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Abstract. The clique-width (cwd) is an invariant
of graphs which, similar to other invariants like
the tree-width (twd) establishes a parameter for the
complexity of a problem. For example, several problems
with bounded clique-width can be solved in polynomial
time. There is a well known relation between tree-width
and clique-width denoted as cwd(G) ≤ 3 · 2twd(G)−1.
Serial-parallel graphs have tree-width of at most 2, so
its clique–width is at most 6 according to the previous
relation. In this paper, we improve the bound for
this particular case, showing that the clique-width of
series-parallel graphs is smaller or equal to 5.

Keywords. Graph theory, clique-width, tree-width,
complexity, series-parallel.

1 Introduction

The clique-width is an invariant which set up a
parameter to measure the complexity of a problem.
Computing the clique-width consists on finding
an algebraic finite term which represents in a
succinct way the graph, meaning that its operations
establishes how to built the graph. Courcelle
et al. [3] present a set of four operations to
built the algebraic expression called a term: 1)
label creations which represent a vertex, 2)disjoint
unions among graphs, 3) edge creation and 4)
vertex re-label. The number of labels used to
built a finite term is commonly denoted by k. The
minimum number k used to built the term, also
called k-expression, defines the clique-width.

Finding the smallest k which minimize the
k-expression is an NP-Complete problem [7].

It has been observed that if the clique-width
increases for a certain class of graphs then the
complexity of a given problem for such a class
of graphs also increases since the difficulty to
decompose the graph increases. In recent years,
clique-width has been studied in different class
of graphs showing the behaviour of this invariant
under certain operations.

Recent research shows how to calculate the
clique-width in special types of graphs, for example
in [12] prove that (4k1,C4,C5,C7)-free graphs that
are not chordal have unbounded clique-width. Also
in [5] a complete classification of graphs H was
obtained, they shown that for these graph classes,
a well-quasi-orderability implies boundedness of
clique-width.

In [10], it is shown that the clique-width of Cactus
graphs is smaller or equal to 4 and is presented a
polynomial time algorithm which computes exactly
a 4-expression. Also in [9] it is shown how to
compute the cwd of Polygonal Tree Graphs and
is presented a polynomial time algorithm which
computes the 5-expression.

In a similar way, another invariant of graphs is
tree-width [8], however, cwd is more general than
tree width in the sense that, graphs with small tree-
width also have small cwd.

A special class of graphs are the so called
series-parallel graphs which can be obtained
by recursive applications of series and parallel
connections [6, 11]. This kind of graphs are a
subclass of what are called planar graphs.

In this paper we show how to built a
series-parallel graph and later on the algebraic



5-expression which defines the cwd, so we show
that the cwd of a series-parallel graph is 5
improving the best known bound known of 6 [2].

The structure of the paper is as follows: section
2 presents the preliminaries of the paper, in section
3 the main result is demonstrated, an algorithm
to compute the clique-width is shown in section
4. Finally, the conclusions are established in
section 5.

2 Preliminaries

2.1 Graph

A graph G is denoted by G = (V (G),E(G)), where
V (G) is the set of vertices in G and E(G) the
set of edges in G. A path graph is denoted as a
set of connected vertices that have two end points
and every inner vertex xi have exactly two incident
edges, d(xi) = 2.

2.2 Series-Parallel Graph

A graph is series-parallel if it can be built from a
single edge and the following two operations:

1. series construction: subdividing an edge in
the graph.

2. parallel construction: duplicating an edge in
the graph.

Another characterization of a series-parallel
graph is that it do not contain a subdivision of k4
(complete graph of 4 vertices).

As the first characterization of series-parallel
graphs implies, a series-parallel graph always has
a vertex of degree two, although series-parallel
operations may construct multiple edges, in this
paper we only work with simple graphs.

2.3 Clique-Width

We now introduce the notion of clique-width (cwd,
for short). Let C be a countable set of labels. A
labeled graph is a pair (G, γ) where γ maps each
element of V (G) into C . A labeled graph can also
be defined as a triple G = (V (G),E(G), γ(G)) and
its labeling function is denoted by γ(G). We say
that G is C-labeled if C is finite and γ(G)(V ) ⊆ C.
We denote by G (C) the set of undirected C-labeled
graphs.A vertex with label a will be called an a-port.
We introduce the following symbols:

— a nullary symbol a(v) for every a ∈ C and v ∈
V ;

— a unary symbol ρa→b for all a, b ∈ C , with a ̸=
b;

— a unary symbol ηa,b for all a, b ∈ C , with a ̸= b;

— a binary symbol ⊕.

These symbols are used to denote operations on
graphs as follows: a(v) creates a vertex with label
a corresponding to the vertex v, ρa→b renames the
vertex a by b, ηa,b creates an edge between a and
b, and ⊕ is a disjoint union of graphs.

For C ⊆ C we denote by T (C) the set of
finite well-formed terms written with the symbols
⊕, a, ρa→b, ηa,b for all a, b ∈ C, where a ̸= b. Each
term in T (C) denotes a set of labeled undirected
graphs. Since any two graphs denoted by the same
term t are isomorphic, one can also consider that t
defines a unique abstract graph.

The following definitions are given by induction
on the structure of t. We let val(t) be the set of
graphs denoted by t.

If t ∈ T (C) we have the following cases:

1. t = a ∈ C: val(t) is the set of graphs with a
single vertex labeled by a;

2. t = t1 ⊕ t2: val(t) is the set of graphs G =
G1∪G2 where G1 and G2 are disjoint and G1 ∈
val(t1), G2 ∈ val(t2);

3. t = ρa→b(t
′) : val(t) = {ρa→b(G)|G ∈ val(t′)}

where for every graph G in val(t′), the graph
ρa→b(G) is obtained by replacing in G every
vertex label a by b;



4. t = ηa,b(t
′) : val(t) = {ηa,b(G)|G ∈ val(t′)}

where for every undirected labeled graph G =
(V ,E, γ) in val(t′), we let ηa,b(G) = (V ,E′, γ)
such that:
E′ = E ∪ {{x, y}|x, y ∈ V ,x ̸= y, γ(x) =
a, γ(y) = b}, e.g. ηa,b(G) adds an edge
between each pair of vertices a and b in G.

For every labeled graph G we let:

cwd(G) = min{|C||G ∈ val(t), t ∈ T (C)}.

A term t ∈ T (C) such that |C| = cwd(G) and
G = val(t) is called optimal expression of G [4]
and written as |C|-expression.

In other words, the clique-width of a graph G is
the minimum number of different labels needed to
construct a vertex-labeled graph isomorphic to G
using the four mentioned operations [1].

3 Computing cwd(G) when G is a
Series-Parallel Graph

In this section we show the k-expression for series
and parallel graphs independently and later on
how to combine them in order to present the
5-expression for series-parallel graphs. We firstly
begins with series graphs. Although the result for
this kind of graphs is well-known, we need a special
construction to combine them with parallel graphs.

Lemma 1 If G is a series graphs (a path graph)
then cwd(G) ≤ 4.

Proof 1 Let G be a series graph, which is denoted
as follows:

1 32 4 5 n

The k-expression is built as follows:

k − expression Graph G Labels

kG = η(a,b)(a(1)⊕ b(2))
a(1) b(2)

2

kG = η(b,c)(kG ⊕ c(3))
a(1) c(3)b(2)

3

kG = η(c,d)(kG ⊕ d(4))
a(1) c(3)b(2) d(4)

4

kG = ρc→b(kG)
a(1) b(3)b(2) d(4)

3

kG = ρd→c(kG)
a(1) b(3)b(2) c(4)

3

kG = η(c,d)(kG ⊕ d(5))
a(1) b(3)b(2) c(4) d(5)

4

kG = ρc→b(kG)
a(1) b(3)b(2) b(4) d(5)

3

kG = ρd→c(kG)
a(1) b(3)b(2) b(4) c(5)

3
...

kG = η(c,d)(kG ⊕ d(n))

a(1) b(3)b(2) b(4) c(5) d(n)

4

kG = ρc→b(kG)

a(1) b(3)b(2) b(4) b(5) d(n)

3

kG = ρd→c(kG)
a(1) b(3)b(2) b(4) b(5) c(n)

3

4 labels are used to built a series graph. At the
end of the process we relabel the end vertices as
a and c respectively, while the rest of the vertices
are assigned label b, this assignment will be used
at the end of each proof in the rest of the paper.

Lemma 2 If G is a parallel graph formed by series
subgraphs then cwd(G) ≤ 5.

Proof 2 Let n be the number of series subgraphs
which forms the parallel graph:

s1

s2

s3

s4

...

sn

j1 j2



By lemma 1, each k-expression of s1, s2, s3 . . . sn
requires 3 labels, let says a, b and c. Let a and c be
the end vertices of each one. If j1 and j2 are the
union vertices the final k-expression is given by:

kG = η(c,e)(η(a,d)(ks1 ⊕ ks2 ⊕ ks3 ⊕ ks4 ⊕ · · · ⊕ ksn ⊕
d(j1)⊕ e(j2)))

kG = ρe→c((ρc→b((ρd→a((ρa→b(kG))))

Although 5 labels are needed, in the last steps
the joint vertices j1 and j2 are labeled with a and c
respectively and the rest of the vertices are labeled
with b.

A series-parallel graph can be composed by the
following rules:

— A simple path is series-parallel (SP),
Lemma 1.

— A parallel graph formed by series subgraphs is
series parallel (SP). Lemma 2.

— if SP1 and SP2 are series parallel graphs then:

– The path graph formed by
SP1,SP2, ...,SPn is series parallel
(SP). Lemma 5.

– The parallel graph formed by
SP1,SP2, ...,SPn with union points
j1, j2 is series parallel (SP). Lemma 3.

– The parallel graph formed by
SP2,SP3, ...,SPn with union points
SP1, j1 is series parallel (SP). Lemma 4.

Lemma 3 Let G a series-parallel graph which is
connected to an other series-parallel graph, then
the cwd(G) ≤ 5.

Proof 3 Let G a parallel graph as follows:

SP1 SP2

where SP1 and SP2 are series-parallel graphs and
j1 is a joint vertex. By lemma 2 shows how to build
the k-expression of SP1 and SP2 respectively.
kG = η(d,e)((ρc→d(kSP1

))⊕ (ρa→e(kSP2
)))

kG = ρd→b(ρe→b(kG))

The initial vertex of SP1 and the final vertex of
SP2 are labelled by a and c respectively, while the
rest of the vertices correspond to the label b.

Lemma 4 If G is a graph which contains series-
parallel subgraphs then cwd(G) ≤ 5.

Proof 4 Let n be the number of series-parallel
subgraphs which forms the parallel graph where
n ≥ 0:

SP1

SP2

SP3

SP4

...

SPn

j1 j2

By lemmas 1, 2, 3, each k-expression of
SP1, . . . ,SPn requires 3 labels, let says a, b and c.
The end vertices of each one are a and c. If j1 and
j2 are the union vertices the final k-expression is
given by:

kG = η(c,e)(η(a,d)(kSP1
⊕· · ·⊕kSPn

⊕d(j1)⊕e(j2)))
kG = ρe→c((ρc→b((ρd→a((ρa→b(kG))))

The end vertices j1 and j2 are labeled with a
and c respectively and the rest of the vertices are
labeled with b.

Lemma 5 Let G be a parallel graph with end points
SP1 and j1 and elements SP2,SP3, ...,SPn.

SP2

SP3

SP4

SP5

...

SPn

SP1 j1



Proof 5 By lemmas 1, 2, 3 and 4, we know the
k-expression of SP1 and each k-expression of
SP1, . . . ,SPn requires 3 labels, let says a, b and c.
The end vertices of each one are a and c:

kG = η(e,d)(ρa→d(kSP2
⊕ · · · ⊕ kSPn

)) ⊕
(ρc→e(kSP1

)),
kG = ρd→c(ρc→b(η(c,d)((ρd→b(ρe→b(kG))) ⊕

d(j1)))).

The initial vertex of SP and the joint vertex j1 are
labelled by a y c respectively, while the rest of the
vertices correspond to the label b.

Lemma 5 can be applied transitively, e.g. j1 to
the left and SP1 to the right.

Theorem 1 Let G a series-parallel graph, the
cwd(G) ≤ 5.

Proof 6 By series-parallel definition lemmas 1, 2 ,
3, 4 and 5 allow to built any series parallel graph so
cwd(G) is ≤ 5

4 Algorithm to Compute cwd of
Series-Parallel Graphs

The construction of the k-expression of a series-
parallel graph is presented in Algorithm 1 and 2.

Algorithm 1 Construction of the k-expression of a
series-parallel graph (Part1)
Require: A series-parallel graph G
Ensure: k-expression of a series-parallel graph

Construct the adjacency matrix A of G
Construct the incidence matrix I of G
An empty set SPs of tuples of the form (sp, ksp),
where sp is a subgraph of G and ksp is the k-
expression of sp
Find the series subgraphs spi ∈ G (paths of
vertices with degree two) and construct kspi

(lemma 1)
for each spi do

Add the tuple (spi, kspi
) to SPs

Remove from A all edges forming the spi
subgraph

end for
Remove from I all vertices with degree two

Algorithm 2 Construction of the k-expression of a
series-parallel graph (Part2)

while A ̸= ∅ do
Find the subgraphs spk in SPs connected to
the same vertices i, j ∈ I (to form a parallel
subgraph spp)
Construct the k-expressions of the parallel
subgraphs formed by the spk subgraphs
(lemma 2 and 5)
for each spp do

Add the tuple (spp, kspp
) to SPs

Remove spk from SPs
Remove the edges on spp from A
Remove the vertices i, j from I

end for
Find the subgraphs spk in SPs connected to
the vertex j ∈ I and a vertex i ∈ spu ∈ SPs
(to form a parallel subgraph spp)
if |spk| − d(j) ≤ 1 and |spk| − d(i) ≤ 1 then

Construct the k-expression of the parallel
subgraph formed by the spk subgraphs
(lemma 4)
for each spp do

Add the tuple (spp, kspp) to SPs
Remove spk from SPs
Remove the edges on spp from A
Remove the vertex j from I
Remove spu from SPs

end for
end if
Find the subgraphs spi, spj connected with an
edge e ∈ A (to form a series subgraph spe)
for each pair spi and spj do

Construct the k-expresion of the subgraph
formed by spi ∪ spj ∪ e (lemma 5)
Add the tuple (spe, kspe) to SPs
Remove the edge e from A
Remove spi and spj from SPs

end for
end while
return k-expression of the remaining element in
the set SPs

We explain the algorithm with the following
example:

Given a series-parallel graph:
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With the adjacency matrix A, the incidence
matrix I and the set SPs.

First lines from 3 to 9 allow to construct the spi
subgraphs, formed by paths of vertices with degree
two, using lemma 1.
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From line 11 to 18 we construct the parallel
graphs with the joint vertices we have in I (lemma 2
and 5).
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From lines 19 to 29 we can construct a parallel
graph with joint vertex and a vertex on a spk
subgraph (lemma 4). Notice that the end point

1 and 8 cannot be added at this time since the
degree of 1 will not be 0 after joining it to the
subgraphs.
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From lines 30 to 36 we can connect two spi and
spk subgraphs by an edge in A (lemma 5).
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From lines 19 to 29 we can construct a parallel
graph with joint vertex and a vertex on a spk
subgraph (lemma 4).

1

2

3

4

5

6 7

8 9

1011

12

13

14

15

16

17

18 19

20 21 22 23

24

25

26

27

28

29

30

31

32

33 34 35

36

37

38 39

40

41

42

Again, from lines 19 to 29 we can construct a
parallel graph with joint vertex and a vertex on a
spk subgraph (lemma 4).
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Finally, from lines 30 to 36 we can connect two
spi and spk subgraphs by an edge in A (lemma 5).
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As a result of the algorithm we have a unique
element sp ∈ SPs with the k-expression that
represents it.

5 Conclusions

In this paper we show that five labels are enough
to compute the clique-width of series-parallel
graphs instead of six labels as Courcelle et
al. [2] shown. Our main proof is based
on the series-parallel graph’s definition which
consists on building this kind of graph from series
subgraphs joined by vertices which form parallel
components. An algorithm was presented with
time complexity O(n2).
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