
Comprehensive Method for Measuring Randomness
in Pseudorandom Generators

Manuel José Maldonado1,*, José Luciano Maldonado2

1 Universidad de Los Andes,
Programa de Doctorado en Ciencias Aplicadas,

Venezuela

2 Universidad de Los Andes,
Instituto de Estadística Aplicada y Computación,

Venezuela

{jlmaldonaj, ingenieriamanuelmaldonado}@gmail.com

Abstract. A novel method is presented through which a
randomness index is used to measure the quality of the
sequences produced by any pseudo-random number
generator. To obtain this index, several statistics are
combined, some known and others proposed in this
research. The method is comprehensive in the sense
that, to calculate the randomness index, large sets of
data sequences delivered by the generator are
considered as a whole. Millions of tests were carried out
to generate sequences of pseudo-random numbers and
the randomness index was calculated for blocks of these
sequences. The results obtained show that the proposed
procedure to measure randomness is robust and far
outperforms the most popular procedures, which makes
it ideal for evaluating the behavior of high-performance
generators such as those used in cryptography tasks.

Keywords. Randomness index, pseudo-random
generators, pseudo-random numbers.

1 Introduction

It is widely known that there are a variety of
methods to measure the randomness of the
samples produced by pseudo-random number
generators. As an example, some of these
methods are: Frequency test, Gap test, Poker test,
Run test, Serial test, Coupon collector's test,
Permutation test, Maximum of t test, Collision test,
Chi-Square test, Kolmogorov–Smirnov test,
Autocorrelation test, and the Spectral test, among
other methods.

The operating mechanism of the existing
methods, as well as their benefits, are mentioned
in various sources [2-4, 9, 12].

However, all these methods have the drawback
of measuring only some particular aspects of
pseudo-random series, that is, in their statistical
analysis they do not treat the series as a whole;
then, it may be the case that, with some of such
methods, many generators succeed in passing
randomness tests, but not with all methods, which
leads to the assumption that these methods are not
always suitable for measuring randomness.

On the other hand, it is clear that the
construction of pseudo-random generators
implies, among other tasks, dealing with factors
such as 1. The periodicity or presentation of cycles,
which is unavoidable in most pseudo-random
generators, if not in all.

To highlight this situation, Table 1 shows some
of the C++ 11 random class generators [9].
Therefore, if you want to develop an application for
cryptographic purposes, these generators are not
an option 2.

The predetermined production of pseudo-
random series, which occurs in all generators of a
mathematical nature, in which a seed, also
determined, produces a pseudo-random series
known in advance. 3. The Pseudo-random
generators’ speed of performance, in addition to
being dependent on considerations of uniformity,
security and independence, are also dependent on
response time.

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1155–1166
doi: 10.13053/CyS-28-3-4381

ISSN 2007-9737

Table 1 [9] shows that speed can be a
weakness, as is the case for two of the engines
presented in that table.

For the reasons mentioned, this paper
proposes a method with the aim of contributing to
the search for more robust randomness indicators,
which allow not only the evaluation of the
generators, but also lead to the construction of
better pseudo-random generators.

This method was given the name
Comprehensive Method for Measuring
Randomness in Pseudorandom Generators,
CMMRPG, and its design is based on the fact that
sequences must be available where the generation
of these numbers is almost uniform
and independent.

Before explaining the CMMRPG, it is necessary
to mention that over the years a variety of test
protocols have also appeared, each one combining
several methods to measure randomness, among
these protocols: KNUTH Protocol that combines
the Birthday Spacings tests, Collision test, Coupon
collector´s test, Frequency test, Gap test,
Maximum-of-t test, Permutation test, Poker test,
Run test, Serial test and Serial correlation test;
DIEHARD Protocol that combines the Binary Rank
tests (31x31,32x32 and 6x8 matrices), Birthday
Spacings tests, Bitstreams test, Counts-the-1´s
test (for streams and for bytes), Craps test, DNA
tests, Minimum distance tests, Overlapping
permutations test, Overlapping sums test,
Overlapping pairs sparse occupancy test,
Overlapping-quadruples-sparse-occupancy test,
Parking Lot test, Random spheres test, Run test
and Squeeze test; DIEHARDER Protocol that
combines all test in Diehard plus the GDC test of
Marsaglia-Tsang, Generalized minimum distance
test, Lagged sums test, the Permutation test,
Monobit test, Run test, the Generalized serial test,

the Bit distribution and Kolmogorov-Smirnov test;
NIST-15 Protocol that combines Approximate
entropy test, the Binary Matrix Rank test,
Cumulative sums test, Discrete Fourier Transform
test, Frequency test, Frequency within a block test,
Linear Complexity test, Maurer's universal
statistical test, Non overlapping template matching
test, Overlapping template matching test, Random
excursions variant test and Serial test; HELSINKI
Protocol that combines the Autocorrelation, Cluster
test, n-block test and Random walk test; ENT
Protocol that combines the Arithmetic mean, Chi
square test, Entropy test, Monte-Carlo Pi
estimation test and Serial correlation test; Crypt-X
Protocol which combines the Binary derivative test,
Change point test, Frequency test, Linear
complexity test, Run test and Sequence complexity
test; SPRING Protocol that combines the Collision
test, Coupon Collector´s test, Fourier test,
Frequency test, Transform test, Gap test, the Ising
Model, Maximum-of-t test, Permutation test, Poker
test, Random walk test, Run test and Serial test.

The Diehard test protocol and the NIST 800-22
currently stand out, among the existing protocols
above. They are described next:

1.1 Diehard Test Protocol

The Diehard protocol [10, 17] consists of a set of
tests that, for the most part, returns a p-value,
which should be uniform on the interval (0,1) if the
input sequence contains truly independent random
bits. Those p-values are obtained by p=F(X),
where F is the distribution of the random variable
X, often a normal function. But F is just an
asymptotic approximation, for which the fit will be
worse on the tails of the function.

Therefore, we should not be surprised that p-
values close to 0 or 1 occasionally appear. When
a sequence of bits fails conspicuously, p-values of
0 or 1 will be obtained at many places in the
sequence. Since many tests are done, it is likely to
find some p<0.025 or some p>0.975, which does
not mean that the random number generator fails
the test at the 0.05 level.

However, the Diehard protocol does not
generate a unified criterion that involves all the
tests in a single indicator that measures the
random quality of a sample.

Table 1. Characteristics of some pseudo-random
generators included in C++11 [9]

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1155–1166
doi: 10.13053/CyS-28-3-4381

Manuel José Maldonado, José Luciano Maldonado1156

ISSN 2007-9737

1.2 NIST 800-22 Test Protocol

The NIST 800-22 test protocol [2, 10, 13], is a suite
for randomness analysis, generally used for formal
certifications. These tests, like those of the Diehard
protocol, analyze various aspects of a sequence of
pseudo-random numbers, and have the
particularity of being focused on the evaluation of
pseudo-random generators intended for
cryptographic tasks. Like the DIEHARD protocol, it
does not generate a unified indicator for the
analyzed data series.

This paper emcompass the Introduction,
Section 2, that defines the elements that give rise
to the generation of pseudo-random numbers by
the generator used in this investigation. Section 3,
presents the proposal to use the byte to measure
the randomness of pseudo-random generators.
Section 4 mentions the pseudo-random generator
used in this investigation. Section 5 shows, step by
step, how the randomness index proposed in this
research is constructed. Section 6 explains the
tests performed. Section 7 summarizes an analysis
of the results. Section 8 shows the most relevant
conclusions of this research.

2 Precursors

In this research, the term precursors refer to all the
physical events that can be used in the creation of
random data, since they are events that precede
and give rise to these data. And these data,
although they can be called random, at the
moment in which the mechanism of occurrence of
their precursors is known, they pass into the
category of pseudo-random.

On the other hand, today's pseudo-random
number generators use number seeds as
precursors. Being, by definition, these generators,
mathematical-statistical models, whether they are
of the type of congruential methods or of another
type, which means that they are within the
algorithms that Von Newman defined as algorithms
that are in "sin", because in no way they generate
really random data [6].

Similarly, it is known that we are surrounded by
situations where the outcome is quite uncertain,
and surely the only thing we can do, a priori, is to
assign probabilities to each outcome in the state

space of these situations. Therefore, any event
whose occurrence is determined by models of
complexity superior to the comprehension of
human knowledge can be considered random
in nature.

So, in this context, and as a way of justifying the
use of the definition of precursors, we can consider
as valid precursors unexpected natural events
such as earthquakes, solar flares, hailstorms and
others that cannot be predicted with precision, and
that hit the different regions of the planet.

Similarly, in the usual computer equipment, we
have variables that are provided by the
hardware/software of the system, such as the ticks
of the clock, the identification number assigned to
a process, the system time at the time of executing
a routine and the GUIDs (globally unique
identifiers) that can be generated alternately with
the readings of other temporary variables.

In any case, and regardless of the context, for
a precursor to be eligible as such, any of their
multiple’s states must have a probability of
occurrence close to 1/N, where N is the number of
values that cover the state space of the precursor.
It is desirable to have as many valid precursors as
possible, in order to build a number generator that
meets the standards of sufficient randomness. In
this research, events generated by the computer
are used as precursors.

3 Measure Randomness Using Data
Bytes

It is known that, in order to measure the
randomness of a data sequence produced by a
pseudo-random number generator, common
methods proceed to statistical analysis of the bits
that make up that data sequence [7, 14-15]. In this
research, we worked with the byte instead of the
bit, the main motivation for using this unit being the
fact that it can represent intelligible entities for
humans, such as a letter, a number, a special
character, etc.

Another advantage of making randomness
measurements with bytes is that the analysis is
done on 256 different values, and not on two
different values as when working with bits. For
example, suppose that a random generator, whose
output is given in bits, generates 24 consecutive 1s

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1155–1166
doi: 10.13053/CyS-28-3-4381

Comprehensive Method for Measuring Randomness in Pseudorandom Generators 1157

ISSN 2007-9737

digits. This fact allows us to assume a bias, or even
a serious failure in the pseudo-random production
of the generator. In contrast, if the output is in
bytes, three consecutive bytes with the value 255
do not raise the same concern as 24 consecutive
equal bits. On the other hand, a graphical, or
visual, interpretation of the curves formed by the
256 numbers is more reliable, precisely, because
they are formed by a greater variety of data.

4 Random Number Generator Used

The tests of the proposed CMMRPG were carried
out on pseudo-random sequences produced by a
generator, also novel, which is the product of
another investigation carried out by the authors of
this paper. This generator is not described in this
paper because its operation is being evaluated in
another scientific journal, however, its high
performance can be highlighted, constituted by a
great randomness in the numbers produced. For
the purposes of this paper, this generator will be
called the Cylinder Mechanism.

This generator, if given the precursors of the
type ticks of the computer system clock, the
identification number assigned to the process by
the operating system, the time of executing a
routine, the GUIDs, events of pressing keys, from
mouse movements and any other precursors that
are not under the user's control; it can produce
sequences with very high levels of randomness,
which is an ability that makes it superior to the
more popular generators [16], and well suited for
use in cryptography.

5 Construction of the Randomness
Index, RI

This index, obtained through CMMRPG, is built
following both the Independence criterion and the
data uniformity criterion [1,10, 11, 12], and it works
with the bytes of the sequences as proposed in
section 3.

The RI construction process begins with the
calculation of the following statistics: the
Intermedian Comparator (defined as part of this
investigation), the arithmetic mean, the median,
the standard deviation, the autocorrelation, the

interquartile coefficients (defined as part of this
investigation), the variation coefficient, the
concentration coefficient (defined as part of this
investigation), the appearance coefficient (defined
as part of this investigation), the correlation index
(defined as part of this investigation), the
interquartile frequency distribution (defined as part
of this investigation), Gap Test Randomness Index
and the Index provided by the Test of repetitions
(REPI) (defined as part of this investigation).

Next, the proposed statistics are defined,
differentiating between those that determine the
uniformity and those that determine the
independence of the data.

5.1 Components to Calculate the Uniformity
of Frequency Distribution of the
Sequences

Data uniformity is addressed with the
following components:

Intermedian Comparator (IC): This measure
is obtained by comparing the sum of the
frequencies on both sides of the median. So, if m
is the median, LSS is the sum of the frequencies
on the left side of m and RSS is the sum of the
frequencies on the right side of m. If f(i) is the
frequency at each element of the range of n
elements, then LSS and RSS are determined as:

��� = ∑ �(�)	
��� ,
��� = ∑ �(�)��	�� . (1)

The IC is defined in the range � ≤�C ≤�, and is
obtained as follows:

If RSS > LSS, then #$ = %&&
'&& and otherwise #$ = '&&

%&&
Interquartile Comparators (P12, P23 and

P34): These measures consider the frequencies
on both sides of the quartiles.

Let now be the following values:

P1: sum of frequencies of the data with a value
lower than quartile 1 (Q1).

P2: sum of frequencies of the data between
quartile 1 and quartile 2 (Q2).

P3: sum of frequencies of the data between
quartile 2 and quartile 3 (Q3).

P4: sum of frequencies of the data with a value
greater than quartile 3 (Q3).

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1155–1166
doi: 10.13053/CyS-28-3-4381

Manuel José Maldonado, José Luciano Maldonado1158

ISSN 2007-9737

Namely:

/1 = 0 �(�)
1�
�

��
 /2 = 0 �(�)

13
�

�1�
 ,

/3 = 0 �(�) 5
16
�

�13
/4 = 0 �(�)

�

�16
��� = 0 �(�).

	
�

��

(2)

In the same way that the IC is calculated, P12,
P23 and P34 are calculated, but considering the
frequencies of both sides of each quartile:

P12 = P2/P1 ⇔ P1>P2,
P12 = P1/P2 ⇔ P1≤P2, (3)

P23 = P3/P2 ⇔ P2>P3,
P23 = P2/P3 ⇔ P2≤P3, (4)

P34 = P4/P3 ⇔ P3>P4,
P34 = P3/P4 ⇔ P3≤P4. (5)

Concentration Coefficient (CC): Measures
how clustered the data is around the mean. For
which the Coefficient of Variation (CV) is used:

<= = �>?@A?BA ACD�?>�E@
?FGEHI>C D?HIC E� >ℎC ?B�>ℎKC>�L KC?@ . (6)

And the CC is defined as CC = 1 – CV.

Appearance Coefficient (AC): This coefficient
is established to search for abnormalities in the
distribution of the data, which the other coefficients
mentioned above cannot detect. For example, that
a number never appears, rarely or many times.
That is, that its appearance value is below the
mean minus 3 standard deviations or exceeds the
mean value plus 3 standard deviations. That range
is known to pool 99.7% of the data in a
normal distribution.

AC is calculated by assigning each frequency
value f(i) a rating C(i), with 0≤i ≤255.

Let be the mean frequency X and the standard
deviation σ, the C(i) are obtained, for the different
values of f(i), as follows:

If f(i) ≥ 2X ⇒ C(i) = 0

If f(i) > X+3σ ∧ f(i) < 2X ⇒ C(i) = (2X–f(i))/(X-3σ)

If f(i) ≥ X-3σ ∧ f(i) ≤ X+3σ ⇒ C(i) = 1

If f(i) ≤ X-3σ ⇒ C(i) = f(i)/ (X - 3σ)

Once all the C(i) have been calculated, the AC
is obtained as:

O$ = P $(�)
3QQ

�R
 . (7)

Interquartile frequency distribution (IFD):
This measure was defined to establish if the
frequency, of the values in the range 0-255, is
distributed homogeneously on both sides of each
quartile. Each quartile has a size of n/4, where n is
the total size of the sample. To calculate this
measure, first must be obtained the sum of the
frequencies, for each value 0-255, within the limits
of each quartile.

Now, for each frequency there are four values
or quantities that denotes its appearances within
each quartile. With these four values must be
calculated the mean frequency F and the standard
deviation. There is, then, a set of pairs (Fi, σi), for
0≤ i≤255.

For each pair (Fi, σi), the coefficient of variation
CVi is calculated, thus, 256 coefficients of variation
are obtained, as shown in Eq. 8, with n=255.

CVar = {CV0, CV1, CV2, CV3, ………. CVn }. (8)

Of these 256 coefficients of variation, the one
with the highest value is selected:

CVmax = max{CVar}. (9)

Finally, we have:

IFD = 1 - CVmax. (10)

5.2 Components to Calculate the
Independence of the Sequence Data

Data independence is addressed with the
following components.

Autocorrelation (A) [5, 8]: It is well known that
autocorrelation is a very useful tool to measure the
independence of data. Let's remember
its equation:

O = ∑ (]� − _)`
a�� × (]��a − _a)
c∑ `
a�� (]� − _)3 × ∑ d]e − _af3aeg

, (11)

where:
N: It is the size of the data sequence.
h: It is the interval of the regressors.

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1155–1166
doi: 10.13053/CyS-28-3-4381

Comprehensive Method for Measuring Randomness in Pseudorandom Generators 1159

ISSN 2007-9737

X: Arithmetic mean of the data sequence.
Xi: the i-th data of the sequence.

The A has a maximum value of 1.0 and a
minimum value of 0.0. Lower values correspond to
more randomness of the data sequence and
values close to 1.0 represent less randomness.
This made it necessary to define the Correlation
Index CI = 1.0 – A. Which makes the correlation
criterion close to 1 mean more randomness, to be
in line with the uniformity indices of section 5.1.

Gap Test Randomness Index (GAPI): to
calculate this component of value 0 and 1, the Gap
Test was used. Digit sequences were used, and
once the gap intervals were established, the
Kolmogorov-Smirnov test was used [10-11, 18].

The procedure for calculating the GAPI is
as follows:

Let D* = Dcalculated and D = Dreliability

As it is known, if Dcalculated < Dreliability, the digits
appear randomly ordered, and if Dcalculated >
Dreliability, the digits are not randomly ordered.

For a given sequence of digits, we record the
number of times the gaps of lengths 0, 1, 2, …
appear. After noting how often each gap occurs,
the observed relative cumulative frequency (Sx) is
compared to the theoretical cumulative
frequency F(x).

Assuming that the digits are randomly ordered,
the relative cumulative frequency distribution is
given by:

Sn(x) = (m / T), (12)

where m is the frequency of the GAP and T, the
Total GAPs. The theoretical cumulative frequency
distribution is given by:

P(gap for x) = 0.9x0.1 for x = 0,1,2,3. (13)

Theoretically, the frequency distribution for
randomly ordered digits is given by:

P(gap for digits) = F(x) = 0.1 × ∑ l�R (0.9)�
=1-0.9x+1. (14)

Let us see an example. If a level of significance
Sig = 0.05 is adopted, and the following sequence
of digits is obtained:

2, 9, 3, 1, 6, 3, 0, 4, 6, 3, 2, 8, 7, 0, 8, 1, 3, 1, 8,
3, 6, 0, 7, 9, 6, 1, 3, 4, 8, 6, 3, 4, 9, 1, 4, 2, 8, 1, 0,
5, 5, 9, 2, 3, 1, 4, 0, 5, 8, 8, 9, 8, 3, 9, 9, 3, 3, 5, 9,
1, 1, 5, 3, 6, 8, 4, 7, 7, 9, 6, 0, 4, 0, 6, 0, 5, 7, 3, 1,

5, 9, 5, 4, 0, 1, 4, 6, 0, 0, 5, 4, 6, 2, 4, 8, 4, 2, 0, 5,
4, 4, 1, 0, 2, 0, 5, 4, 1, 3, 7, 5, 3, 3, 1, 6, 7, 1, 0, 2,
9, 6, 7, 0, 1, 7.

The GAPs number recorded will be the number
of digits analyzed minus the number of different
random digits generated (in this case, the digits 0
to 9, that is, 10 digits). Total Gaps is T=N–10,
where N=125 is the number of digits analyzed. So,
T = 125 –10 = 115.

Then, the longest gap length is checked, and
the required intervals are determined. For
example, if you have a gap length equal to 49, and
you want 10 intervals, then the first interval will be
0–4, the second 5–9, the third 10–14, etc.
Conversely, if only 5 intervals are required, then
the first interval would be 0–9, the second 10–19,
the third 20–29, the fourth 30–39, and the fifth
40– 49.

For the example sequence, the largest gap
length is 50, and that sequence was divided into 17
intervals. Subsequently, each of the generated
random numbers is analyzed to determine its gap
length and obtain the frequency in the generated
intervals. Thus, selecting the digit 7, its first gap
length is 9; and it will fall in the interval 9–11, then
that interval will have its first occurrence.

If the same digit or another digit falls in that
same interval, then the second occurrence for this
interval would be added; and so on for all intervals.
The sum of the occurrences, of all the intervals, is
equal to the Total GAPs (T=115).

Gap test steps:

1. The probability function for the theoretical
frequency distribution is specified, given by Eq.
14, using the width of the selected intervals.

2. The observed gaps in a cumulative distribution
with the same intervals are tabulated.

3. Calculate D*, the maximum deviation, in
absolute value, between F(x) and Sn(x) as in
Eq. 15.

4. The critical value Dα, from the Kolmogorov–
Smirnov table, is determined for the specific
value of α and the sample size N.

5. If D* calculated is greater than Dα, it is
concluded that there is no independence of the
data, that is, GAPI=0:

D = Max | F(x) – Sn(x) |. (15)

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1155–1166
doi: 10.13053/CyS-28-3-4381

Manuel José Maldonado, José Luciano Maldonado1160

ISSN 2007-9737

FA (Cumulative Frequency = Sn(x)) is
calculated with Eq. 16:

FA(x) = Sn(x) = (m /T). (16)

For the example sequence:
FA of the interval (0–2) = (27 /115) = 0.234.
FA of the interval (3–5) = (57 /115) = 0.495.
FA of the interval (6–8) = (80 /115) = 0.695.
FA of the interval (9–11) = (91 /115) = 0.792.
FA of the interval (…) = (…) = …
(…) = (...) = ...
Fx are calculated as follows:

Fx(X) = 1 – (0.9)x + 1. (17)

Fx(0–2) = 1 – (0.9)2+1 = 0.271
Fx(3–5) = 1 – (0.9)5+1 = 0.469
Fx(6–8) = 1 – (0.9)8+1 = 0.613
Fx(9–11) = 1 – (0.9)11+1 = 0.718
Fx(…) = ...
… = …
The absolute maximum difference between FA

and Fx, was, for this test, 0.082* as shown in Table
2. The absolute maximum difference is compared
with the reliability difference (Dα), which is given by
Eq. 18:

Dα = value in Kolmogorov-Smirnov´s table × √{. (18)

In Table 2, a sample of the results of the
described example is presented. Where FA and
OC are the cumulative frequency and the
occurrence in each interval, respectively. The rows
following the range 9–11 are omitted as these are
not relevant to explaining the results of
this example.

Applying a reliability level α=0.95, there is a
significance level Sig=0.05, and as the sample
size N>35, then, the value in the Kolmogorov-
Smirnov table [18] is 1.36, therefore,

Dα(0.95)=0.127. Since D*=0.082 < Dα=0.127, we
conclude that the sequence of digits for this
example is random. That is, GAPI=1.

Index by the Test of repetitions (REPI):
This test, which is done on digits, is designed to

determine how many times the same repeated digit
appears in partial sequences of 4, 5, 6 repetitions,
in a large sequence of digits.

For example, it can be expected that in a
sequence of 100 digits there will be up to 20 partial
sequences of 5 repetitions of the same digit. Of
course, if the sample is evenly distributed, that's
not going to happen. When a random wheel of
digits 0-9 spins, each digit has a 1/10 chance of
appearing, but that doesn't mean that if it is spun
10 times, every single digit will appear.

It is possible, that in a set of 40 spin actions, the
digit 1 only appears once and the digit 5 appears 4
times, and so on with the other digits. If the number
of experiments is large enough, the occurrences of
the digits tend to follow a uniform distribution.

There is a sample with N digits generated by a
pseudo-random engine and these are stored in an
array from position 0 to position N-1. Position 1 is
set as the start of the experiment. Here, it is worth
asking how likely it is that the digit 2 is equal to the
digit 1?

Each digit has a 1/10 chance of appearing. If
the test is done in position 0, there will be a
probability of 1/10 that the digit in that position is
equal to the one in position 1. Therefore, there is a
probability 9/10×9/10 = 81/100 that the digit in
position 1 is a non-repeating digit (i.e. is an
isolated digit).

It was observed, when consecutive tests were
carried out on 100,000,000 digits, that, on average,
80,999,639 digits were no repeated contiguously,
a value very close to that calculated with Eq. 19.

Isolated digits = (amount of data)×81/100. (19)

For this case, 100,000,000× (81/100)=
80,999,999. For partial sequences of repetitions of
2, 3, 4, 5, 6 or more digits, divide the result of Eq.
19, among 10 successively, as shown in Table 3.

A decrease given by a factor of 10 is observed
as more digits are grouped. This was
experimentally confirmed with the results shown in
Table 4. This is mathematically logical given that
each digit added to a previous grouping has a 1/10
chance of appearing.

Table 2. Calculation of frequencies and differences for
the gap text

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1155–1166
doi: 10.13053/CyS-28-3-4381

Comprehensive Method for Measuring Randomness in Pseudorandom Generators 1161

ISSN 2007-9737

Table 3 shows the expected or theoretical
occurrences over 100 million digits. Table 4 shows
the occurrences observed over 100 million digits
produced by the pseudo-random generators:
Cylinder Mechanism and intdistro () of C++11.

An evident similarity of the results produced by
the two pseudo-random generators is observed,
and also, the similarity between the expected and
observed repetitions produced by the
two generators.

The differences between the expected and
observed repetitions must be subject to a
tolerance. That is, a number that measures how
much the observed data can be allowed to deviate
from the calculated quantities. That tolerance must
first be defined for digits without
contiguous repetitions.

Let:
Topdata: the maximum number of data to be

analyzed, for this investigation was
1,000,000,000 digits.

Nr_data: the number of data of the sample to
be analized, that has to be a multiple of 10. It is
recommended to go from 106 to 109.

Maxdispersion: the tolerance that is allowed
on the Topdata amount of data, equal to 0.0050
for one billion digits. That is, between the expected
amount and the observed amount there can only
be a difference of up to 50,000 occurrences in
1,000 million digits. The number 50,000 is
called Tolerance.

Let } = HE~�R(Topdata) - HE~�R(Nr_data), then,

for any Nr_data, between 106 and 109:

{EHCB?@LC(�]�CL>CA�0�) =
= {E�A?>? × �?]A�G�CBG�E@

100 × 3�
.

(20)

Let PT be the Previous Tolerance and ND be
the Next_dispersion containing the value
Maxdispersion/2, the Tolerance(Expected[i]) for
i>0, is:

{EHCB?@LC(�]�CL>CA���) =
��

3
^ (/{ × ��). (21)

Now, let �?~ = HE~�R(Nr_data).
In order to calculate the subsequent

Tolerance(Expected[i]), where 1 ≤ i < Mag-2, we
have the following algorithm:
Begin
 Mag log10(Nr_data)
 Tolerance(Expected[0]] eq.20

 PT Tolerance(Expected[0]]

 ND Maxdispersion

 For i =1 To i < Mag-2 Step 1

 ND ND/2

 Tolerance(Expected[i] eq. 21

 PT Tolerance(Expected[i])

 End for

End

To qualify the repetition test, proceed
as follows:

4 test protocols are executed: 100 tests on
1,000,000 digits, 100 on 10,000,000, 100 on
100,000,000 and 100 on 1,000,000,000 digits,
respectively. The total number of failed tests is
added and the REPI index is obtained by eq. 22.

Table 3. Ideal appereances Over 100 million digits

Table 4. Occurrences observed for pseudo-random
Cylinder Mechanism and C++ 11 intdistro () generators

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1155–1166
doi: 10.13053/CyS-28-3-4381

Manuel José Maldonado, José Luciano Maldonado1162

ISSN 2007-9737

��/# = 1 ^
∑ �IKFCB E� �

�� �?�HG �@ �BE>ELEH���

4 × 100
. (22)

5.3 Proposed Randomness Index

Finally, the IC, P12, P23, P34, DC, AC, IFD, CI,
GAPI and REPI components are combined to
establish the RI:

�# = #$ × /12 × /23 × /34 × $$ × O$ ×
#�� × $# × �O/# × ��/# .

(23)

This index has the advantage that any bias, of
some importance, in any of the components will be
reflected in the result, which is an indication that
the randomness of the series being analyzed is
compromised in one or several of its components
precursors, or that the generator is not an
efficient mechanism.

6 Convergence Tests of the RI

A wide variety of tests were carried out, of which
four large blocks are described.

6.1 Block of 100 Runs: Each Run with a
Pseudo-Random Sequence of one
Million Data

The average statistics obtained for this block are:

Mean: 392.156,8627451, Median: 398.758,
Deviation: 7.973,9140445, A: 0,030035, LSS:
50.193.128,000, RSS: 49.806.872,000, IC:
0,9923046, P1: 25.196.104,500, P2:
24.797.644,500, P3: 24.748.348,500, P4:
24.859.144,500, P12: 0,984, P23: 0,998, P34:
0,996, CC: 0,979, AC: 1, IFD = 0,992618 CI:
0,9782020, GAPI = 1, REPI =1 and finally,
RI=0.92159.

Fig. 1 shows the average frequency distribution
of the 256 values present in the pseudo-random
sequences used in this run block.

6.2 Block of 1000 Runs: Each Run with a
Pseudo-Random Sequence of one Million
Data

The average statistics obtained for this block are:

Mean: 392.156,8627451, Median:
392.036,600, Deviation: 2.027,724, A: 0,029985,
IC: 0,999954968613, CV: 0,00517069619, P12:
0,9834359, P23: 0,9992262, P34: 0,9997221, CC:

Fig. 1. Distribution of average frequencies of the block of 100 runs

Fig. 2. Distribution of average frequencies of the block of 1000 runs

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1155–1166
doi: 10.13053/CyS-28-3-4381

Comprehensive Method for Measuring Randomness in Pseudorandom Generators 1163

ISSN 2007-9737

0,9948311627, AC: 1, IFD = 0,992618 CI:
0,9772225, GAPI =1, REPI=1 and finally,
RI=0,94797.

Fig. 2 shows the average frequency distribution
of the 256 values present in the pseudorandom
sequences used in this run block.

6.3 Block of 10000 Runs: Each Run with a
Pseudo-Random Sequence of One
Million Data

The average RI for this block of runs turned out to
be 0.96270. Fig. 3 shows the average frequency

Fig. 3. Distribution of average frequencies of the block of 10000 runs

Fig. 4. Distribution of average frequencies of the block of 100000 runs

Fig. 5. Convergence of the standard deviation to zero

Fig. 6. Evolution of the randomness index

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1155–1166
doi: 10.13053/CyS-28-3-4381

Manuel José Maldonado, José Luciano Maldonado1164

ISSN 2007-9737

distribution of the 256 values present in the
pseudo-random sequences used in this run block.

6.4 Block of 100000 Runs: Each Run with a
Pseudo-Random Sequence of One
Million Data

The average RI for this block of runs turned out to

be 0,96742. Fig. 4 shows the average frequency
distribution of the 256 values present in the
pseudo-random sequences used in this run block.

7 Analysis of the Results

In all the tests carried out, an almost uniform
distribution of the data was observed, as can be
seen in figures 1, 2, 3 and 4.

Fig. 5 shows the convergence of the standard
deviation to zero as the increases the volume
of data.

Fig. 6 shows a convergence of the RI to 0.97,
which means that the Cylinder Mechanism is an
excellent pseudo-random numbers generator, with
random quality.

8 Conclusions

The RI is a good measure of the random ability of
any generator. In this investigation it was possible
to validate its robustness because it worked with
the Cylinder Mechanism, which is a high-
performance generator and the intdistro() pseudo-
random generator of the C++ 11 language.

The tests showed that the Cylinder Mechanism,
too, is a robust generator since uniformity and
independence of the data could be observed in the
range 0-255. The use of precursors is an efficient
strategy to achieve the performance capacity of the
used pseudo-random number generator. The
proposed RI is very robust against popular
randomness measurement methods.

The proposed RI defines the level of
randomness based on the mixture of many
statistics, which makes it very reliable. The
statistics defined as part of this research are
adequate to build the proposed RI.

Popular pseudo-random generators could, in
some cases, deliver higher rates, but they being

seed-dependent, making them unsuitable for
cryptographic uses.

In this investigation, the RI increased with the
amount of data, which verifies the good
performance of the Cylinder Mechanism.

The good performance of the Cylinder
Mechanism, plus the varied use of precursors,
during a test protocol constitute the best option to

trigger the generation of pseudo-random numbers
with high levels of randomness.

Finally, it can be concluded that the CMMRPG
proposed in this paper constitutes a valid
alternative to obtain robust randomness indicators
and that, at the same time, allows the construction
of robust pseudo-random generators.

References

1. Murray, S., Larry, Stephens. (2009). Theory
and problems of statistics. McGraw Hill, Fourth
Edition. pp. 61-101.

2. Marton, K., Suciu, A., Sacarea, C., Cret, O.
(2012). Generation and testing of random
numbers for cryptographic applications.
Proceedings of the Ramanian Academy,
Series A, Vol. 13, No. 4, pp. 368–377.

3. Ryabko, B. Y., Monarev, V. A. (2005). Using

information theory approach to randomness
testing. Journal of Statistical Planning and
Inference, Vol. 133, No. 1, pp. 95–110. DOI:
10.1016/j.jspi.2004.02.010.

4. Calude, C. S. (2013). Information and
randomness: an algorithmic perspective.
Springer Science & Business Media.

5. Downey, R., Hirschfeldt, D. R., Nies, A.,
Terwijn, S. A. (2006). Calibrating
randomness. Bulletin of Symbolic Logic, Vol.
12, No. 3, pp. 411–491. DOI: 10.2178/bsl/11
54698741.

6. Huang, J. L., Lai, X. J. (2009). Eliminating
ability and correlation of random statistical
tests. Information Security and
Communications Privacy, Vol. 10, pp. 43–46.

7. McMillan, M. (2020). Learning C++:
generating random numbers the C++11 way.
pp 1-6. https://levelup.gitconnected.com.

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1155–1166
doi: 10.13053/CyS-28-3-4381

Comprehensive Method for Measuring Randomness in Pseudorandom Generators 1165

ISSN 2007-9737

8. Demirhan, H., Bitirim, N. (2016). Statistical
testing of cryptographic randomness.
İstatistikçiler Dergisi: İstatistik ve Aktüerya,
Vol. 9, No. 1, pp. 1–11.

9. Rukhin, L. (2001). Testing randomness: a
suite of statistical procedures. Theory of
Probability & Its Applications, Vol. 45, No. 1,
pp. 111–132.

10. Rukhin, A., Soto, J., Nechvatal, J., Smid, M.,
Barker, E., Leigh, S., Vo, S. (2001). A
statistical test suite for random and
pseudorandom number generators for
cryptographic applications Gaithersburg, MD,
USA: US Department of Commerce,
Technology Administration, National Institute
of Standards and Technology, Vol. 22, p. 1.

11. Sulak, F., Do�anaksoy, A., Ege, B., Koçak,
O. (2010). Evaluation of randomness test
results for short sequences. In: Carlet, C., Pott,
A. (eds) Sequences and Their Applications –
SETA 2010. SETA 2010. Lecture Notes in
Computer Science, Springer, Berlin,
Heidelberg. Vol 6338, DOI: 10.1007/978-3-
642-15874-2_27.

12. Karimovich, G. S., Turakulovich, K. Z.,
Ubaydullayevna, H. I. (2017). Computer's

source based (Pseudo) random number
generation. 2017 International Conference on
Information Science and Communications
Technologies ICISCTIEEE. pp. 1–6. DOI:
10.1109/ICISCT.2017.8188593.

13. Valtchanov, B., Fischer, V., Aubert, A.,
Bernard, F. (2010). Characterization of
randomness sources in ring oscillator-based
true random number generators in FPGAs.
13th IEEE Symposium on Design and
Diagnostics of Electronic Circuits and
Systems, IEEE, pp. 48–53. DOI: 10.1109/
DDECS.2010.5491819.

14. Panneton, F., L'ecuyer, P. (2005). On the

xorshift random number generators. ACM
Transactions on Modeling and Computer
Simulation, TOMACS, Vol. 15, No. 4,
pp. 346– 361.

15. Pruebas-de-aleatoriedad https//xdoc.mx
documents

Article received on 12/10/2022; accepted on 21/06/2024.
*Corresponding author is Manuel José Maldonado.

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1155–1166
doi: 10.13053/CyS-28-3-4381

Manuel José Maldonado, José Luciano Maldonado1166

ISSN 2007-9737

