-cross trained-spa valid-tonal 0.961 0.932 0.772 0.87 0.917 0.956 0.708 0.909 0.987 0.981 0.967 0.985 0.935892

along the ventans with voiced speech was shown
to be a discriminant feature in the detection
of adult and adolescent voices in uncontrolled
environments. This is novel, because it opens up
research into gender recognition by voice using
other biological features like height.

On the other hand, despite the bias in the
number of female speakers from the datasets,
metrics were obtained that were superior to 72%
in F1-TF in both the training-test and validation
scenarios. The confusion matrices showed how
the RFs performed better in the adult group than in
the teens group. While MLPs detected teens better
than adults.

In principle, the RF had the highest accuracy
metrics, which did not imply a better performance
in the recognition of all classes. This suggests
that, in the face of such a significant imbalance
as presented in this work, the confusion matrix

analysis will show the weaknesses of the
classifiers.

In future work, we hope to be able to use
a suitable combination of cepstral and biological
features for gender, age, and accent recognition
in a single system and label it as follows accent-
age in decades-adult or teen-Male or Female. An
example would be Cuban-twenties-adult-male.
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