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Abstract. Interpretable Machine Learning (IML) aims
to establish more transparent decision processes where
the human can understand the reason behind the
models’ decisions. In this work a methodology to
create intrinsically interpretable models based on fuzzy
rules is proposed. There is a selection to identify
the rule structure by extracting the most significant
elements from a decision tree by the principle of
justifiable granularity. There are defined hierarchical
decision granules and their quality metrics. The proposal
is evaluated with ten publicly available datasets for
classification tasks. It is shown that through the principle
of justified granularity, rule-based models can be greatly
compressed through their fuzzy representation, not
only without significantly losing performance but even
with compression of 40% it manages to exceed the
performance of the initial model.

Keywords. Granular computing, neuro-fuzzy,
Sugeno, hierarchical decision granules, interpretable
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1 Introduction

Machine learning models are ubiquitous nowa-
days; They are involved in many activities of
daily life in which people are aware or unaware
of their use. It is essential to know how and
why the models provide a particular output and
how they can be made more fair and secure,
especially in critical applications. Interpretable
Machine Learning (IML) strives to construct a
bridge between the learned model and
human understanding.

There are various ways to achieve model
interpretability by applying: i) intrinsic interpretable
models, ii) regularization techniques, and iii)
posthoc explanation techniques. One trend is to
build surrogate models (lower complexity) than the
original one and more interpretable to understand
the decision process, such as rule-based models.
[7, 9, 48].

This work takes advantage of the inherent
interpretability that brings Fuzzy Inference Sys-
tems (FIS). FIS models are interpretable since
they are rule-based models and are described
linguistically. The antecedent is represented by
fuzzy variables and sets, proposed by Zadeh
[59]. The inference process of those systems is
performed through fuzzy reasoning, which aims to
represent human perception and their inference
mechanism under uncertainty.

An interesting characteristic of FIS is that
their knowledge representation is composed of
IF-THEN rules, where their antecedents and
consequents are in natural language. For example,
a proposition can be “Temperature is hot”, where
Temperature is related to an input attribute and hot

to the set which partially belong. As was described,
this formal notation potentially brings an intrinsic
high interpretability degree if their components are
well-defined [32].

The FIS are used in a variety of application
domains in ML context, such as medical [14, 19,
24, 41, 57, 35], robotics [15, 1], decision making
[60, 12, 3].



Often this FIS modeling is data-driven, usually by
some unsupervised technique (e.g., clustering) to
discover their input partition, membership functions
parameters, and rule structure. An important
issue is that as the number of attributes (input
dimension) and fuzzy sets increases, it becomes
more susceptible to presenting a combinatorial
problem in the rule-finding process. In this
approach, we construct the initial rule structure
through a decision tree model, which is further
transformed to the fuzzy space domain and
adapted to a Sugeno-type architecture described
in the further sections.

As the input dimension space and feature
interaction complexity increases, the resulted
decision tree gets deeper; therefore, it becomes
pruned to be hardly interpretable. For each leaf
node or decision node in the tree, it can extract
an IF-THEN decision rule. To tackle the problem
of a high number of decision rules is conducted
a post-pruning process. The pruning process is
carried on by selecting the most relevant elements
(antecedents and decision rules).

Granular Computing (GrC) aims to form mean-
ingful Information Granules, which represent a
collection of objects abstraction and relate them by
some similarity in a hierarchical manner [5], which
allows creating semantically richer structures [67].
GrC is inspired by how the human brain works,
processing information abstractly at the required
level to resolve a given task. The data is organized
by some of their characteristics in a hierarchical
way to form a granule, a formal representation
of this structure with two essential properties,
specificity, and coverage.

Specificity is related to the granule representa-
tion; the higher specificity is, the less ambiguous it
is, and humans can easily understand it. On the
other hand, coverage is related to the proportion of
individuals designated by the granule.

Intuitively, a well-formed information granule
should have higher values in both specificity
and coverage. However, these properties are
commonly in conflict, as the higher the specificity
is, the lower is the coverage; an optimization
process usually conducts the granule allocation.

This work proposes a data-driven method to
construct a fuzzy rule-based system using the

principle of justifiable granularity for selecting
the most relevant knowledge base elements,
according to the trade-off between specificity and
coverage values. This discrimination is conducted
over the rules formed by decision tree models,
allowing the construction of a variable model
complexity useful in IML.

The main contributions of this work are:

— Definition of a Sugeno-type neuro-fuzzy
model for classification tasks that leads
to the straightforward interpretation of the
decision process.

— Characterization of hierarchical Information
Granules in decision-set context.

— Definition of hierarchical specificity and cov-
erage metrics for optimization of graph-
based entities.

— Data-driven methodology for establishing
fuzzy inference system structure by decision
tree rule extraction and selecting the most
relevant elements by following the principle of
justifiable granularity.

In the following sections correspond to: a brief
description of the relevant theory, section 2. In
section 3 is reviewed the related work. In section 4
is described the hierarchical Information Granules
and their generation. In section 5, the neuro-fuzzy
model is described. In the section 6 is shown
the followed methodology and experiment setup to
evaluate the proposal. The results and conclutions
are in sections 7 and 8 respectively.

2 Background

The proposed methodology comprehends three
main areas: i) Fuzzy systems for establishing
natural language interface in the form of fuzzy
rules; ii) Decision tree-based models for initial
structure rule discovery in the data space domain.
iii) Granular computing, aiming at the well-formed
Information Granule for rule-based knowledge
model representation following the principle of
justifiable granularity.



2.1 Fuzzy Systems

Fuzzy Systems are rule-based models that use
fuzzy logic to conduct the reasoning process.
Fuzzy logic was proposed by Zadeh [58] as
an approach to represent computable human
perception through words.

This reasoning system type offers greater
explainability and is widely used in the Machine
Learning field due to its ability to process linguistic
information [13].

These systems are broadly used on various
domain applications such as control, medical,
aerospace and environmental applications [15, 30,
54, 49, 29, 9].

The knowledge base modeling can be built either
manually by experts, or designed automatically,
usually by clustering techniques.

Zadeh’s fuzzy rule has the following structure: IF
Temperature is hot THEN Cooling is high.

The antecedents and consequents are as
shown formed by linguistic variables (Temperature
and Cooling), the values of these variables
are linguistic values (hot and high), which their
meanings are easily understanding by humans.

The Zadeh’s linguistic variable [59] is character-
ized by a quintuple (x,T (x),X,G,M), in which x is
the name of the variable; T (x) is the term set of x,
linguistic terms; X is the universe of discourse; G is
a synthetic rule which generates linguistic terms in
T (x); M is a semantic rule which associates each
linguistic value A its meaning M(A), where M(A)
denotes a fuzzy set in A.

A fuzzy set A in X domain is defined as a set of
ordered pairs (equation 1):

A = {(x,µA(x))|x ∈ X}, (1)

where µA(x) ∈ [0, 1] is the membership function
that represents the human perception in form of
membership degree in de universe of discourse X.

2.2 Decision Trees

Decision trees are graph-based Machine Learning
models for classification and regression tasks. The
model constructs a tree in which their non-terminal
nodes perform splits in the input data space (in
the context of Machine Learning). The splitting
process is sequential until it reaches the leaf nodes
(terminal nodes). The evidence provides an output
label or probability of belongingness to some class
(in classification tasks).

This tree construction relies on subsequent
partitioning in the data inputs space by selecting
the best feature and value to split. There are many
criteria for select the best split candidate. The main
idea is to achieve the best purity, which means that
the residual data after each split belongs to only
one class; until this goal is not reached, new nodes
are added to the tree.

The relevant hyper-parameters in this context
for regularizing the model are the number of
features searched in each partition node; minimum
elements belonging to a node to consider creating
a branch; criteria to measure the quality of a
split; the maximum depth that can have the
decision tree.

Once the tree is created, it can be traverse
through its branches until each lead node is
reached; every node condition in the path can be
extracted to form an antecedent and consequent
part of an IF-THEN rule. Thus, for every leaf node,
a rule can be constructed.

In this work, the performed input space
partitioning by the decision tree model is used to
define the initial structure of the knowledge base
of the FIS. The selection of the most relevant
rules elements is conducted via optimization by the
principle of justifiable granularity.

2.3 Granular Computing

Granular Computing is a paradigm inspired by
how the human brain performs different levels of
entities’ characteristics abstraction and uses those
to make decisions. The main particle in this
paradigm is called Information Granule. These
granules can be regarded as a collection of objects
hierarchically that exhibit similarities among them.



There is not an specific formalization to define
an Information Granule, they can be described by
a huge variety of different representation, such as:
interval sets [21, 40], rough sets [26, 61, 50, 49,
69], fuzzy sets [37, 4, 36, 63, 62], probabilistic
sets [42, 53], possibility sets [65, 46], neural
networks [34, 20, 64, 51, 28, 17]. GrC is a
unified framework of techniques, methodologies,
and theories for the formalization, construction,
and manipulation of Information Granules; it brings
a coherent environment to work with abstract
object representation [5].

Some techniques for building fuzzy information
representations are inspired by granular comput-
ing, such in [43] where a method is proposed to find
the right cluster size concerning the data context; in
[8] is proposed a generalized Type-2 fuzzy control
model that uses granularity to divide the global
model by simpler models.

2.3.1 Principle of Justifiable Granularity

The fundamental idea of principle of justifiable
granularity is to form meaninful Information
Granules based on experimental evidence (data),
following two general criterias: coverage and
specificity [38].

The coverage is the numeric evidence that
supports the Information Granule. The intention
is to form/discover granules with the more
substantial experimental evidence that supports its
formulation. On the contrary, the specificity is
related to the granule’s well-formed; the smaller
the Information Granule is, the better. The ideal is
to form meaningful Information Granules with the
higher coverage and specificity as possible.

These two requirements are in conflict. In a
basic formulation, the granule A been represented
as an interval [a, b]. As higher the range
is, the more expected experimental support
(cardinality, showed as card(·)) it gets ( cov(A) =
card({xi|xi ∈ [a, b]})); at the same time, the
specificity decreases, considering the range as the
specificity (sp(A) = |b− a|).

To find the best meaningful Information Granule,
this contrary behavior between the criteria of
coverage and specificity can be defined as
a multi-objective optimization problem for the

maximization of the composite multiplicative index.
Given a set of design parameters θ for the
Information Granules, it must find the best values
for θ that maximizes the equation 2:

A∗
θ = argmax

θ
cov(Aθ) ∗ sp(Aθ). (2)

The principle of justifiable granularity allows
finding the best well-formed granule. In the fuzzy
logic context, it has been used to define fuzzy
information granules, such in [33] where is used to
construct IT2 Fuzzy Memberships functions.

The proposed method in this work applies
the principle of justifiable granularity to compress
decision sets and improve their interpretability.

3 Related Work

GrC has been used in Machine Learning
problems as a way to define semantic richer
data representation to build models with missing
information [25], prototype forming for descriptors
of facial expressions [55]. To establish initial
neural network architecture for further optimization
[39]. Furthermore, this framework has been used
to overcome the limitations of existing Machine
Learning models related to data quality [22, 10, 6],
interpretability, domain adaptation for regression
tasks [22], and dimensionality reduction [2, 16, 52].

In [31] is discussed the importance of adopting
the GrC paradigm in rule-based systems as a
way to improve interpretability. The principle of
justifiable granularity has been used to discover
robust information clusters in the context of
data-driven system modeling [68].

There are various works in the context of GrC
which support the hypothesis of more robust gen-
eration rule-based systems [44, 54], rule reduction
using complex fuzzy measures with GrC [47]. Also,
the hierarchical representation of granule modeling
has been used to solve hierarchical classification
problems [23], for building interpretable models in
data stream learning environments [27].

The use of GrC in the context of Machine
Learning comprehends the discovery of the
Information Granules in the data space domain
and forms them by some formal description, e.g.,
intervals, fuzzy sets, rough sets, hyperboxes.



Some recent approaches in GrC adopt cognitive
science perspectives and fuzzy logic to support
intelligent decision-making [18, 56]. GrC has
promoted the adoption of fuzzy logic for data
abstraction to be capable of processing various
data types in classification tasks using granular
decision trees [29, 30]. A top-rated operator
in deep learning for extracting relevant features,
the convolution, had been adapted to operate
with fuzzy sets with a granular perspective for
classification problems [11]. In [66] is proposed
a polynomial-feature granulation method based on
long short-term memory network for oxygen supply
network prediction.

In this work, a decision-tree model discovers
the rule base before characterizing its elements
in a granular paradigm. Given an a priori
defined granules collection, this work selects
the best ones to create higher-level Information
Granules. It then performs the fuzzification to
develop a new Sugeno-type fuzzy rule base with
learning capability due to their analogous neural
network representation.

4 Granules Construction

Different levels of abstractions define the granule
construction process. The level of these granules
is denoted by the subindex Ai. In the first level
of granularity, A0 corresponds to the original data
space, so that a zero-level granule is equivalent to
a given instance of the dataset A0 ≈ x(i).

A level 1 Information Granule (A1) is charac-
terized as the tuple (m, r) that correspond to a
range [m − r,m + r], notice that in this particular
scenario, it is defined with a symmetric proportion
from the median (could be further extended). A
level 2 Information Granule (A2) is described as
an implication relation; at this abstraction level, the
interaction between different domain Information
Granules is considered. A level 3 Information
Granule in this work is defined as a decision set.

The notation to denote a granulation process is
through eq. 3:

G(A′
i) = Ai+1. (3)

where G is the mapping process to form a higher
Information Granule given a set of lower-level
granules, A′

i ⊆ Ai denote a set that belongs to the
i-level granular space, and Ai+1 is a formed higher
level granule. For instance, the first abstraction
level starts from the crisp data space, such that
G(X) = G(A0) = A1. For notation purposes Gl(A)
denotes the process of perform l-level abstraction
processes for a given granule A.

The notation to denote a degranulation process
is through eq. 4:

G−1(Ai) = {A(1)
i−1, . . . ,A

(n)
i−1} ⊆ Ai−1, (4)

where G−1 is the mapping process to form a lower
Information Granule given a granule, Ai denote the
i-level granular space, and Ai−1 is a formed lower
level granule.

It is essential to notice that the raw represen-
tation of a granule is a set that is formed by
granules of lower levels. Intuitively, a granule
should be represented by a model that requires
low information.

For a level 1 Information Granule is defined the
following metrics to measure the coverage (eq. 5)
and specificity (eq. 6).

Coverage:

cov(A1) =
card({xk|(m− r) < xk < (m+ r)})

N
.

(5)
Specificity:

sp(A1) = 1− |r|
|Xmax −m|

, (6)

where A1 is an Information Granule, xk ∈ X, m,
and r characterize a range (level 1 granule); m is
the median of the range, and r the distance to the
rage limits in a symmetric way. card(·) stands for
the cardinality of a given set:

G(A′
1) =

∧
i

ρ(A1
(i);x) → Y = A2, (7)

where A′
1 ⊆ A1, that in their raw representation is

a set that belongs to the A1 space, namely a set of
ranges (denoted by a tuple (m, r)) which conforms
an IF-THEN rule.



The operator ∧ represent the conjuntion opera-
tion. ρ : A1 ×X is a logical function that forms the
proposition “x belongs to the granule A(i)

1 ”. Y
is the target domain:

G−1(A2) = A′
1, A′

1 ⊆ A1. (8)

In the degranulation process of a level 2 granule,
the raw representation of the operation is a set
of level 1 granules, and those granules form the
antecedent part in the rule structure.

For a level 2 Information Granule are defined the
following metrics to measure the coverage (eq. 9)
and specificity (eq. 10).

Coverage:

cov(A2) =
1

N

N∑
i

card({x(i)|∀x(i) ∈ X,

∀A(i)
1 ∈ G−1(A2).ρ(A

(i)
1 ;x(i))}).

(9)

Specificity:

sp(A2) =
card({G−1(A2)})

dim(X(i))
, (10)

where A2 is an Information Granule formed by
a implication relationship

∧
i ρ(A1

(i);x) → Y , N
is the number of instances that correspond to
the dataset; and, dim(X(i)) is the number of
considered features in the dataset. card(·) stands
for the cardinality of a given set.

To select a justifiable Information Granule, it
is necessary a measure their formation quality.
Due to the contradictory behavior of coverage and
specificity can form a Pareto front to select the best
candidates. Notice that the Pareto front is formed
by the product and can be computed to any granule
at any abstraction level (eq. 11):

Qli(Ai) = sp(Ai) ∗ cov(Ai)
γi . (11)

There is a parameter that serves to prioritize one
of the terms [38], γi. If 0 ≥ gammai < 1 there
is pondered more the coverage, on the contrary, if
γi > 1 then the specificity gets more relevant in
the calculus. For each abstraction level, a different
value γi can be defined.

4.1 Hierarchical Quality Measurement

The quality construction of a given of H level
granule is measure with the proposed metric
(eq. 12), which perform successive degranulation
process and multiply their Pareto front values to the
lower level granules:

V (Ah) = {Qlh(Ah)× V (A′
h−1)|∀A′

h−1 ∈ G−1(Ah)}.
(12)

The optimization problem is shown in equation
13, which aims to find the more appropriate
level 1 granules. The aptitude function is the
hierarchical measure (eq. 12), their restrictions
are: 1) The solution set must be the minimum
cardinality (showed as the function card(·)) 2) The
aggregation of the values vi (hierarchical Pareto)
should be equal or less the to regularization
parameter α, and 3) The number of elements
in the solution set must be equal or less than
the regularization parameter ξ. These two
regularization parameters allow finding the best
level 1 granules smaller set with at least a
cumulative value of α and does not have more than
ξ elements:

A∗
H = argmax

A′
1⊆···⊆AH

V (G2(A′
1))

subject to:

1) min card({A′
1}),

2)

card({G−1(AH)})∑
i=1

V (G(A′
1))i ≤ α,

3) card({A′
1}) ≤ ξ.

(13)

The resulted Information Granule collection
reconstructs the decision set, formally by G2(A∗).
This process can be treated as a post-pruning
technique, the bias of the model increases while
its variance decreases. The initial structure
for building the knowledge base of the FIS to
be optimized is formed by the decision set.
Figure 1 shows the general block diagram of the
proposed methodology for data-driven fuzzy rule
base construction. The details of the neuro-fuzzy
model characteristics are in section 5.
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Fig. 1. Block diagram of the proposed methodology for building a fuzzy rule-based system from decision set created by
decision-tree model using the principle of justifiable granularity

5 Sugeno-Type Neuro-Fuzzy Model

The Sugeno fuzzy systems allow their construction
in a systematic form to generating fuzzy rules
in a data-driven manner, they were proposed by
Takagi, Sugeno, and Kang [45]. These systems
are also composed of IF-THEN rules, but only
their antecedent belongs to the fuzzy space. The
consequent part is a crisp function that maps the
input space.

As in the Mandani type fuzzy systems, the rules
might fire all at once to get a crisp output value,
can compute a simple weighted average of function
outputs, which is less time-consuming than
defuzzification in Mamdani type fuzzy systems.
The knowledge base can be described as follows:

R1 : IF x1 is low and . . . and xm is low THEN, y is σ
(1)
j∈J(x;w),

R2 : IF x1 is low and . . . and xm is high THEN, y is σ
(2)
j∈J(x;w),

...
Rn : IF x1 is high and . . . and xm is low THEN, y is σ

(n)
j∈J(x;w),

where xi is a fuzzy variable (which models the
feature space), their fuzzy values are represented
by the terms low, high, etc. y is the output space
described by the function σ

(n)
j∈J(x;w), where J

represents the output classes, x are the input crisp
values, and w are the function’s coefficients.

Once the knowledge base is designed, some
optimization methods can adjust their membership
function parameters to fit the data better. This
optimization process comprehends the mem-
bership function and consequent crisp function
parameters. In this approach, to maintain the
interpretability characteristic, sigmoid and linear
functions are selected.

An analogous neuro-fuzzy architecture carries
out the optimization of fuzzy model parame-
ters. This architecture comprises five layers:
input, fuzzification, inference, implication, and
de-fuzzification layer. The connections between
the layers are not fully connected to maintain
coherent antecedent relationships in the fuzzy
rules. In the fuzzification layer are only connected
the membership functions belonging to the input
domain. In the implication layer, each crisp
function is only related to the rule’s output (a given
class). Figure 2 shows a visual representation of a
Sugeno-type neuro-fuzzy model.

The parameters to optimize the model belong to
the antecedent part of the fuzzy rule and the (train-
able) parameters in the crip consequent function.

The neural architecture is shown in figure 2. The
first layer is non-fully connected among neurons
that represent the fuzzification process. Wich
maps a crisp input to the fuzzy space:

fBj
k(xi) = µBj

k
(xi), (14)
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Fig. 2. The Sugeno Neuro-fuzzy representation is composed of a non-fully connected 5-layer artificial neural network.
All the computations correspond to the involved operations in a Sugeno-type fuzzy inference system for q inputs, n rules,
and crisp consequent functions. Each rule is only linked to one class j ∈ J target space

where Bj
r ∈ Vk is a fuzzy set that belongs to

the fuzzy variable Vk, the domain of each fuzzy
variable is shared by its corresponding attribute
domain in the dataset. Only the membership
functions directly related to the attribute are
evaluated by the input value, which results in a
semi-connected layer.

The inference layer is also non-fully connected,
fires at a certain strength value in the range [0, 1].
The implication operation calculates a t-norm (∗̃) as
a product:

αl(xi) =

p∏
r=1

fBr (xi). (15)

The implication layer performs a normalization
operation that conforms a step to the weighted
average to the output:

ᾱl(xi) =
αl(xi)∑L
j=1 α

j(xi)
. (16)

After the normalization process, for each rule
that has a crisp function consequent related to an

output class j ∈ J , a ∗̃ as the product is calculated:

zj(xi) =

M∑
l=1

{σ(xi;w
l)× ᾱl(xi)}, (17)

where σ corresponds to sigmoid function that
transform the input space, σ(xi;w

l) = 1

1+e−wlxi
.

After the sigmoid transformation, all values are
computed by the softmax function, which maps
proportionally for each class, values in the range
[0, 1] and

∑J
j=1 hj = 1, it commonly interprets

those values as a probability output:

hj = P (y = j|x) = ezj∑K
k=1 e

zk
. (18)

The output value dimension corresponds to the
number of classes in the problem domain. Getting
an actual label as a result value could be computed
just as the argument position with the higher
probability value:

ŷ = argmax
j∈J

P (y = j|x). (19)



This neuro-fuzzy model adjusts its parameters to
fit a given target better. To measure the error of the
prediction is used the Cross-Entropy loss function
(LossCE):

LossCE(y,h(x;w)) =

− 1

N

N∑
i=1

J∑
j=1

y
(i)
j log(hj(x

(i))) + λ1||w||1 + λ2||w||2,

(20)
where N is the number of instances on the
batch; y is the target value in the form of
one-hot-encoding, and hj is the predicted
probability of belonging to the class j. In the
loss function are defined regularization l1 and l2
norms to constrain the weight values and prevent
overfitting. These regularizers can help to improve
the interpretability by only relevant considering
relevant features.

The trainable parameters on the neuro-fuzzy
model are the design parameters of the fuzzy
sets and the set of crisp consequent function
parameters; in this setup, the membership
functions are defined by Gaussian functions, then
the trainable parameters are the mean and σ
values, where σ > 0.

A gradient descent optimization method is
applied to find the best parameters. The learning
rule is shown in equation 21:

θnew = θold − η∇E(θold), (21)

where θ are the parameter vector values; E(θ) is
the gradient of the error value of the model with
the parameters θ; η is the learning rate value in
0 < η < 1.

The hyper-parameters of the model are:

— Learning rate value: this value scales
the directional vector generated by gradient
calculation, as the lower the value, the better
search is but slower. Usually, the default value
is set to a value of 0.01.

— Batch size: the selection of dataset partition to
train the model is set by this value.

— Epoch number: an epoch represents
an entire iteration overall dataset (train
dataset partition).

— Goal error value: is a threshold value to
consider to stop the training process because
is considered acceptable at that value.

— Output function structure: is the computation
that transforms the input value to a crisp output
value to further averaging pondered by the
firing strength values.

— Regularization coefficients λ1 and λ2: those
restrict how much the trainable parameters in
the output crips functions increases.

6 Experimentation

Ten publicly available datasets 1 are used in order
to evaluate the proposed model under different
domain applications. All datasets correspond to
classification tasks; their characteristics are shown
in the table 1.

Table 1. The selected publicly available datasets at UC
Irvine Machine Learning Repository1 for evaluating the
proposed methodology

dataset instances features classes

1 abalone 4177 8 3
2 credit-g 1000 20 2
3 creditcard 284807 29 2
4 diabetes 768 8 2
5 ionosphere 351 34 2
6 iris 150 4 3
7 sonar 208 60 2
8 spambase 4601 57 2
9 wdbc 569 30 2
10 wine 178 13 3

The methodology consists of primary
three steps:

1. Decision tree construction to extract and
generate a rule-based decision set.

2. The decision set reconstruction following
the principle of justifiable granularity for the
selection of the more meaningful granules.

1https://archive.ics.uci.edu/ml/index.php



3. The construction of Sugeno-type neuro-fuzzy
architecture for classification tasks then
optimized their membership function design
parameters and coefficients of the consequent
output functions.

6.1 Decision Tree Construction

Given a training dataset Dtrain = {(x, y)}Ni=1, a
decision tree model is train to map the input data
patterns to the target domain space, ftree(x; T) →
y. The hyper-parameters set for this experiment
are: i) complete search of the feature space in
each partition split; ii) one element at minimum
belonging to a node to create a branch; iii) Gini
impurity criteria to measure the quality of a split;
iv) without the maximum depth of the three, that
means the nodes are expanded until all leaves
are pure.

Creation of a decision set (Mds) by traversing
the tree paths from the root to the leaves nodes
(decision nodes). Due to the possible repetition
of some features for the splitting, it is necessary
to simplify the rules by limiting each feature to be
clustered only in one range (this process maintains
the model’s fidelity and does not affect the original
representation outcome). Each leaf node creates a
rule; therefore, it can be a potentially large number
of them. Some criteria must clip all feature ranges.
In this experiment, the maximum and minimum
values for each feature are taken to replace those
undefined boundaries. At this step, every node has
been contributed to creating intervals [m, r] where
m is the mean value and r is the distance from the
mean to the left and right, that are further used to
form proposition such as “x is in [m− r,m+ r]”.

6.2 The Decision Set Reconstruction by the
Principle of Justifiable Granularity

The intervals formed from the learned tree T
compounds the first level Information Granules.
All ranges created by the decision tree are
represented with the tuple (m, r), where m is
the median of the range, and r is the distance
to some boundary (notice that only represents
symmetrical granules).

Once all level 1 Information Granules are
generated (A1 space), then by following the
antecedents of the rules, the level 2 Information
Granules are generated (A2 space). At this level,
the relationship between lower-level granules are
established (see section 4). Next, those level
2 Information Granules are grouped to form a
structure-less level 3 Information Granule; namely,
it represents the decision set (Mds).

Due to the potentially large number of elements
in the decision set Mds (now forming a level
3 granule), it is necessary to prune it. The
pruning process follows the principle of justifiable
granularity; in this context, instead of selecting
a numerical range of values, the best set of
level 1 Information Granules that carry out more
meaningful information in terms of coverage and
specificity. Next, the optimization process (defined
in the section 4) is conducted to find the best
lower level granules (A∗

1) that contribute the most
to create higher quality Information Granules of
higher levels.

The set of level 1 granules are clustered by the
granulation process to reconstruct a decisition set
with fewer information (less variance and more
bias) since the lack of some elements (antecedents
and rules), M ′

ds = G2(A∗
1), where M ′

ds ⊆ Mds.

6.3 Sugeno-Type Neuro-Fuzzy Optimization

Once the decision set is reconstructed (M ′
ds), it

is converted to a fuzzy inference system using
Gaussian membership functions to represent the
antecedent ranges([m − r,m + r]). In other
words, the crisp Information Granules A1 are
fuzzified. Then those are defined by a tuple (m,σ)
to represent the Gaussian membership function,
where m is the same as the mean of the range in
the initial A1, and σ is the standard deviation, the
value approximates this value r, such that σ = r/2.

The consequent part of each rule is used to
define a sigmoid function that is related to the
target class σ

(r)
j∈J(x;w), where r denotes the rule

and j the specific class. This sigmoid computes
the dot product between the input vector and a
set of initially random weights σ(wTx); each class
at least has a function associated with it. The
output of this function evaluation is multiplied by
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Table 2. The proposed model average results with different alpha values applied in 10 publicly available datasets

alpha 0.20 0.40 0.60 0.80 0.95 1.00

DT mean 0.79 0.80 0.79 0.80 0.80 0.80
σ 0.13 0.15 0.14 0.14 0.14 0.14

RF mean 0.85 0.86 0.86 0.85 0.86 0.86
σ 0.13 0.13 0.13 0.13 0.13 0.13

Fuzzy-GrM mean 0.77 0.81 0.81 0.82 0.83 0.82
σ 0.14 0.13 0.15 0.14 0.14 0.14

Element reduction mean 93.91% 87.21% 81.02% 71.20% 58.61% 49.09%
Rule reduction mean 82.51% 71.61% 61.38% 49.09% 41.10% 39.48%

the normalized firing strength of the rules that are
linked to the target class consequent (equation
16). At this point, some selection criterion defines
the output (e.g., the label of a more significant
output rule).

In this work is used a softmax computation, to
define the probabilistic output of the FIS (equation
18). In addition, to better interpret inputs, it creates
a smooth solution surface space in the training
step of the neuro-fuzzy by gradient descent-based
optimization algorithms.

7 Results

The proposed model was evaluated by 5-fold
cross-validation, in 10 publicly available datasets
for classification, with 6 different values for the
hyper-parameter α which serve up to select the
compression level by selecting the most relevant
elements (according to eq. 12). The obtained
results for overall Sugeno-type neuro-fuzzy model
for classification (showed in table 2) were f1-scores
of 0.77, 0.81, 0.81, 0.82, 0.83, 0.82 when α-values
were set to 0.2, 0.4, 0.6, 0.8, 0.95, 1 respectively,
with the maximimun rules parameter (ξ) set to 50.

Considering all different values of α, in average
the model reduction (in terms of elements) was
73.51% with σ = 17.23. From a rule percentage
reduction perspective, the average compression
was 57.53% with σ = 17.34, and relative error
concerning the Simple Decision Tree model of
−1.4% with σ = 0.021, and 5.55% with σ =
0.022 respect to Random Forest model (in this

experiment the number of weak learners was set
to 100).

Figure 3 shows the performance comparison
between the decision tree-based models and the
proposed one at diverse α values.

At the global level, considering all analyzed
datasets, the minimum elements compression
percentage given the following values of the
prunning value α were: 81.25% with α = 0.2,
58.33% with α = 0.4, 50% with α = 0.6, 23.07%
with α = 0.8, 81.25% with α = 0.2, 11.11% with
α = 0.95, 0% with α = 1. At rule compression
percentage were obtained: 57.14% with α = 0.2,
33.33% with α = 0.4, 25% with α = 0.6, and no rule
compression at all for higher values for α.

In dataset results tables (10-7), there are
comparisons of the f1-score of the proposed model
(F-GrM), Decision Tree (DT), and Random Forest
(RF). Figure 5 shows as higher compression is
applied to the model, the higher the variance
is. Figure 4 shows the overall performance
comparison of different hyperparameters.

A paired sample t-test over the mean f1-score
values was used to formally validate the results
in all experiments with a confident value of
95%. Table 12 shows the comparison between
neuro-fuzzy (with different compression rates) and
decision tree models.

All mean f1-score values for the proposed model
and random forest have a significant difference (RF
had substantially better general performance than
the proposed model).

It is important to note that the fuzzy granule
model has considerably fewer rule elements even



Table 3. Proposed model results with different alpha values applied in the sonar dataset

f1-score ER RR
model alpha

F-GrM 0.20 mean 0.62 94.21 82.22
σ 0.04

0.40 mean 0.72 86.61 72.41
σ 0.06

0.60 mean 0.78 74.54 47.13
σ 0.07

0.80 mean 0.75 54.17 21.59
σ 0.05

0.95 mean 0.76 22.45 1.14
σ 0.08

1.00 mean 0.76 0.00 0.00
σ 0.07

DT mean 0.75
σ 0.02

RF mean 0.84
σ 0.02

Table 4. Proposed model results with different alpha values applied in the wdbc dataset

f1-score ER RR
model alpha

F-GrM 0.20 mean 0.90 95.33 85.26
σ 0.06

0.40 mean 0.94 87.56 73.03
σ 0.02

0.60 mean 0.96 77.53 47.73
σ 0.01

0.80 mean 0.95 60.14 30.00
σ 0.02

0.95 mean 0.96 33.50 10.00
σ 0.02

1.00 mean 0.96 0.00 0.00
σ 0.01

DT mean 0.92
σ 0.00

RF mean 0.96
σ 0.00



Table 5. Proposed model results with different alpha values applied in the credit-g dataset

f1-score ER RR
model alpha

F-GrM 0.20 mean 0.66 95.17 84.78
σ 0.02

0.40 mean 0.63 90.59 71.51
σ 0.03

0.60 mean 0.59 90.85 72.71
σ 0.02

0.80 mean 0.63 90.88 73.57
σ 0.02

0.95 mean 0.62 90.81 73.25
σ 0.02

1.00 mean 0.65 90.82 71.95
σ 0.03

DT mean 0.62
σ 0.02

RF mean 0.67
σ 0.01

Table 6. Proposed model results with different alpha values applied in the iris dataset

f1-score ER RR
model alpha

F-GrM 0.20 mean 0.95 83.15 61.54
σ 0.03

0.40 mean 0.93 70.51 51.43
σ 0.03

0.60 mean 0.92 55.84 37.14
σ 0.11

0.80 mean 0.95 36.71 8.57
σ 0.04

0.95 mean 0.96 17.33 0.00
σ 0.03

1.00 mean 0.95 0.00 0.00
σ 0.04

DT mean 0.95
σ 0.00

RF mean 0.96
σ 0.00
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Table 7. Proposed model results with different alpha values applied in the wine dataset

f1-score ER RR
model alpha

F-GrM 0.20 mean 0.73 89.40 67.39
σ 0.18

0.40 mean 0.92 76.86 58.97
σ 0.07

0.60 mean 0.89 67.97 53.66
σ 0.18

0.80 mean 0.95 46.09 19.51
σ 0.04

0.95 mean 0.96 16.92 2.44
σ 0.02

1.00 mean 0.93 0.00 0.00
σ 0.07

DT mean 0.94
σ 0.01

RF mean 0.97
σ 0.01

in configurations with no significant difference in
the mean f1-scores with respect to the DT model.

According to the validation, there is a significant
difference between models where alpha is 0.2,
0.95, and 1; in the first value, which the model
compresses the most the rules (around 82%), the
initial decision tree model result is higher by 0.02.

However, in alpha values 0.95 and 1, which the
model comprises the lowest the rules (around 41%
and 39%, respectively), the proposed model is
higher by 0.03 and 0.02, respectively. There is
no significant difference between model results in
intermediate alpha values, although the decision
sets were compressed between 71% and 49%.



Table 8. Proposed model results with different alpha values applied in the ionosphere dataset

f1-score ER RR
model alpha

F-GrM 0.20 mean 0.79 94.72 80.00
σ 0.09

0.40 mean 0.84 86.34 57.80
σ 0.04

0.60 mean 0.85 77.94 37.39
σ 0.08

0.80 mean 0.86 59.22 18.42
σ 0.04

0.95 mean 0.86 39.28 3.48
σ 0.05

1.00 mean 0.86 34.21 3.54
σ 0.04

DT mean 0.86
σ 0.02

RF mean 0.93
σ 0.01

Table 9. Proposed model results with different alpha values applied in the spambase dataset

f1-score ER RR
model alpha

F-GrM 0.20 mean 0.92 97.93 97.00
σ 0.01

0.40 mean 0.92 96.71 95.07
σ 0.02

0.60 mean 0.92 96.63 94.58
σ 0.01

0.80 mean 0.91 96.56 94.71
σ 0.01

0.95 mean 0.92 96.60 94.99
σ 0.01

1.00 mean 0.92 96.56 94.71
σ 0.02

DT mean 0.84
σ 0.01

RF mean 0.94
σ 0.00



Table 10. Proposed model results with different alpha values applied in the diabetes dataset

f1-score ER RR
model alpha

F-GrM 0.20 mean 0.65 95.45 87.90
σ 0.05

0.40 mean 0.68 88.11 71.95
σ 0.02

0.60 mean 0.66 82.19 61.26
σ 0.02

0.80 mean 0.66 81.86 60.84
σ 0.02

0.95 mean 0.69 81.91 62.10
σ 0.04

1.00 mean 0.63 81.82 59.85
σ 0.04

DT mean 0.66
σ 0.01

RF mean 0.73
σ 0.01

Table 11. Proposed model results with different alpha values applied in the abalone dataset

f1-score ER RR
model alpha

F-GrM 0.20 mean 0.62 96.85 88.57
σ 0.02

0.40 mean 0.62 96.84 87.89
σ 0.01

0.60 mean 0.62 96.84 88.37
σ 0.02

0.80 mean 0.61 96.82 88.50
σ 0.01

0.95 mean 0.62 96.85 88.51
σ 0.02

1.00 mean 0.63 96.85 88.71
σ 0.01

DT mean 0.56
σ 0.00

RF mean 0.64
σ 0.00



8 Conclusion and Future Work

This work addressed the problem of input space
partition to create the base rule structure for a
FIS by selecting the meaningful elements from a
decision tree model given a compression rate value
(controlled by the hyperparameter α).

The motivation for choosing a subset of the
elements in rule-based systems is to maintain
their structure as simple as possible, directly
impacting their interpretability. Fewer antecedents
lead to understanding the phenomena with less
effort; also, the number of rules affects too. In
order to build a knowledge base with the greatest
interpretability, it is necessary to create it with fewer
antecedents and rules.

The antecedents were characterized as type-
one granules by ranges, while the implications
were represented as type-two granules through
relationships between granules of the lower level.
The abstraction of decision sets is made by
hierarchical structure between the different levels
in the granules. The transition from one level
to another is defined through the granulation and
degranulation operations.

The methodology for extracting the relevant
elements was based on the principle of justifiable
granularity, which has a higher value of specificity
and coverage. In this approach, the optimization
method selects all level granules simultaneously
through the hierarchy established.

The reconstruction of the selected granules
creates a new decision set with fewer elements
than the original one due to the optimization
restrictions: i) minimize the number of level-one
granules; ii) the cumulative Pareto front values
must be equal or less than a regularizer
hyper-parameter α; iii) a hyperparameter ξ restricts
the number of level-one granules to consider
in the selection.

The presented work defined a hierarchical
measurement that helps to consider the best
lower-level information granules better suited to
form high-quality higher-level Information Gran-
ules. This well-formed Information Granules
search is defined as an optimization problem with
restrictions. The objective is to find the smallest
set of best lower-level granules that maximize the

hierarchical quality measurement composed by
the Pareto front at different levels of specificity
and coverage. As the number of elements
decreases in the rule-based system, the bias
increases; to increase the model variance, the
resulting pruned decision set is converted to a
Sugeno-type neuro-fuzzy model for classification
tasks that is further optimized. The proposed
Sugeno-type neuro-fuzzy model for classification
has the following characteristics:

— The fuzzification layer is not fully connected,
which prevents incoherent rule formation. For
the sake of interpretability, the rules must be
coherent and sound to the data scientist.

— The implications layer is also not fully con-
nected, which reduces ambiguity in the output,
maintaining separated rule contribution for
each class; this characteristic tends to analyze
the conditions to belong to a given class
more easily.

— Sigmoid activation functions transform the out-
put of the implication layer to get interpretable
outcomes for classification tasks.

— In order to increase the output interpretability,
is used a softmax layer to get the outcome
of the model in a probability fashion that
helps to suit the belongingness to the target
classes better.

The results support that using a FIS with
the proposed method for rule selection can
compress the contained information in a classical
decision set without significantly compromising the
performance model. The different compression
rate values (α) impact the model performance.

As shown in the results, a higher compression
rate (lower α value, e.g., 0.2) degrades the model
performance significantly; however, this small
decision set in a complex domain might be helpful
to have a more interpretable model to understand
phenomena better.

An attractive characteristic is that intermediate
compressing rate values (e.g., between 0.4
and 0.8) achieve a considerable reduction in
the decision set without significant difference
performance.



Table 12. Paired sample t-test of mean f1-scores for formal comparison between the decision tree model and the
resulting fuzzy rule-based model constructed by the proposed methodology

alpha 0.20 0.40 0.60 0.80 0.95 1.00

DT mean 0.79* 0.80 0.79 0.80 0.80 0.80
σ 0.13 0.15 0.14 0.14 0.14 0.14

Fuzzy-GrM mean 0.77 0.81 0.81 0.82 0.83* 0.82*
σ 0.14 0.13 0.15 0.14 0.14 0.14

P-value 0.003 0.069 0.102 0.126 5.68× 10−4 4.32× 10−2

T-student 2.86 1.50 1.28 -1.15 -3.45 -1.74

DF 49 49 49 49 49 49

Significant difference YES NO NO NO YES YES

Element reduction mean 93.91% 87.21% 81.02% 71.20% 58.61% 49.09%
Rule reduction mean 82.51% 71.61% 61.38% 49.09% 41.10% 39.48%
* shows significant difference.

Table 13. Proposed model results with different alpha values applied in the creditcard dataset

f1-score ER RR
model alpha

F-GrM 0.20 mean 0.90 97.63 92.20
σ 0.02

0.40 mean 0.89 94.40 79.70
σ 0.02

0.60 mean 0.90 92.23 75.89
σ 0.02

0.80 mean 0.90 91.86 76.02
σ 0.02

0.95 mean 0.90 91.81 75.77
σ 0.02

1.00 mean 0.90 91.79 76.53
σ 0.02

DT mean 0.88
σ 0.00

RF mean 0.93
σ 0.00

In problems where the performance is crucial,
higher α values are recommended, which less
compress the decision set but still might be
considerable (e.g., at least a mean of 39% in
this experimental setup). The rule compression
achieved by the proposed method is relevant in

the context of IML due that simplifies the decision
model by i) reducing the number of elements
(antecedents and rules), decreases as well the
complexity of the systems, which improves the
interpretability; ii) fuzzy logic brings an interface
in natural language to the human and promotes



a better understanding of the model; iii) the
compression of the model can be controlled by α
hyper-parameter and be set to the most convenient
value for a specific application domain (see figure
3 compare the behavior of α in different domain
applications).

This proposal opens the opportunity to fur-
ther research in decision-set-based Information
Granules for smaller and more interpretable
models; this methodology can be used with
different models/methods that generate decision
sets. An extension of the current work is
considered to design a higher-level information
granule, specificity and coverage metric to select
the most relevant decision set source elements for
ensemble methods.

Another possible extension of this work is to use
type-2 fuzzy logic, which better manages decision
processes under uncertainty and achieves better
performance with a smaller knowledge base in
terms of rules. The overlapping of rule partition
with different consequent could characterize
uncertainty in higher-level fuzzy sets.

The proposed Hierarchical Decision Granules
Optimization method can be adapted to any
rule-based system by defining specificity and
coverage metrics for each granule level. It can
be interesting to incorporate different information
frameworks such as probabilistic and rough sets
to enhance the intrinsic semantic meaning in
the Information Granule, therefore generate richer
explanations taking advantage of the natural
language interface that brings the fuzzy logic.
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