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Abstract. A novel method is presented through which a 
randomness index is used to measure the quality of the 
sequences produced by any pseudo-random number 
generator. To obtain this index, several statistics are 
combined, some known and others proposed in this 
research. The method is comprehensive in the sense 
that, to calculate the randomness index, large sets of 
data sequences delivered by the generator are 
considered as a whole. Millions of tests were carried out 
to generate sequences of pseudo-random numbers and 
the randomness index was calculated for blocks of these 
sequences. The results obtained show that the proposed 
procedure to measure randomness is robust and far 
outperforms the most popular procedures, which makes 
it ideal for evaluating the behavior of high-performance 
generators such as those used in cryptography tasks. 

Keywords. Randomness index, pseudo-random 
generators, pseudo-random numbers. 

1 Introduction 

It is widely known that there are a variety of 
methods to measure the randomness of the 
samples produced by pseudo-random number 
generators. As an example, some of these 
methods are: Frequency test, Gap test, Poker test, 
Run test, Serial test, Coupon collector's test, 
Permutation test, Maximum of t test, Collision test, 
Chi-Square test, Kolmogorov–Smirnov test, 
Autocorrelation test, and the Spectral test, among 
other methods. 

The operating mechanism of the existing 
methods, as well as their benefits, are mentioned 
in various sources [2-4, 9, 12].  

However, all these methods have the drawback 
of measuring only some particular aspects of 
pseudo-random series, that is, in their statistical 
analysis they do not treat the series as a whole; 
then, it may be the case that, with some of such 
methods, many generators succeed in passing 
randomness tests, but not with all methods, which 
leads to the assumption that these methods are not 
always suitable for measuring randomness. 

On the other hand, it is clear that the 
construction of pseudo-random generators 
implies, among other tasks, dealing with factors 
such as 1. The periodicity or presentation of cycles, 
which is unavoidable in most pseudo-random 
generators, if not in all.  

To highlight this situation, Table 1 shows some 
of the C++ 11 random class generators [9]. 
Therefore, if you want to develop an application for 
cryptographic purposes, these generators are not 
an option 2. 

The predetermined production of pseudo-
random series, which occurs in all generators of a 
mathematical nature, in which a seed, also 
determined, produces a pseudo-random series 
known in advance. 3. The Pseudo-random 
generators’ speed of performance, in addition to 
being dependent on considerations of uniformity, 
security and independence, are also dependent on 
response time. 
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Table 1 [9] shows that speed can be a 
weakness, as is the case for two of the engines 
presented in that table. 

For the reasons mentioned, this paper 
proposes a method with the aim of contributing to 
the search for more robust randomness indicators, 
which allow not only the evaluation of the 
generators, but also lead to the construction of 
better pseudo-random generators. 

This method was given the name 
Comprehensive Method for Measuring 
Randomness in Pseudorandom Generators, 
CMMRPG, and its design is based on the fact that 
sequences must be available where the generation 
of these numbers is almost uniform 
and independent. 

Before explaining the CMMRPG, it is necessary 
to mention that over the years a variety of test 
protocols have also appeared, each one combining 
several methods to measure randomness, among 
these protocols: KNUTH Protocol that combines 
the Birthday Spacings tests, Collision test, Coupon 
collector´s test, Frequency test, Gap test, 
Maximum-of-t test, Permutation test, Poker test, 
Run test, Serial test and Serial correlation test; 
DIEHARD Protocol that combines the Binary Rank 
tests (31x31,32x32 and 6x8 matrices), Birthday 
Spacings tests, Bitstreams test, Counts-the-1´s 
test (for streams and for bytes), Craps test, DNA 
tests, Minimum distance tests, Overlapping 
permutations test, Overlapping sums test, 
Overlapping pairs sparse occupancy test, 
Overlapping-quadruples-sparse-occupancy test, 
Parking Lot test, Random spheres test, Run test 
and Squeeze test; DIEHARDER Protocol that 
combines all test in Diehard plus the GDC test of 
Marsaglia-Tsang, Generalized minimum distance 
test, Lagged sums test, the Permutation test, 
Monobit test, Run test, the Generalized serial test, 

the Bit distribution and Kolmogorov-Smirnov test;  
NIST-15 Protocol that combines Approximate 
entropy test, the Binary Matrix Rank test, 
Cumulative sums test, Discrete Fourier Transform 
test, Frequency test, Frequency within a block test, 
Linear Complexity test, Maurer's universal 
statistical test, Non overlapping template matching 
test, Overlapping template matching test, Random 
excursions variant test and Serial test; HELSINKI 
Protocol that combines the Autocorrelation, Cluster 
test, n-block test and Random walk test; ENT 
Protocol that combines the Arithmetic mean, Chi 
square test, Entropy test, Monte-Carlo Pi 
estimation test and Serial correlation test; Crypt-X 
Protocol which combines the Binary derivative test, 
Change point test, Frequency test, Linear 
complexity test, Run test and Sequence complexity 
test; SPRING Protocol that combines the Collision 
test, Coupon Collector´s test, Fourier test, 
Frequency test, Transform test, Gap test, the Ising 
Model, Maximum-of-t test, Permutation test, Poker 
test, Random walk test, Run test and Serial test. 

The Diehard test protocol and the NIST 800-22 
currently stand out, among the existing protocols 
above. They are described next: 

1.1 Diehard Test Protocol 

The Diehard protocol [10, 17] consists of a set of 
tests that, for the most part, returns a p-value, 
which should be uniform on the interval (0,1) if the 
input sequence contains truly independent random 
bits. Those p-values are obtained by p=F(X), 
where F is the distribution of the random variable 
X, often a normal function. But F is just an 
asymptotic approximation, for which the fit will be 
worse on the tails of the function. 

Therefore, we should not be surprised that p-
values close to 0 or 1 occasionally appear. When 
a sequence of bits fails conspicuously, p-values of 
0 or 1 will be obtained at many places in the 
sequence. Since many tests are done, it is likely to 
find some p<0.025 or some p>0.975, which does 
not mean that the random number generator fails 
the test at the 0.05 level. 

However, the Diehard protocol does not 
generate a unified criterion that involves all the 
tests in a single indicator that measures the 
random quality of a sample. 

Table 1. Characteristics of some pseudo-random 
generators included in C++11 [9] 
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1.2 NIST 800-22 Test Protocol 

The NIST 800-22 test protocol [2, 10, 13], is a suite 
for randomness analysis, generally used for formal 
certifications. These tests, like those of the Diehard 
protocol, analyze various aspects of a sequence of 
pseudo-random numbers, and have the 
particularity of being focused on the evaluation of 
pseudo-random generators intended for 
cryptographic tasks. Like the DIEHARD protocol, it 
does not generate a unified indicator for the 
analyzed data series. 

This paper emcompass the Introduction, 
Section 2, that defines the elements that give rise 
to the generation of pseudo-random numbers by 
the generator used in this investigation. Section 3, 
presents the proposal to use the byte to measure 
the randomness of pseudo-random generators. 
Section 4 mentions the pseudo-random generator 
used in this investigation. Section 5 shows, step by 
step, how the randomness index proposed in this 
research is constructed. Section 6 explains the 
tests performed. Section 7 summarizes an analysis 
of the results. Section 8 shows the most relevant 
conclusions of this research. 

2 Precursors 

In this research, the term precursors refer to all the 
physical events that can be used in the creation of 
random data, since they are events that precede 
and give rise to these data. And these data, 
although they can be called random, at the 
moment in which the mechanism of occurrence of 
their precursors is known, they pass into the 
category of pseudo-random. 

On the other hand, today's pseudo-random 
number generators use number seeds as 
precursors. Being, by definition, these generators, 
mathematical-statistical models, whether they are 
of the type of congruential methods or of another 
type, which means that they are within the 
algorithms that Von Newman defined as algorithms 
that are in "sin", because in no way they generate 
really random data [6]. 

Similarly, it is known that we are surrounded by 
situations where the outcome is quite uncertain, 
and surely the only thing we can do, a priori, is to 
assign probabilities to each outcome in the state 

space of these situations. Therefore, any event 
whose occurrence is determined by models of 
complexity superior to the comprehension of 
human knowledge can be considered random 
in nature. 

So, in this context, and as a way of justifying the 
use of the definition of precursors, we can consider 
as valid precursors unexpected natural events 
such as earthquakes, solar flares, hailstorms and 
others that cannot be predicted with precision, and 
that hit the different regions of the planet. 

Similarly, in the usual computer equipment, we 
have variables that are provided by the 
hardware/software of the system, such as the ticks 
of the clock, the identification number assigned to 
a process, the system time at the time of executing 
a routine and the GUIDs (globally unique 
identifiers) that can be generated alternately with 
the readings of other temporary variables. 

In any case, and regardless of the context, for 
a precursor to be eligible as such, any of their 
multiple’s states must have a probability of 
occurrence close to 1/N, where N is the number of 
values that cover the state space of the precursor. 
It is desirable to have as many valid precursors as 
possible, in order to build a number generator that 
meets the standards of sufficient randomness. In 
this research, events generated by the computer 
are used as precursors. 

3 Measure Randomness Using Data 
Bytes 

It is known that, in order to measure the 
randomness of a data sequence produced by a 
pseudo-random number generator, common 
methods proceed to statistical analysis of the bits 
that make up that data sequence [7, 14-15]. In this 
research, we worked with the byte instead of the 
bit, the main motivation for using this unit being the 
fact that it can represent intelligible entities for 
humans, such as a letter, a number, a special 
character, etc. 

Another advantage of making randomness 
measurements with bytes is that the analysis is 
done on 256 different values, and not on two 
different values as when working with bits. For 
example, suppose that a random generator, whose 
output is given in bits, generates 24 consecutive 1s 
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digits. This fact allows us to assume a bias, or even 
a serious failure in the pseudo-random production 
of the generator. In contrast, if the output is in 
bytes, three consecutive bytes with the value 255 
do not raise the same concern as 24 consecutive 
equal bits. On the other hand, a graphical, or 
visual, interpretation of the curves formed by the 
256 numbers is more reliable, precisely, because 
they are formed by a greater variety of data. 

4 Random Number Generator Used 

The tests of the proposed CMMRPG were carried 
out on pseudo-random sequences produced by a 
generator, also novel, which is the product of 
another investigation carried out by the authors of 
this paper. This generator is not described in this 
paper because its operation is being evaluated in 
another scientific journal, however, its high 
performance can be highlighted, constituted by a 
great randomness in the numbers produced. For 
the purposes of this paper, this generator will be 
called the Cylinder Mechanism. 

This generator, if given the precursors of the 
type ticks of the computer system clock, the 
identification number assigned to the process by 
the operating system, the time of executing a 
routine, the GUIDs, events of pressing keys, from 
mouse movements and any other precursors that 
are not under the user's control; it can produce 
sequences with very high levels of randomness, 
which is an ability that makes it superior to the 
more popular generators [16], and well suited for 
use in cryptography. 

5 Construction of the Randomness 
Index, RI 

This index, obtained through CMMRPG, is built 
following both the Independence criterion and the 
data uniformity criterion [1,10, 11, 12], and it works 
with the bytes of the sequences as proposed in 
section 3. 

The RI construction process begins with the 
calculation of the following statistics: the 
Intermedian Comparator (defined as part of this 
investigation), the arithmetic mean, the median, 
the standard deviation, the autocorrelation, the 

interquartile coefficients (defined as part of this 
investigation), the variation coefficient, the 
concentration coefficient (defined as part of this 
investigation), the appearance coefficient (defined 
as part of this investigation), the correlation index 
(defined as part of this investigation), the 
interquartile frequency distribution (defined as part 
of this investigation), Gap Test Randomness Index 
and the Index provided by the Test of repetitions 
(REPI) (defined as part of this investigation). 

Next, the proposed statistics are defined, 
differentiating between those that determine the 
uniformity and those that determine the 
independence of the data. 

5.1 Components to Calculate the Uniformity 
of Frequency Distribution of the 
Sequences 

Data uniformity is addressed with the 
following components: 

Intermedian Comparator (IC): This measure 
is obtained by comparing the sum of the 
frequencies on both sides of the median. So, if m 
is the median, LSS is the sum of the frequencies 
on the left side of m and RSS is the sum of the 
frequencies on the right side of m. If f(i) is the 
frequency at each element of the range of n 
elements, then LSS and RSS are determined as: 

��� = ∑ �(�)	
��� , 
��� =  ∑ �(�)��	�� . (1) 

The IC is defined in the range � ≤�C ≤�, and is 
obtained as follows: 

If RSS > LSS, then #$ = %&&
'&& and otherwise #$ =  '&&

%&& 
Interquartile Comparators (P12, P23 and 

P34): These measures consider the frequencies 
on both sides of the quartiles. 

Let now be the following values: 

P1: sum of frequencies of the data with a value 
lower than quartile 1 (Q1). 

P2: sum of frequencies of the data between 
quartile 1 and quartile 2 (Q2). 

P3: sum of frequencies of the data between 
quartile 2 and quartile 3 (Q3). 

P4: sum of frequencies of the data with a value 
greater than quartile 3 (Q3). 
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Namely: 

/1 = 0 �(�)
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     /2 = 0 �(�)
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�1�
 , 

/3 = 0 �(�) 5
16
�

�13
/4 = 0 �(�)

�

�16
��� = 0 �(�).

	
�

��
 

(2) 

In the same way that the IC is calculated, P12, 
P23 and P34 are calculated, but considering the 
frequencies of both sides of each quartile: 

P12 = P2/P1 ⇔ P1>P2, 
P12 = P1/P2 ⇔ P1≤P2, (3) 

P23 = P3/P2 ⇔ P2>P3, 
P23 = P2/P3 ⇔ P2≤P3, (4) 

P34 = P4/P3 ⇔ P3>P4, 
P34 = P3/P4 ⇔ P3≤P4. (5) 

Concentration Coefficient (CC): Measures 
how clustered the data is around the mean. For 
which the Coefficient of Variation (CV) is used: 

<= = �>?@A?BA ACD�?>�E@
?FGEHI>C D?HIC E� >ℎC ?B�>ℎKC>�L KC?@ . (6) 

And the CC is defined as CC = 1 – CV. 

Appearance Coefficient (AC): This coefficient 
is established to search for abnormalities in the 
distribution of the data, which the other coefficients 
mentioned above cannot detect. For example, that 
a number never appears, rarely or many times. 
That is, that its appearance value is below the 
mean minus 3 standard deviations or exceeds the 
mean value plus 3 standard deviations. That range 
is known to pool 99.7% of the data in a 
normal  distribution. 

AC is calculated by assigning each frequency 
value f(i) a rating C(i), with 0≤i ≤255. 

Let be the mean frequency X and the standard 
deviation σ, the C(i) are obtained, for the different 
values of f(i), as follows: 

If f(i) ≥ 2X ⇒ C(i) = 0 

If f(i) > X+3σ ∧ f(i) < 2X ⇒ C(i) = (2X–f(i))/(X-3σ) 

If f(i) ≥ X-3σ ∧ f(i) ≤ X+3σ ⇒ C(i) = 1 

If f(i) ≤ X-3σ ⇒ C(i) = f(i)/ (X - 3σ) 

Once all the C(i) have been calculated, the AC 
is obtained as: 

O$ = P $(�)
3QQ

�R
 . (7) 

Interquartile frequency distribution (IFD): 
This measure was defined to establish if the 
frequency, of the values in the range 0-255, is 
distributed homogeneously on both sides of each 
quartile. Each quartile has a size of n/4, where n is 
the total size of the sample. To calculate this 
measure, first must be obtained the sum of the 
frequencies, for   each value 0-255, within the limits 
of each quartile. 

Now, for each frequency there are four values 
or quantities that denotes its appearances within 
each quartile.  With these four values must be 
calculated the mean frequency F and the standard 
deviation. There is, then, a set of pairs (Fi, σi), for 
0≤ i≤255. 

For each pair (Fi, σi), the coefficient of variation 
CVi is calculated, thus, 256 coefficients of variation 
are obtained, as shown in Eq. 8, with n=255. 

CVar = {CV0, CV1, CV2, CV3, ………. CVn }. (8) 

Of these 256 coefficients of variation, the one 
with the highest value is selected: 

CVmax = max{CVar}. (9) 

Finally, we have: 

IFD   = 1 - CVmax. (10) 

5.2 Components to Calculate the 
Independence of the Sequence Data 

Data independence is addressed with the 
following  components. 

Autocorrelation (A) [5, 8]: It is well known that 
autocorrelation is a very useful tool to measure the 
independence of data. Let's remember 
its equation: 

O =  ∑ (]�  −   _)`
a�� × (]��a  − _a)
c∑  `
a�� (]�  −   _)3 ×  ∑ d]e −   _af3aeg       

, (11) 

where: 
N: It is the size of the data sequence. 
h: It is the interval of the regressors. 
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X: Arithmetic mean of the data sequence. 
Xi: the i-th data of the sequence. 

The A has a maximum value of 1.0 and a 
minimum value of 0.0. Lower values correspond to 
more randomness of the data sequence and 
values close to 1.0 represent less randomness. 
This made it necessary to define the Correlation 
Index CI = 1.0 – A. Which makes the correlation 
criterion close to 1 mean more randomness, to be 
in line with the uniformity indices of section 5.1. 

Gap Test Randomness Index (GAPI): to 
calculate this component of value 0 and 1, the Gap 
Test was used. Digit sequences were used, and 
once the gap intervals were established, the 
Kolmogorov-Smirnov test was used [10-11, 18]. 

The procedure for calculating the GAPI is 
as follows: 

Let D* = Dcalculated    and    D = Dreliability  

As it is known, if Dcalculated < Dreliability, the digits 
appear randomly ordered, and if Dcalculated > 
Dreliability, the digits are not randomly ordered. 

For a given sequence of digits, we record the 
number of times the gaps of lengths 0, 1, 2, … 
appear. After noting how often each gap occurs, 
the observed relative cumulative frequency (Sx) is 
compared to the theoretical cumulative 
frequency F(x). 

Assuming that the digits are randomly ordered, 
the relative cumulative frequency distribution is 
given by: 

Sn(x) = (m / T), (12) 

where m is the frequency of the GAP and T, the 
Total GAPs. The theoretical cumulative frequency 
distribution is given by: 

P(gap for  x) = 0.9x0.1 for x = 0,1,2,3. (13) 

Theoretically, the frequency distribution for 
randomly ordered digits is given by: 

P(gap for digits) =  F(x) =   0.1 × ∑  l�R (0.9)� 
=1-0.9x+1. (14) 

Let us see an example. If a level of significance 
Sig = 0.05 is adopted, and the following sequence 
of digits is obtained: 

2, 9, 3, 1, 6, 3, 0, 4, 6, 3, 2, 8, 7, 0, 8, 1, 3, 1, 8, 
3, 6, 0, 7, 9, 6, 1, 3, 4, 8, 6, 3, 4, 9, 1, 4, 2, 8, 1, 0, 
5, 5, 9, 2, 3, 1, 4, 0, 5, 8, 8, 9, 8, 3, 9, 9, 3, 3, 5, 9, 
1, 1, 5, 3, 6, 8, 4, 7, 7, 9, 6, 0, 4, 0, 6, 0, 5, 7, 3, 1, 

5, 9, 5, 4, 0, 1, 4, 6, 0, 0, 5, 4, 6, 2, 4, 8, 4, 2, 0, 5, 
4, 4, 1, 0, 2, 0, 5, 4, 1, 3, 7, 5, 3, 3, 1, 6, 7, 1, 0, 2, 
9, 6, 7, 0, 1, 7. 

The GAPs number recorded will be the number 
of digits analyzed minus the number of different 
random digits generated (in this case, the digits 0 
to 9, that is, 10 digits). Total Gaps is T=N–10, 
where N=125 is the number of digits analyzed. So, 
T = 125 –10 = 115. 

Then, the longest gap length is checked, and 
the required intervals are determined. For 
example, if you have a gap length equal to 49, and 
you want 10 intervals, then the first interval will be 
0–4, the second 5–9, the third 10–14, etc. 
Conversely, if only 5 intervals are required, then 
the first interval would be 0–9, the second 10–19, 
the third 20–29, the fourth 30–39, and the fifth 
40– 49. 

For the example sequence, the largest gap 
length is 50, and that sequence was divided into 17 
intervals. Subsequently, each of the generated 
random numbers is analyzed to determine its gap 
length and obtain the frequency in the generated 
intervals. Thus, selecting the digit 7, its first gap 
length is 9; and it will fall in the interval 9–11, then 
that interval will have its first occurrence. 

If the same digit or another digit falls in that 
same interval, then the second occurrence for this 
interval would be added; and so on for all intervals. 
The sum of the occurrences, of all the intervals, is 
equal to the Total GAPs (T=115). 

Gap test steps: 

1. The probability function for the theoretical 
frequency distribution is specified, given by Eq. 
14, using the width of the selected intervals. 

2. The observed gaps in a cumulative distribution 
with the same intervals are tabulated. 

3. Calculate D*, the maximum deviation, in 
absolute value, between F(x) and Sn(x) as in 
Eq. 15. 

4. The critical value Dα, from the Kolmogorov–
Smirnov table, is determined for the specific 
value of α and the sample size N. 

5. If D* calculated is greater than Dα, it is 
concluded that there is no independence of the 
data, that is, GAPI=0: 

D = Max | F(x) – Sn(x) |. (15) 
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FA (Cumulative Frequency = Sn(x)) is 
calculated with Eq. 16: 

FA(x) = Sn(x) = (m /T). (16) 

For the example sequence: 
FA of the interval (0–2) = (27 /115)   = 0.234. 
FA of the interval (3–5) = (57 /115)   = 0.495. 
FA of the interval (6–8) = (80 /115)   = 0.695. 
FA of the interval (9–11) = (91 /115)  = 0.792. 
FA of the interval (…)     =    (…)      = … 
(…)     =    (...)      = ... 
Fx are calculated as follows: 

Fx(X) = 1 – (0.9)x + 1. (17) 

Fx(0–2)    =  1 – (0.9)2+1   = 0.271 
Fx(3–5)    =  1 – (0.9)5+1   = 0.469  
Fx(6–8)    =  1 – (0.9)8+1   = 0.613  
Fx(9–11)  = 1 – (0.9)11+1   = 0.718 
Fx(…)      = ... 
…            = … 
The absolute maximum difference between FA 

and Fx, was, for this test, 0.082* as shown in Table 
2. The absolute maximum difference is compared 
with the reliability difference (Dα), which is given by 
Eq. 18: 

Dα = value in Kolmogorov-Smirnov´s table × √{. (18) 

In Table 2, a sample of the results of the 
described example is presented. Where FA and 
OC are the cumulative frequency and the 
occurrence in each interval, respectively. The rows 
following the range 9–11 are omitted as these are 
not relevant to explaining the results of 
this example. 

Applying a reliability level α=0.95, there is a 
significance level Sig=0.05, and as the sample 
size N>35, then, the value in the Kolmogorov-
Smirnov table [18] is 1.36, therefore, 

Dα(0.95)=0.127. Since D*=0.082 < Dα=0.127, we 
conclude that the sequence of digits for this 
example is random. That is, GAPI=1. 

Index by the Test of repetitions (REPI): 
This test, which is done on digits, is designed to 

determine how many times the same repeated digit 
appears in partial sequences of 4, 5, 6 repetitions, 
in a large sequence of digits. 

For example, it can be expected that in a 
sequence of 100 digits there will be up to 20 partial 
sequences of 5 repetitions of the same digit. Of 
course, if the sample is evenly distributed, that's 
not going to happen. When a random wheel of 
digits 0-9 spins, each digit has a 1/10 chance of 
appearing, but that doesn't mean that if it is spun 
10 times, every single digit will appear. 

It is possible, that in a set of 40 spin actions, the 
digit 1 only appears once and the digit 5 appears 4 
times, and so on with the other digits. If the number 
of experiments is large enough, the occurrences of 
the digits tend to follow a uniform distribution. 

There is a sample with N digits generated by a 
pseudo-random engine and these are stored in an 
array from position 0 to position N-1. Position 1 is 
set as the start of the experiment. Here, it is worth 
asking how likely it is that the digit 2 is equal to the 
digit 1? 

Each digit has a 1/10 chance of appearing. If 
the test is done in position 0, there will be a 
probability of 1/10 that the digit in that position is 
equal to the one in position 1. Therefore, there is a 
probability 9/10×9/10 = 81/100 that the digit in 
position 1 is a non-repeating digit (i.e. is an 
isolated digit). 

It was observed, when consecutive tests were 
carried out on 100,000,000 digits, that, on average, 
80,999,639 digits were no repeated contiguously, 
a value very close to that calculated with Eq. 19. 

Isolated digits = (amount of data)×81/100. (19) 

For this case, 100,000,000× (81/100)= 
80,999,999. For partial sequences of repetitions of 
2, 3, 4, 5, 6 or more digits, divide the result of Eq. 
19, among 10 successively, as shown in Table 3. 

A decrease given by a factor of 10 is observed 
as more digits are grouped. This was 
experimentally confirmed with the results shown in 
Table 4. This is mathematically logical given that 
each digit added to a previous grouping has a 1/10 
chance of appearing. 

Table 2. Calculation of frequencies and differences for 
the gap text 
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Table 3 shows the expected or theoretical 
occurrences over 100 million digits. Table 4 shows 
the occurrences observed over 100 million digits 
produced by the pseudo-random generators: 
Cylinder Mechanism and intdistro () of C++11. 

An evident similarity of the results produced by 
the two pseudo-random generators is observed, 
and also, the similarity between the expected and 
observed repetitions produced by the 
two generators. 

The differences between the expected and 
observed repetitions must be subject to a 
tolerance. That is, a number that measures how 
much the observed data can be allowed to deviate 
from the calculated quantities. That tolerance must 
first be defined for digits without 
contiguous repetitions. 

Let: 
Topdata: the maximum number of data to be 

analyzed, for this investigation was 
1,000,000,000 digits. 

Nr_data: the number of data of the sample to 
be analized, that has to be a multiple of 10. It is 
recommended to go from 106 to 109. 

Maxdispersion: the tolerance that is allowed 
on the Topdata amount of data, equal to 0.0050 
for one billion digits. That is, between the expected 
amount and the observed amount there can only 
be a difference of up to 50,000 occurrences in 
1,000 million digits. The number 50,000 is 
called Tolerance. 

Let } =  HE~�R(Topdata) - HE~�R(Nr_data), then, 

for any Nr_data, between 106 and 109: 

{EHCB?@LC(�]�CL>CA�0�) = 
= {E�A?>? × �?]A�G�CBG�E@

100 × 3�
. 

(20) 

Let PT be the Previous Tolerance and ND be 
the Next_dispersion containing the value 
Maxdispersion/2, the Tolerance(Expected[i]) for 
i>0, is:   

{EHCB?@LC(�]�CL>CA���) =
��

3
^  (/{ × ��). (21) 

Now, let �?~ =   HE~�R(Nr_data). 
In order to calculate the subsequent 

Tolerance(Expected[i]), where 1 ≤ i < Mag-2, we 
have the following algorithm:  
Begin  
  Mag    log10(Nr_data) 
  Tolerance(Expected[0]]   eq.20 

  PT  Tolerance(Expected[0]] 

  ND   Maxdispersion 

  For i =1 To i < Mag-2 Step 1 

     ND  ND/2 

     Tolerance(Expected[i]   eq. 21 

     PT  Tolerance(Expected[i]) 

  End for 

End 

To qualify the repetition test, proceed 
as follows: 

4 test protocols are executed: 100 tests on 
1,000,000 digits, 100 on 10,000,000, 100 on 
100,000,000 and 100 on 1,000,000,000 digits, 
respectively. The total number of failed tests is 
added and the REPI index is obtained by eq. 22. 

Table 3. Ideal appereances Over 100 million digits 

 

Table 4. Occurrences observed for pseudo-random 
Cylinder Mechanism and C++ 11 intdistro () generators 
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��/# = 1 ^
∑ �IKFCB E� �

�� �?�HG �@ �BE>ELEH���

4 × 100
. (22) 

5.3 Proposed Randomness Index 

Finally, the IC, P12, P23, P34, DC, AC, IFD, CI, 
GAPI and REPI components are combined to 
establish the RI: 

�# = #$ × /12 × /23 × /34 × $$ × O$ ×
#�� × $# × �O/# × ��/# . 

(23) 

This index has the advantage that any bias, of 
some importance, in any of the components will be 
reflected in the result, which is an indication that 
the randomness of the series being analyzed is 
compromised in one or several of its components 
precursors, or that the generator is not an 
efficient mechanism. 

6 Convergence Tests of the RI 

A wide variety of tests were carried out, of which 
four large blocks are described. 

6.1 Block of 100 Runs: Each Run with a 
Pseudo-Random Sequence of one 
Million Data 

The average statistics obtained for this block are: 

Mean: 392.156,8627451, Median: 398.758, 
Deviation: 7.973,9140445, A: 0,030035, LSS: 
50.193.128,000, RSS: 49.806.872,000, IC: 
0,9923046, P1: 25.196.104,500, P2: 
24.797.644,500, P3: 24.748.348,500, P4: 
24.859.144,500, P12: 0,984, P23: 0,998, P34: 
0,996, CC: 0,979, AC: 1, IFD = 0,992618 CI:  
0,9782020, GAPI = 1, REPI =1 and finally, 
RI=0.92159. 

Fig. 1 shows the average frequency distribution 
of the 256 values present in the pseudo-random 
sequences used in this run block. 

6.2 Block of 1000 Runs: Each Run with a 
Pseudo-Random Sequence of one Million 
Data 

The average statistics obtained for this block are: 

Mean: 392.156,8627451, Median: 
392.036,600, Deviation: 2.027,724, A: 0,029985, 
IC: 0,999954968613, CV: 0,00517069619, P12: 
0,9834359, P23: 0,9992262, P34: 0,9997221, CC:  

 

Fig. 1. Distribution of average frequencies of the block of 100 runs 

 

Fig. 2. Distribution of average frequencies of the block of 1000 runs 
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0,9948311627, AC: 1, IFD = 0,992618 CI:  
0,9772225, GAPI =1, REPI=1 and finally, 
RI=0,94797. 

Fig. 2 shows the average frequency distribution 
of the 256 values present in the pseudorandom 
sequences used in this run block. 

6.3 Block of 10000 Runs: Each Run with a 
Pseudo-Random Sequence of One 
Million Data 

The average RI for this block of runs turned out to 
be 0.96270. Fig. 3 shows the average frequency 

 

Fig. 3. Distribution of average frequencies of the block of 10000 runs 

 

Fig. 4. Distribution of average frequencies of the block of 100000 runs 

 

Fig. 5. Convergence of the standard deviation to zero 

 

Fig. 6. Evolution of the randomness index 
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distribution of the 256 values present in the 
pseudo-random sequences used in this run block. 

6.4 Block of 100000 Runs: Each Run with a 
Pseudo-Random Sequence of One 
Million Data 

The average RI for this block of runs turned out to 

be 0,96742. Fig. 4 shows the average frequency 
distribution of the 256 values present in the 
pseudo-random sequences used in this run block. 

7 Analysis of the Results 

In all the tests carried out, an almost uniform 
distribution of the data was observed, as can be 
seen in figures 1, 2, 3 and 4. 

Fig. 5 shows the convergence of the standard 
deviation to zero as the increases the volume 
of data. 

Fig. 6 shows a convergence of the RI to 0.97, 
which means that the Cylinder Mechanism is an 
excellent pseudo-random numbers generator, with 
random quality. 

8 Conclusions 

The RI is a good measure of the random ability of 
any generator. In this investigation it was possible 
to validate its robustness because it worked with 
the Cylinder Mechanism, which is a high-
performance generator and the intdistro() pseudo-
random generator of the C++ 11 language. 

The tests showed that the Cylinder Mechanism, 
too, is a robust generator since uniformity and 
independence of the data could be observed in the 
range 0-255. The use of precursors is an efficient 
strategy to achieve the performance capacity of the 
used pseudo-random number generator. The 
proposed RI is very robust against popular 
randomness measurement methods. 

The proposed RI defines the level of 
randomness based on the mixture of many 
statistics, which makes it very reliable. The 
statistics defined as part of this research are 
adequate to build the proposed RI. 

Popular pseudo-random generators could, in 
some cases, deliver higher rates, but they being 

seed-dependent, making them unsuitable for 
cryptographic uses. 

In this investigation, the RI increased with the 
amount of data, which verifies the good 
performance of the Cylinder Mechanism. 

The good performance of the Cylinder 
Mechanism, plus the varied use of precursors, 
during a test protocol constitute the best option to  

trigger the generation of pseudo-random numbers 
with high levels of randomness. 

Finally, it can be concluded that the CMMRPG 
proposed in this paper constitutes a valid 
alternative to obtain robust randomness indicators 
and that, at the same time, allows the construction 
of robust pseudo-random generators. 
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