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Abstract. After the successful implementation of speech
synthesis in several languages, the study of robustness
became an important topic so as to increase the
possibility of building voices from non-standard sources,
e.g. historical recordings, children’s speech, and data
freely available on the Internet. In this work, a measure
of the influence of noise in the source speech of the
statistical parametric speech synthesis system based
on HMM is performed, for a case of a low-resourced
database. For this purpose, three types of additive noise
were considered at five signal-to-noise ratio levels to
affect the source speech data. Using objective measures
to assess the perceptual quality of the results and the
propagation of the noise through all the processes of
building speech synthesis, the results show a severe
drop in the quality of artificial speech, even for the cases
of lower levels of noise. Such degradation seems to be
independent of the noise type, and is at lower proportion
to the noise level. This results are of importance for
any practical implementation of speech synthesis from
degraded data in similar conditions, and shows that
applying denoising processes became mandatory in
order to keep the possibility of building intelligible voices.
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1 Introduction

The purpose of speech synthesis can be estab-
lished as the production of artificial speech from
a given text input using computers. The resulting
speech should be perceived with intelligibility and
naturalness, in order to apply the results in the
desired application. This process of speech

synthesis (also referred to as text-to-speech) has
a long history, from early mechanic systems to
our days, where complex techniques and the
release of dedicated software have extended the
speech synthesis possibilities to many languages
and applications.

The evolution of modern techniques can be
traced back to the early 1970s [1], where
the waveform generation was made using low-
dimensional information, such as formants. And
it has evolved to perform direct manipulations of
waveforms (e.g. concatenative and unit selection
approaches) or high dimensional parameters and
deep learning-based models.

The statistical models of speech synthesis,
mainly based on Hidden Markov Models (HMM),
were popularized among researchers of the field
after the first publications of the technique [2,
3], particularly after the release of the HTS
software [4]. HMMs were previously successfully
applied to speech recognition, and many of the
ideas and parameters applied for that task were
translated to the speech synthesis field.

With the HTS software, many papers were
published on the implementation of statistical
parametric speech synthesis in several languages
around the world. The case of Spanish was also
reported by a reduced number of researchers [5,
6, 7].

The advantages of statistical parametric speech
synthesis based on HMM were reported in terms of
its flexibility and capacity for producing intelligible
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voices with low-training data [8]. The main
disadvantages were the buzzy, muffled sound
often reported.

With the increased performance and success
of deep learning in several fields during the last
decade, speech synthesis also benefits from the
possibilities of the complex modeling and effective
training algorithms of deep neural networks. The
first ideas on the implementation of deep learning
in speech synthesis were published in [9].

In previous years, many proposals have been
made to apply different types of neural networks,
such as Restrictive Boltzmann Machines, Deep
Belief Networks, Bidirectional Long Short-term
Memory Neural Networks, and Convolutional
Neural Networks [10]. In some recent reports,
the combination of both statistical parametric
modeling combined with deep learning was also
published [11, 12].

Typically, the deep learning-based approaches
report a higher quality of results but require a
large amount of training data. There are many
situations where the availability of such resources
is not possible to achieve. For example, in building
speech from historical recordings, children’s
speech and low resourced languages [13, 14].

For these cases, HMM-based statistical para-
metric speech synthesis remains the main possibil-
ity to produce intelligible artificial voices. In many of
such cases, the quality of the recordings was also
a shortcoming for the quality of the results.

The usual framework in the building of synthetic
voices was considered in the vast majority of
cases: the recording of datasets in highly-
controlled environments, which has typically done
in professional studios with high-quality equipment.
According to to [15], given the advances in speech
synthesis techniques, the research community
can consider building quality voices from data
collected in less controlled environments. These
new conditions represent several challenges for
the process, for example, non-consistent recording
conditions, unbalanced phonetic material, and
noisy data. It is still not clear how robust
speech systems are under such unfavorable
conditions [16].

The problem of producing artificial speech has
been addressed by some authors with particular in-
terests in techniques that take advantage of a large
corpus of clean data, such as speaker-adaptation
in HMM-based speech synthesis. Using such
corpus new voices can be built by incorporating
information from the corpus in the smaller datasets.

For example, in [17], the authors proved that
naturalness is not significantly affected by the
presence of noise in the smaller dataset. The
unfavorable conditions can be presented in found
data, i.e. data freely available on the web. Such
data has significant variation in terms of speaking
style and channel characteristics [18].

In this paper, an experimental study on the
influence of noisy recordings in the results
of statistical parametric speech synthesis is
performed, for the case of a small database in
Spanish. The purpose of the study is to numerically
report and compare the influence of several types
and levels of noise in the speech data required to
produce artificial speech.

The influence of the noise provide information
to anticipate the quality of artificial speech that
can be produced from recordings with unfavorable
conditions. Such information is relevant for
the evaluation of low-quality sources of speech
resources in building speech synthesis.

The rest of this paper is organized as follows:
Section 2 presents the theoretical background
of speech synthesis and the effects of noise.
Section 3 presents the experimental setup of the
proposal. Section 4 presents the results. Finally,
the Conclusions are presented in Section 5.

2 Statistical Parametric Speech
Synthesis

The Statistical Parametric Speech Synthesis
based on HMMs models the speech production
process using the source-filter theory of voice
production [1]. This model comprises the
voicing information using fundamental frequency
(or the logarithm of this measure) and the
spectral envelope, commonly represented by
mel-frequency cepstral coefficients (MFCC). The
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speech waveforms are reconstructed from se-
quences of such parameters, and additional
information about dynamic features (e.g. rate
of change in form of delta and delta delta
features [19]).

Fig. 1. Left-to-right Hidden Markov Model with three
states

First, the HMMs are trained, using a similar
approach to that utilized in speech recognition:
adjusting the parameters of the HMM model
(Figure 1) using information extracted from
a speech database. Each HMM can be
expressed as:

λ = (π,a,b), (1)

where π is the probability of initial-state, a and b the
state-transition and output probability distributions,
assumed as multivariate Gaussian distributions
(with a mixture of continuous and 0-dimensional
distributions).

In statistical parametric speech synthesis based
on HMM, the set of models depends not only
on the number of phonemes of the particular
language, but on the context-dependency of the
phonemes (phonetic and prosody contexts) as
well. For this reason, a large number of models
are trained to represent the temporal, spectral and
pitch characteristics of every sound and its context.
For example, a model for the< a > phoneme at the
beginning of a phrase, followed by consonant, and
a model for the < a > phoneme at the beginning of
a phrase, followed by a vowel, etc.

The training of each HMM can be expressed as:

λmax = argmax
λ

p(O|λ,W ), (2)

where O is the set of speech parameters and W
the phoneme labels. A detailed description of the

HMM and the procedures involved in the speech
synthesis can be found in [1, 20].

For this work, it is of particular importance to
state that the quality of the speech synthesis relies
on the proper adjustment of the parameters of
λmax in Equation 2. And this adjustment depends
on the quality of the features O extracted from
the dataset, and its consistency according to the
phoneme labels (linguistic specification) W .

Several factors can affect the outcomes of
the process: The amount of information in the
database (few information implies less O to
estimate the parameters of the HMMs) and the
quality of this information. If the information is
corrupted by noise, or the recordings have large
variations among phonemes (typically, this can
occur in very expressive or emotional speech), the
ability of the HMMs to reproduce the parameters of
the speech for a natural sounding voice with high
intelligibility may be affected. The nature of such
noise and its level can also be a relevant factor for
the results. In this work, an experimental validation
of such assumptions is proposed and measured.

3 Experimental Setup

3.1 Database

For this work, we selected the set of words
and sentences of [21], developed at the Center
for Language and Speech Technologies and
Applications of the Polytechnic University of
Catalonia. The 184 utterances were recorded by
a professional native Spanish speaker actor in a
professional studio, where the recording conditions
were controlled completely. The database includes
affirmative and interrogative sentences, fifteen
paragraphs, digits and isolated words.

3.2 Experiments

To determine how noise affects the building
of synthetic voices with such small database,
several voices were produced using the HTS
system, each one after affecting the speech
source with noise. The complete database
was degraded with additive noise of three types:
two artificial-generated noise (White, Noise) and
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Fig. 2. Diagram of the experimental procedure

one natural noise (Babble). Five levels of
Signal-to-noise (SNR) ratio were considered, to
cover a range of conditions and comparatively
assess the effect on the results.

The whole set of voices to compare can be
listed as:

— HTS Clean: The produced with the clean
database, without any noise added.

— White Noise added at five SNR levels: SNR 5,
SNR 7.5, SNR 10, SNR 12.5, SNR 15.

— Pink Noise added at five SNR levels: SNR 5,
SNR 7.5, SNR 10, SNR 12.5, SNR 15.

— Babble Noise added at five SNR levels: SNR
5, SNR 7.5, SNR 10, SNR 12.5, SNR 15.

The evaluation metrics proposed in the following
section were used to compare the level of
degradation on the artificial voice in comparison
with the base system (HTS clean). A diagram of
the complete process is presented in Figure 2.

3.3 Evaluation

To determine the quality of each case of synthetic
voice, two objective measures were applyed.
These measures have been reported in speech
synthesis reports as reliable in measuring the
quality of synthesized voices:

— Segmental SNR (SegSNR): This measure
calculate the average of SNR at frame level,
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Fig. 3. Spectrograms of an utterance with White noise
at SNR5 (above) and the same utterance synthesized
from a database degraded with the same type and level
of noise (below)

according to the equation:

SegSNR =
10

N

N∑
i=1

log

[ ∑L−1
j=0 s2(i, j)∑L−1

j=0 (s(i, j)− x(i, j))2

]
,

(3)
where x(i) is the original sample and si the
ith synthetic speech sample. N is the total
number of samples of the utterance and L is
the frame length.

— PESQ: This is a measure intended to predict
the subjective perception of speech, in ITU-T
recommendation P.862.ITU. The results are
reported in the interval [0.5, 4.5]. A PESQ
value of 4.5 means an exact reconstruction of
the speech. PESQ is computed following the
equation:

PESQ = a0 + a1Dind + a2Aind. (4)

The coefficients ak are chosen to optimize
PESQ measure in signal distortions and
overall quality.

Additionally, we propose the visualization of
spectrograms as a mean to represent the noise
and its effect on the spectrum of the speech
signals.

Fig. 4. Spectrograms of an utterance with Pink noise
at SNR10 (above) and the same utterance synthesized
from a database degraded with the same type and level
of noise (below)

4 Results

This section presents the evaluation metrics on the
different experiments and its analysis in terms of
how the presence of noise affects the building of
synthetic voices. For example, in the spectrograms
of Figure 3, the silence segments at the beginning
and the end of the noisy speech (with SNR 5),
and the synthesized version of the same utterance
preserves similar patterns of the noise. On
the other hand, in the speech segments, the
spectrogram presents noticeably blurred bands of
frequencies.

A similar observation can be made for the
case of Pink noise at SNR 10, as presented in
Figure 4. The particular pattern in the form of
bands of frequencies can be explained for the
process of adjusting the trajectories of parameters
in the HMMs. The noisy information became
part of the information adjusted in the models,
and in the process of generating parameters,
the characteristics of flat trajectories also affected
the noise.

Unfortunately, such characteristic during the
speech segments in the spectrograms represent
considerable decrease in the objective measures
of the synthesized voice. For example, Figure 5
shows how the noisy condition of the data
severely affects the perceptual quality of the
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Fig. 6. SegSNR results for the noise-degraded speech and the artificial version produced from the same speech

synthesized speech at all SNR levels. At SNR5
of White Noise, the resulting synthesized speech
is closed to the lowest value of PESQ. All artificial
voices produced under noisy conditions have
considerably lower PESQ values than the base
system: the HTS voice.

There are no significant differences between the
three types of noise analyzed in this work. The
Babble noise seems to affect the results more than
the artificial voices, which is expected due to the
speech nature of such noise (consisting of a crowd
talking in the background).

Considering SNR levels below SNR 5 is a
common practice in the study of robust speech
recognition. But with these results, it seems that
below this level, the synthesized speech for a low
resource database cannot be considered for any
practical application.

The results of the measure SegSNR are
presented in Figure 6. Like the previous measure,

there is a significant drop in the quality of synthetic
voices at all SNR levels, and very similar among
the noise types. All the cases present values
below the base system (HTS Clean voice, with
SegSNR=-5.11) as expected, but there is a
decrease in the slope of the lines in the synthesized
speech that can be considered an unexpected
result of this study. Such behavior in the SegSNR
trends at all SNR levels can be explained by the
averaging process performed during the training of
the HMMs.

All the results presented have similar trends in
the dropping of the quality of synthetic voices in the
presence of noise; thereby, preserving the slope
of the degraded speech for the case of PESQ.
It is important to remark that the results were
obtained from a Spanish speech database that
can be considered low-resourced. The robustness
of the HTS system under such conditions can be
considered very low in contrast to the experiences
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reported in the references that took advantage
of adaption systems or the complement of clean
speech from other speakers during the process of
generating the artificial speech.

5 Conclusions

In this work, an experimental study on the
quality of synthetic speech built from a Spanish
noisy database was performed. The amount
of data available for the experiments can be
considered low-resourced in contrast to larger
speech databases available in other languages.

The obtained results show how the presence
of noise in the recordings severely affects the
synthetic voices produced, regardless of the type
of noise and the SNR. In particular, the perceptual
quality measured using PESQ shows how the
resulting voices have lower quality than the voices
produced from clean speech. The type of noise
seems to make no difference in the quality of the
synthetic speech.

The results are relevant to the building of
synthetic voices where data cannot be collected in
controlled environments, from historic recordings,
data freely available on the Internet, or recordings
performed during videoconferencing.

In addition, the results help to establish the
importance of building a clean larger speech
corpus for endangered languages, children’s
speech, and many other potential applications of
speech synthesis in new languages or languages
where such resources have not been produced.

For future work, several relevant questions can
be addressed for experimental validation, in terms
of the robustness of speech synthesis systems
under partially noise-corrupted data, and a broader
range of noise types and levels. Applying
denoising algorithms before the building of the
voices is an important opportunity to preserve
the possibility of generating synthetic voices from
noise-degraded data.
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