Computing the Clique-Width on Series-Parallel Graphs

Marco Antonio López-Medina, J. Leonardo González-Ruiz, J. Raymundo Marcial-Romero, J. A. Hernández
Universidad Autónoma del Estado de México, Facultad de Ingeniería, Mexico

valgirmanda@gmail.com, \{jlgonzalezru,jrmarcialr,xoseahernandez\}@uaemex.mx

Abstract

The clique-width $(c w d)$ is an invariant of graphs which, similar to other invariants like the tree-width (twd) establishes a parameter for the complexity of a problem. For example, several problems with bounded clique-width can be solved in polynomial time. There is a well known relation between tree-width and clique-width denoted as $\operatorname{cwd}(G) \leq 3 \cdot 2^{t w d(G)-1}$. Serial-parallel graphs have tree-width of at most 2, so its clique-width is at most 6 according to the previous relation. In this paper, we improve the bound for this particular case, showing that the clique-width of series-parallel graphs is smaller or equal to 5 .

Keywords. Graph theory, clique-width, tree-width, complexity, series-parallel.

1 Introduction

The clique-width is an invariant which set up a parameter to measure the complexity of a problem. Computing the clique-width consists on finding an algebraic finite term which represents in a succinct way the graph, meaning that its operations establishes how to built the graph. Courcelle et al. [3] present a set of four operations to built the algebraic expression called a term: 1) label creations which represent a vertex, 2)disjoint unions among graphs, 3) edge creation and 4) vertex re-label. The number of labels used to built a finite term is commonly denoted by k. The minimum number k used to built the term, also called k-expression, defines the clique-width.

Finding the smallest k which minimize the k-expression is an NP-Complete problem [7].

It has been observed that if the clique-width increases for a certain class of graphs then the complexity of a given problem for such a class of graphs also increases since the difficulty to decompose the graph increases. In recent years, clique-width has been studied in different class of graphs showing the behaviour of this invariant under certain operations.

Recent research shows how to calculate the clique-width in special types of graphs, for example in [12] prove that $\left(4 k_{1}, C_{4}, C_{5}, C_{7}\right)$-free graphs that are not chordal have unbounded clique-width. Also in [5] a complete classification of graphs H was obtained, they shown that for these graph classes, a well-quasi-orderability implies boundedness of clique-width.

In [10], it is shown that the clique-width of Cactus graphs is smaller or equal to 4 and is presented a polynomial time algorithm which computes exactly a 4-expression. Also in [9] it is shown how to compute the cwd of Polygonal Tree Graphs and is presented a polynomial time algorithm which computes the 5 -expression.

In a similar way, another invariant of graphs is tree-width [8], however, cwd is more general than tree width in the sense that, graphs with small treewidth also have small $c w d$.
A special class of graphs are the so called series-parallel graphs which can be obtained by recursive applications of series and parallel connections [6, 11]. This kind of graphs are a subclass of what are called planar graphs.

In this paper we show how to built a series-parallel graph and later on the algebraic

5-expression which defines the $c w d$, so we show that the cwd of a series-parallel graph is 5 improving the best known bound known of 6 [2].

The structure of the paper is as follows: section 2 presents the preliminaries of the paper, in section 3 the main result is demonstrated, an algorithm to compute the clique-width is shown in section 4. Finally, the conclusions are established in section 5.

2 Preliminaries

2.1 Graph

A graph G is denoted by $G=(V(G), E(G))$, where $V(G)$ is the set of vertices in G and $E(G)$ the set of edges in G. A path graph is denoted as a set of connected vertices that have two end points and every inner vertex x_{i} have exactly two incident edges, $d\left(x_{i}\right)=2$.

2.2 Series-Parallel Graph

A graph is series-parallel if it can be built from a single edge and the following two operations:

1. series construction: subdividing an edge in the graph.
2. parallel construction: duplicating an edge in the graph.

Another characterization of a series-parallel graph is that it do not contain a subdivision of k_{4} (complete graph of 4 vertices).

As the first characterization of series-parallel graphs implies, a series-parallel graph always has a vertex of degree two, although series-parallel operations may construct multiple edges, in this paper we only work with simple graphs.

2.3 Clique-Width

We now introduce the notion of clique-width (cwd, for short). Let \mathscr{C} be a countable set of labels. A labeled graph is a pair (G, γ) where γ maps each element of $V(G)$ into \mathscr{C}. A labeled graph can also be defined as a triple $G=(V(G), E(G), \gamma(G))$ and its labeling function is denoted by $\gamma(G)$. We say that G is C-labeled if C is finite and $\gamma(G)(V) \subseteq C$. We denote by $\mathscr{G}(C)$ the set of undirected C-labeled graphs.A vertex with label a will be called an a-port. We introduce the following symbols:

- a nullary symbol $a(v)$ for every $a \in \mathscr{C}$ and $v \in$ V;
- a unary symbol $\rho_{a \rightarrow b}$ for all $a, b \in \mathscr{C}$, with $a \neq$ b;
- a unary symbol $\eta_{a, b}$ for all $a, b \in \mathscr{C}$, with $a \neq b$;
— a binary symbol \oplus.
These symbols are used to denote operations on graphs as follows: $a(v)$ creates a vertex with label a corresponding to the vertex $v, \rho_{a \rightarrow b}$ renames the vertex a by $b, \eta_{a, b}$ creates an edge between a and b, and \oplus is a disjoint union of graphs.

For $C \subseteq \mathscr{C}$ we denote by $T(C)$ the set of finite well-formed terms written with the symbols $\oplus, a, \rho_{a \rightarrow b}, \eta_{a, b}$ for all $a, b \in C$, where $a \neq b$. Each term in $T(C)$ denotes a set of labeled undirected graphs. Since any two graphs denoted by the same term t are isomorphic, one can also consider that t defines a unique abstract graph.

The following definitions are given by induction on the structure of t. We let $\operatorname{val}(t)$ be the set of graphs denoted by t.

If $t \in T(C)$ we have the following cases:

1. $t=a \in C: \operatorname{val}(t)$ is the set of graphs with a single vertex labeled by a;
2. $t=t_{1} \oplus t_{2}: \operatorname{val}(t)$ is the set of graphs $G=$ $G_{1} \cup G_{2}$ where G_{1} and G_{2} are disjoint and $G_{1} \in$ $\operatorname{val}\left(t_{1}\right), G_{2} \in \operatorname{val}\left(t_{2}\right)$;
3. $t=\rho_{a \rightarrow b}\left(t^{\prime}\right): \operatorname{val}(t)=\left\{\rho_{a \rightarrow b}(G) \mid G \in \operatorname{val}\left(t^{\prime}\right)\right\}$ where for every graph G in $\operatorname{val}\left(t^{\prime}\right)$, the graph $\rho_{a \rightarrow b}(G)$ is obtained by replacing in G every vertex label a by b;
4. $t=\eta_{a, b}\left(t^{\prime}\right): \operatorname{val}(t)=\left\{\eta_{a, b}(G) \mid G \in \operatorname{val}\left(t^{\prime}\right)\right\}$ where for every undirected labeled graph $G=$ (V, E, γ) in $\operatorname{val}\left(t^{\prime}\right)$, we let $\eta_{a, b}(G)=\left(V, E^{\prime}, \gamma\right)$ such that:
$E^{\prime}=E \cup\{\{x, y\} \mid x, y \in V, x \neq y, \gamma(x)=$ $a, \gamma(y)=b\}$, e.g. $\eta_{a, b}(G)$ adds an edge between each pair of vertices a and b in G.

For every labeled graph G we let:

$$
\operatorname{cwd}(G)=\min \{\mid C \| G \in \operatorname{val}(t), t \in T(C)\} .
$$

A term $t \in T(C)$ such that $|C|=\operatorname{cwd}(G)$ and $G=\operatorname{val}(t)$ is called optimal expression of G [4] and written as $|C|$-expression.

In other words, the clique-width of a graph G is the minimum number of different labels needed to construct a vertex-labeled graph isomorphic to G using the four mentioned operations [1].

3 Computing $\operatorname{cwd}(G)$ when G is a Series-Parallel Graph

In this section we show the k-expression for series and parallel graphs independently and later on how to combine them in order to present the 5 -expression for series-parallel graphs. We firstly begins with series graphs. Although the result for this kind of graphs is well-known, we need a special construction to combine them with parallel graphs.

Lemma 1 If G is a series graphs (a path graph) then $\operatorname{cwd}(G) \leq 4$.

Proof 1 Let G be a series graph, which is denoted as follows:

The k-expression is built as follows:

k-expression	Graph G	Labels
$k_{G}=\eta_{(a, b)}(a(1) \oplus b(2))$	$a(1)-b(2)$	2
$k_{G}=\eta_{(b, c)}\left(k_{G} \oplus c(3)\right)$	$a(1)-b(2) \cdot c(3)$	3
$k_{G}=\eta_{(c, d)}\left(k_{G} \oplus d(4)\right)$	$a(1)-b(2) \cdot c(3)-d(4)$	4
$k_{G}=\rho_{c \rightarrow b}\left(k_{G}\right)$	$a(1)-b(2) \cdot b(3) \cdot d(4)$	3
$k_{G}=\rho_{d \rightarrow c}\left(k_{G}\right)$	$a(1) \cdot b(2) \cdot b(3) \cdot c(4)$	3
$k_{G}=\eta_{(c, d)}\left(k_{G} \oplus d(5)\right)$	$a(1)-b(2)-b(3)-c(4)-d(5)$	4
$k_{G}=\rho_{c \rightarrow b}\left(k_{G}\right)$	$a(1)-b(2)-b(3)-b(4)-d(5)$	3
$k_{G}=\rho_{d \rightarrow c}\left(k_{G}\right)$	$a(1) \cdot b(2) \cdot b(3) \cdot b(4) \cdot c(5)$	3
\vdots		
$k_{G}=\eta_{(c, d)}\left(k_{G} \oplus d(n)\right)$	$a(1)-b(2) \cdot b(3) \cdot b(4) \cdot c(5)-d(n)$	4
$k_{G}=\rho_{c \rightarrow b}\left(k_{G}\right)$	$a(1)-b(2) \cdot b(3) \cdot b(4) \cdot b(5)-d(n)$	3
$k_{G}=\rho_{d \rightarrow c}\left(k_{G}\right)$	$a(1)-b(2)-b(3)-b(4)-b(5)-c(n)$	3

4 labels are used to built a series graph. At the end of the process we relabel the end vertices as a and c respectively, while the rest of the vertices are assigned label b, this assignment will be used at the end of each proof in the rest of the paper.

Lemma 2 If G is a parallel graph formed by series subgraphs then $\operatorname{cwd}(G) \leq 5$.

Proof 2 Let n be the number of series subgraphs which forms the parallel graph:

By lemma 1, each k-expression of $s_{1}, s_{2}, s_{3} \ldots s_{n}$ requires 3 labels, let says a, b and c. Let a and c be the end vertices of each one. If j_{1} and j_{2} are the union vertices the final k-expression is given by:

$$
\begin{aligned}
& k_{G}=\eta_{(c, e)}\left(\eta _ { (a , d) } \left(k_{s_{1}} \oplus k_{s_{2}} \oplus k_{s_{3}} \oplus k_{s_{4}} \oplus \cdots \oplus k_{s_{n}} \oplus\right.\right. \\
& \left.\left.d\left(j_{1}\right) \oplus e\left(j_{2}\right)\right)\right) \\
& \quad k_{G}=\rho_{e \rightarrow c}\left(\left(\rho _ { c \rightarrow b } \left(\left(\rho_{d \rightarrow a}\left(\left(\rho_{a \rightarrow b}\left(k_{G}\right)\right)\right)\right)\right.\right.\right.
\end{aligned}
$$

Although 5 labels are needed, in the last steps the joint vertices j_{1} and j_{2} are labeled with a and c respectively and the rest of the vertices are labeled with b.

A series-parallel graph can be composed by the following rules:

- A simple path is series-parallel (SP), Lemma 1.
- A parallel graph formed by series subgraphs is series parallel (SP). Lemma 2.
- if $S P_{1}$ and $S P_{2}$ are series parallel graphs then:
- The path graph formed by $S P_{1}, S P_{2}, \ldots, S P_{n}$ is series parallel (SP). Lemma 5.
- The parallel graph formed by $S P_{1}, S P_{2}, \ldots, S P_{n}$ with union points j_{1}, j_{2} is series parallel (SP). Lemma 3.
- The parallel graph formed by $S P_{2}, S P_{3}, \ldots, S P_{n}$ with union points $S P_{1}, j_{1}$ is series parallel (SP). Lemma 4.

Lemma 3 Let G a series-parallel graph which is connected to an other series-parallel graph, then the $\operatorname{cwd}(G) \leq 5$.

Proof 3 Let G a parallel graph as follows:

$$
S P_{1}-S P_{2}
$$

where $S P_{1}$ and $S P_{2}$ are series-parallel graphs and j_{1} is a joint vertex. By lemma 2 shows how to build the k-expression of $S P_{1}$ and $S P_{2}$ respectively.

$$
\begin{aligned}
& k_{G}=\eta_{(d, e)}\left(\left(\rho_{c \rightarrow d}\left(k_{S P_{1}}\right)\right) \oplus\left(\rho_{a \rightarrow e}\left(k_{S P_{2}}\right)\right)\right) \\
& k_{G}=\rho_{d \rightarrow b}\left(\rho_{e \rightarrow b}\left(k_{G}\right)\right)
\end{aligned}
$$

The initial vertex of $S P_{1}$ and the final vertex of $S P_{2}$ are labelled by a and c respectively, while the rest of the vertices correspond to the label b.

Lemma 4 If G is a graph which contains seriesparallel subgraphs then $\operatorname{cwd}(G) \leq 5$.

Proof 4 Let n be the number of series-parallel subgraphs which forms the parallel graph where $n \geq 0$:

By lemmas 1, 2, 3, each k-expression of $S P_{1}, \ldots, S P_{n}$ requires 3 labels, let says a, b and c. The end vertices of each one are a and c. If j_{1} and j_{2} are the union vertices the final k-expression is given by:

$$
\begin{aligned}
& k_{G}=\eta_{(c, e)}\left(\eta_{(a, d)}\left(k_{S P_{1}} \oplus \cdots \oplus k_{S P_{n}} \oplus d\left(j_{1}\right) \oplus e\left(j_{2}\right)\right)\right) \\
& k_{G}=\rho_{e \rightarrow c}\left(\left(\rho _ { c \rightarrow b } \left(\left(\rho_{d \rightarrow a}\left(\left(\rho_{a \rightarrow b}\left(k_{G}\right)\right)\right)\right)\right.\right.\right.
\end{aligned}
$$

The end vertices j_{1} and j_{2} are labeled with a and c respectively and the rest of the vertices are labeled with b.

Lemma 5 Let G be a parallel graph with end points $S P_{1}$ and j_{1} and elements $S P_{2}, S P_{3}, \ldots, S P_{n}$.

Proof 5 By lemmas 1, 2, 3 and 4, we know the k-expression of $S P_{1}$ and each k-expression of $S P_{1}, \ldots, S P_{n}$ requires 3 labels, let says a, b and c. The end vertices of each one are a and c :

$$
\begin{aligned}
& k_{G}=\eta_{(e, d)}\left(\rho_{a \rightarrow d}\left(k_{S P_{2}} \oplus \cdots \oplus k_{S P_{n}}\right)\right) \oplus \\
& \left(\rho_{c \rightarrow e}\left(k_{S P_{1}}\right)\right), \\
& k_{G}=\rho_{d \rightarrow c}\left(\rho _ { c \rightarrow b } \left(\eta _ { (c , d) } \left(\left(\rho_{d \rightarrow b}\left(\rho_{e \rightarrow b}\left(k_{G}\right)\right)\right) \oplus\right.\right.\right. \\
& \left.\left.\left.d\left(j_{1}\right)\right)\right)\right) .
\end{aligned}
$$

The initial vertex of $S P$ and the joint vertex j_{1} are labelled by a y c respectively, while the rest of the vertices correspond to the label b.

Lemma 5 can be applied transitively, e.g. j_{1} to the left and $S P_{1}$ to the right.

Theorem 1 Let G a series-parallel graph, the $\operatorname{cwd}(G) \leq 5$.

Proof 6 By series-parallel definition lemmas 1, 2 , 3, 4 and 5 allow to built any series parallel graph so $\operatorname{cwd}(G)$ is ≤ 5

4 Algorithm to Compute $c w d$ of Series-Parallel Graphs

The construction of the k-expression of a seriesparallel graph is presented in Algorithm 1 and 2.

```
Algorithm 1 Construction of the k-expression of a
series-parallel graph (Part1)
Require: A series-parallel graph G
Ensure: k-expression of a series-parallel graph
    Construct the adjacency matrix }A\mathrm{ of }
    Construct the incidence matrix I of G
    An empty set SPs of tuples of the form (sp, ksp),
    where sp is a subgraph of G and ksp
    expression of sp
    Find the series subgraphs }s\mp@subsup{p}{i}{}\inG\mathrm{ (paths of
    vertices with degree two) and construct }\mp@subsup{k}{s\mp@subsup{p}{i}{}}{
    (lemma 1)
    for each }s\mp@subsup{p}{i}{}\mathrm{ do
```



```
        Remove from }A\mathrm{ all edges forming the }s\mp@subsup{p}{i}{
        subgraph
    end for
```

 Remove from \(I\) all vertices with degree two
    ```
Algorithm 2 Construction of the \(k\)-expression of a
series-parallel graph (Part2)
    while \(A \neq \emptyset\) do
        Find the subgraphs \(s p_{k}\) in \(S P s\) connected to
        the same vertices \(i, j \in I\) (to form a parallel
        subgraph \(s p_{p}\) )
        Construct the \(k\)-expressions of the parallel
        subgraphs formed by the \(s p_{k}\) subgraphs
        (lemma 2 and 5)
        for each \(s p_{p}\) do
            Add the tuple \(\left(s p_{p}, k_{s p_{p}}\right)\) to \(S P s\)
            Remove \(s p_{k}\) from \(S P s\)
            Remove the edges on \(s p_{p}\) from \(A\)
            Remove the vertices \(i, j\) from \(I\)
        end for
        Find the subgraphs \(s p_{k}\) in \(S P s\) connected to
        the vertex \(j \in I\) and a vertex \(i \in s p_{u} \in S P s\)
        (to form a parallel subgraph \(s p_{p}\) )
    if \(\left|s p_{k}\right|-d(j) \leq 1\) and \(\left|s p_{k}\right|-d(i) \leq 1\) then
        Construct the \(k\)-expression of the parallel
        subgraph formed by the \(s p_{k}\) subgraphs
        (lemma 4)
        for each \(s p_{p}\) do
            Add the tuple \(\left(s p_{p}, k_{s p_{p}}\right)\) to \(S P s\)
            Remove \(s p_{k}\) from \(S P s\)
            Remove the edges on \(s p_{p}\) from \(A\)
            Remove the vertex \(j\) from \(I\)
            Remove \(s p_{u}\) from \(S P s\)
        end for
    end if
    Find the subgraphs \(s p_{i}, s p_{j}\) connected with an
    edge \(e \in A\) (to form a series subgraph \(s p_{e}\) )
    for each pair \(s p_{i}\) and \(s p_{j}\) do
        Construct the \(k\)-expresion of the subgraph
        formed by \(s p_{i} \cup s p_{j} \cup e\) (lemma 5)
        Add the tuple \(\left(s p_{e}, k_{s p_{e}}\right)\) to \(S P s\)
        Remove the edge \(e\) from \(A\)
        Remove \(s p_{i}\) and \(s p_{j}\) from \(S P s\)
        end for
    end while
    return \(k\)-expression of the remaining element in
    the set SPs
```

We explain the algorithm with the following example:

Given a series-parallel graph:

With the adjacency matrix A, the incidence matrix I and the set $S P s$.

First lines from 3 to 9 allow to construct the $s p_{i}$ subgraphs, formed by paths of vertices with degree two, using lemma 1.

From line 11 to 18 we construct the parallel graphs with the joint vertices we have in I (lemma 2 and 5).

From lines 19 to 29 we can construct a parallel graph with joint vertex and a vertex on a $s p_{k}$ subgraph (lemma 4). Notice that the end point

1 and 8 cannot be added at this time since the degree of 1 will not be 0 after joining it to the subgraphs.

From lines 30 to 36 we can connect two $s p_{i}$ and $s p_{k}$ subgraphs by an edge in A (lemma 5).

From lines 19 to 29 we can construct a parallel graph with joint vertex and a vertex on a $s p_{k}$ subgraph (lemma 4).

Again, from lines 19 to 29 we can construct a parallel graph with joint vertex and a vertex on a $s p_{k}$ subgraph (lemma 4).

Finally, from lines 30 to 36 we can connect two $s p_{i}$ and $s p_{k}$ subgraphs by an edge in A (lemma 5).

As a result of the algorithm we have a unique element $s p \in S P s$ with the k-expression that represents it.

5 Conclusions

In this paper we show that five labels are enough to compute the clique-width of series-parallel graphs instead of six labels as Courcelle et al. [2] shown. Our main proof is based on the series-parallel graph's definition which consists on building this kind of graph from series subgraphs joined by vertices which form parallel components. An algorithm was presented with time complexity $O\left(n^{2}\right)$.

References

1. Bonomo, F., Grippo, L. N., Milanic, M., Safe, M. D. (2016). Graph classes with and without powers of bounded clique-width. Discrete Applied Mathematics, Vol. 199, pp. 3-15. Sixth Workshop on Graph Classes, Optimization, and Width Parameters, Santorini, Greece, October 2013.
2. Corneil, D. G., Rotics, U. (2001). Graph-Theoretic Concepts in Computer Science: 27th InternationalWorkshop, WG 2001 Boltenhagen, Germany, June 14-16, 2001 Proceedings, chapter On the Relationship between Clique-Width and Treewidth. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 78-90.
3. Courcelle, B., Engelfriet, J., Rozenberg, G. (1993). Handle-rewriting hypergraph grammars. Journal of Computer and System Sciences, Vol. 46, No. 2, pp. 218-270.
4. Courcelle, B., Olariu, S. (2000). Upper bounds to the clique width of graphs. Discrete Applied Mathematics, Vol. 101, pp. 77-114.
5. Dabrowski, K. K., Lozin, V. V., Paulusma, D. (2020). Clique-width and well-quasi-ordering of triangle-free graph classes. Journal of Computer and System Sciences, Vol. 108, pp. 64-91.
6. Dieter, J. (2013). Graphs, Networks and Algorithms. Springer Publishing Company, Incorporated, 4th edition.
7. Fellows, M. R., Rosamond, F. A., Rotics, U., Szeider, S. (2009). Clique-width is np-complete. SIAM Journal on Discrete Mathematics, Vol. 23, No. 2, pp. 909-939.
8. Fomin, F. V., Golovach, P. A., Lokshtanov, D., Saurabh, S. (2010). Intractability of clique-width parameterizations. SIAM Journal on Computing, Vol. 39, No. 5, pp. 1941-1956.
9. González-Ruiz, J. L., Marcial-Romero, J. R., Hernández, J. A., De Ita, G. (2017). Computing the clique-width of polygonal tree graphs. Pichardo-Lagunas, O., Miranda-Jiménez, S., editors, Advances in Soft Computing, Springer International Publishing, Cham, pp. 449-459.
10. González-Ruiz, J. L., Marcial-Romero, J. R., Hernández-Servín, J. (2016). Computing the clique-width of cactus graphs. Electronic Notes in Theoretical Computer Science, Vol. 328, pp. 47-57. Tenth Latin American Workshop on

Logic/Languages, Algorithms and New Methods of Reasoning (LANMR).
11. Gross, J. L., Yellen, J., Zhang, P. (2013). Handbook of Graph Theory, Second Edition. Chapman \& Hall/CRC, 2nd edition.
12. Penev, I. (2020). On the clique-width of (4k1,c4,c5,c7)-free graphs. Discrete Applied Mathematics, Vol. 285, pp. 688-690.

Article received on 15/10/2020; accepted on 20/02/2021. Corresponding author is Marco Antonio López-Medina.

