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Abstract. Every year, new Convolutional Neural 
Network (CNN) architectures appear to deal with 
different problems in the activity of image and video 
recognition. These architectures usually work along the 
ImageNet dataset for looking for the best performance of 
the CNNs without taking into account the video task 
where they are used. This can represent a problem if the 
task is Human Action Recognition (HAR) in video, since 
the CNN architectures are pre-trained with an image 
dataset that can practically contain any object, while 
HAR problem requires consecutive frames of people 
doing actions. To prove the idea that using CNNs pre-
trained on an image dataset does not always achieve the 
best performance on a video dataset and that, therefore, 
it is worth comparing the performance of different CNNs 
under similar circumstances for the HAR problem, this 
work proposes an analysis between eight different CNN 
architectures. Each one of the CNN was exclusively 
trained with RGB images, which were extracted from the 
frames of the different classes of videos of HMDB51 
dataset. To make the classification of an activity in video, 
we average the predictions taking into account the 
successes. We also made some ensembles with the 
best performance CNNs to measure the improvement in 
accuracy. Our results suggest that Xception is a strong 
baseline model that could be used by the community to 
make their comparisons of their proposals more robust. 

Keywords. Human action recognition, convolutional 
neural network, HMDB51. 

1 Introduction 

In recent years, the problem of HAR has received 
a lot of attention from researchers. This is because 
today it is common to find problems related to video 

surveillance, behavior analysis or Human 
Computer Interaction (HCI) [1].  

The first attempts to solve this problem using 
hand crafted features such as Histogram of 
Oriented Gradients (HOG), Histogram of Optical 
Flow (HOF) or Motion Boundary Histogram (MBH) 
[2-6]. However, the main issue of using these types 
of approaches is that it is difficult to transfer the 
handcrafted features of a training dataset to 
another [7]. This issue was solved by the 
introduction of convolutional neural networks 
(CNN), which are able to automatically detect 
features in raw images, to find the connection 
between them and use the learned features of a 
training dataset to train a different dataset [8-13].  

With the breakthrough that CNN caused in 
2012 in the machine vision community given their 
tremendous reduction of error rates of up to 20% 
to closest participants, it was clear that CNN would 
be the approach to exploit in image/video 
classification problems. In fact, two of the three 
most popular approaches (two-stream and 
3DCNN) use CNN as a pillar while the third one 
uses recurrent neural networks [13].  

One of the main questions when building a HAR 
model is which CNN to use, since every year there 
are new state-of-the-art CNN architectures on the 
ImageNet dataset. One may think that using the 
CNN with the top performance on the ImageNet 
dataset can achieve the best results. The main 
issue of thinking this way is that is not taking into 
consideration that the CNN was trained to classify 
images with any object class of the 1000 classes 
that the ImageNet dataset has and not frames of 
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human actions, which they are the main 
components of the videos in a HAR dataset. With 
this in mind, the main objective of this work is to 
prove that a CNN with the best performance on the 
ImageNet dataset does not always achieve the 
best results on a video dataset, thus it is important 
to test different CNNs under the same conditions 
when building a HAR model.  

Regarding the originality of this study, we argue 
that even when new CNN models appear 
practically every year, very little is known regarding 
how these models compare to each other, or even 
against the previous competitive proposals, over 
the HAR problem, since no systematic and 
exhaustive experimental comparison, to the best of 
our knowledge, had been done until now. 

This work makes an analysis of comparison 
about training time and accuracy of 8 different CNN 
architectures using different sets of RGB images 
that were built from the videos of the HMDB51 
dataset. The CNN models were trained as image 
classifiers and it was used the average of the 
predictions of each image frame to generate the 
classification label of the activity in video. Lastly, 
different ensembles were considered using the 
best accuracy performance on the CNN 
architectures to prove if there is an increment in the 
accuracy using ensemble predictions. 

The main contribution of this study is twofold. 
First, we empirically show that for a CNN having 
top performance on the Imagenet dataset does not 
imply top performance on the HAR task, as it 
usually is assumed by the community. This opens 
up important questions regarding what would be 
the best experimental setting for these neural 
models to achieve better results on such task.  

Additionally, we tackle a long standing question 
for the HAR problem, which is to make the first 
exhaustive evaluation that considers up to 8 
different state-of-the-art CNN-based approaches 
under very similar experimental settings that will 
allow to have the first impressions of who is who 
regarding performance and efficacy for Human 
Action Recognition endeavors. As a whole, with 
these results, the community will have enough 
evidence regarding what baseline model to use 
from now on, this being the Xception network, to 
compare their new contributions against. 

2 Related Work 

This section includes a description of previous 
works related to the HAR problem using the 
HMDB51 dataset. We made a revision based on 
the three main approaches for handling the HAR 
problem. It is important to note, that this work is not 
going to consider all the approaches revised here 
and the papers cited are only to tell the viewer what 
has been done in relation to HAR using the 
HDMB51 dataset and which CNNs are the most 
used among researchers on this field. 

Two-stream approach was proposed by 
Simonyan et al. in 2014 [15] by the idea that they 
can have a CNN trained with raw RGB frames and 
another CNN trained with optical flow, which 
represents the moving vectors between two 
consecutive frames. They later combined the 
predictions of the two-streams using a weighted 
averaged of the predictions. Each stream had a 
CNN called ClarifaiNet and their best accuracy 
was  59.4%.  

Wang et al. [16] decided to divide a video into 3 
segments so that each segment have their own 
two-stream network and then combine the 
predictions of all segments of a certain stream and 
after that combine the stream predictions. All 
segments of all streams used the Inception-V2 
CNN and they obtained an accuracy of 69.4%.  

Zhu et al. [17] designed an architecture that was 
able to combine the feature vector of different 
frames into a video representation by using max 
pooling and a pyramidal layer. They also used 
Kinetics as the pre-trained dataset for the CNN, 
which result in better accuracy than using the 
ImageNet dataset. They also used Inception-V2 
and their best result was an 82.1% in accuracy. 

Cong et al. [18] developed an adaptive batch 
size K-step model averaging algorithm (KAVG). 
They customized the Adam optimizer and 
proposed to use a network to determine the best 
optical flow images from RGB frames. They 
attached that model to the two-stream network to 
form a three-stream network, which increases their 
accuracy even more. For the three streams, they 
used the ResNet152 network obtaining an 81.24% 
in accuracy.  

He et al. [19] added an additional stream to the 
two-stream approach, which it was able to fuse the 
features of a frame with the features of its two 
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neighbor frames. This was done several times with 
the purpose of improve the frames features and 
that proved to be beneficial for the model. The 
CNN they chose was Inception-V2 obtaining a 
73.1% in accuracy.  

Wan et al. [1] proposed to combine the 3DCNN 
approach with the two-stream approach by using 
3D convolutions on the spatial-stream and the 
VGG16 CNN on the temporal-stream. They also 
used a SVM after the combination of the two-
stream features for the final prediction and 
obtained a 70.2% in accuracy. 

Sun et al. [20] preferred to use a 3DCNN to 
model the relationship between the features of 
multiple frames, but instead of using a 3D 
convolution, they decided to divide the convolution 
in a set of 2D convolutions followed by a 1D 
convolution to model the temporal relationship 
between frames. They created their own 3D CNN 
and their best result was 59.1% in accuracy.  

Carreira et al. [21] combined the two-stream 
approach with the 3DCNN approach by using a 3D 
CNN in both streams. They also proposed to use 
the Kinetics dataset for pre-training instead of the 
ImageNet dataset. The 3D CNN is based on 
Inception-V1 and it was called I3D CNN. The best 
result obtained was 80.9% in accuracy.  

Wang et al. [22] used the I3D CNN proposed by 
Carreira et al. to build an architecture capable of 
learning the Fisher vector and bag of words 
representation of a combination of features 
extracted from RGB and optical flow frames. Their 
best result showed an 82.1% in accuracy.  

Piergiovanni et al. [23] designed an evolving 
algorithm, which it was able to create convolutional 
models with different number and type of layers for 
the best detection of spatial and temporal features 
in videos. The model is based on Inception-V1 and 
the best result was 82.1% in accuracy.  

Yang et al. [7] also attacked the computational 
cost of the 3D convolutions just like Sun et al. [20] 
but they used unidirectional asymmetric 3D 
convolutions. They also made their own CNN 
architecture achieving a 65.4% in accuracy.  

Stroud et al. [24] proposed a model called D3D, 
which it was trained with RGB frames and with 
extracted knowledge of a temporal network trained 
with optical flow images. The CNN that they used 
was a 3D CNN called S3D-G and it is based on the 

I3D CNN. Their best result showed an 80.5% in 
accuracy. 

Sharma et al. [25] chose to make a visual 
attention model using the Inception-V1 CNN as a 
feature extractor, an attention mechanism that was 
in charge of selecting which parts of the feature 
tensor were the most important ones and an RNN 
to model the relationship between the most 
important features of each frame. Their best result 
was a 41.3% in accuracy.  

Ye et al. [26] proposed to combine the features 
of the last convolutional layer of each of the two 
ResNet101 CNN in a two-stream network and feed 
the combined feature vector to a convolutional 
LSTM to make the final prediction. They obtained 
a 69.3% in accuracy. 

Outside HMDB51 dataset there is also 
numerous works on HAR in videos using different 
datasets. For example, He et al. [27] proposed to 
create a high accuracy architecture based on the 
integration of information from audio, RGB frames 
and two different types of optical flow images. They 
used ResNeXt101 and InceptionResNetV2 CNNs 
on their experiments. The Kinetics 400 database 
was used for pre-training and the final training and 
evaluation were on the Kinetics 600. The best 
accuracy was 85% using an ensemble of 
individual  models.  

Donahue et al. [28] decomposed the video into 
frames; each frame entered to a CNN to extract its 
characteristics and then passed to a LSTM. The 
prediction of each LSTM was averaged to have the 
final video tag. The base architecture in their 
experiments was a combination of the CaffeNet 
architecture and another network proposed by 
other authors. They got 82.37% accuracy in the 
UCF101 dataset.  

Yue-Hei Ng et al. [29] experimented with 
various numbers of frames, various CNN 
architectures such as feature extractors (AlexNet 
and Inception-V1), various feature grouping 
architectures, and a recurring network in order to 
model a higher level of temporal features between 
frames in the video. They used the UCF101 
database, obtaining an 88.6% accuracy.  

Limin et al. [30] used UCF101 dataset. A 
valuable observation about their work is that they 
used 3 different CNNs (ClarifaiNet, GoogleNet and 
VGG16) on their experiments and the results 
showed that VGG16 outperforms GoogleNet, 
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which is interesting because the later performs 
better on ImageNet dataset. Although they did not 
train their CNNs under the same circumstances, 
due to the random corner-center cropping and 
random resizing techniques that they applied to the 
frames, this last work is an example of why we do 
not have to assume that a single CNN will be the 
best on every single dataset in existence. 

3 Theoretical Background 

3.1 Artificial Neural Networks (ANN) 

The ANN is a machine learning (ML) algorithm 
based on the operation of neurons in the human 
brain. ANN uses mathematic equations to learn 
patterns of the training data and they are made up 
by the union of multiple units called perceptrons. 

Frank Rosenblatt made the perceptron and he 
defined it as an artificial neuron that receives 
multiple inputs and produces one binary output that 
is feed to the next neuron. A perceptron also 
receives the name of neuron [31].  

Equation (1) shows the process of calculating 
the output of a neuron, where 𝑓(·) represents the 
activation function, 𝑏 represents the bias of the 
neuron, 𝑥 represents the input 𝑖 and 𝑤 represents 
the weight associated to the input 𝑖: 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑓 ൭𝑏 +  𝑥𝑤



ୀଵ

൱. (1) 

The following are some of the activation 
functions that can be used on a neuron [31]: 

 Sigmoid function: It is an S-shaped function 
and it converts the input values into 
probabilities between 0 and 1. 

 Softmax function: It is commonly used in the 
output layer of neural networks in classification 
algorithms. Computes the probability of the 
output being one of the target classes 
compared to the other classes. 

 Tanh: This function represents the relationship 
between the hyperbolic sine and the 
hyperbolic cosine. It is S-shaped and converts 
input values to probabilities between -1 and 1. 

 ReLU: It is conventionally used in the hidden 
layers of neural networks. It works in such a 

way that, if the input is greater than 0, the 
output is the same input value; if it is less than 
0, the output is equal to 0. 

The process of all the calculations that are 
made from left to right through all the neurons in an 
ANN is called “forward propagation”. The output of 
this process is used to generate the error of the 
network in comparison to the target. The error is 
used to adjust the network parameters (weight and 
bias), and that adjustment process is called back 
propagation [31]. 

3.2 Convolutional Neural Networks (CNN) 

In an ANN each neuron in the input layer is 
connected to each neuron on the subsequent 
layer, this is known as a dense layer. However, in 
a CNN, a dense layer is not used until the last 
layers of the networks. In this way, a CNN can be 
defined as a neuronal network that exchanges a 
dense layer for a convolutional layer in at least one 
layer of the network [32].  

A convolution can be defined as the sum of the 
element-wise multiplication between the values of 
the filters that overlap the values of the input 
tensor. A convolution takes into consideration the 
spatial relationship between pixels and its main 
goal is to extract useful features from the input 
tensor [33]. 

Nonlinear functions such as ReLU are applied 
to the output of the convolutions and then the new 
output is passed to the next layer and the process 
continues. A CNN also includes a pooling layer, 
which it helps to reduce the width and height of the 
input tensor [32].  

Finally, the feature tensor is flattened to 
produce a 1-dimensional vector, which it is feed to 
one or more dense layers to make the 
predictions  [32]. 

In practice, CNNs provide two key benefits: 
local invariance and compositionality. The concept 
of local invariance allows to classify an image that 
contains a particular object, regardless of where in 
the image the object appears. This local invariance 
is obtained by using "pooling layers" that identify 
regions in the input volume with a high response to 
a particular filter. The second benefit is 
compositionality. Each filter composes a local 
patch of lower-level features into a higher-level 
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representation, similar to how you can compose a 
set of mathematical functions that are based on the 
output of previous functions. This composition 
allows the network to learn richer features and 
deeper into the network.  

For example, the network can build edges from 
pixels, shapes from edges, and then complex 
objects from shapes, all in an automated manner 
that occurs naturally during the training 
process [32]. 

Figure 1 shows an example of an architecture 
CNN, where F1, F2 are the number of feature 
maps on each layer and C1 and C2 are the number 
of neurons in each dense layer. 

3.2.1 CNN Architectures 

In this section, we are going to review some 
important characteristics of the CNN architectures 
that will be considered later in the analysis. Since 
most of the literature revised use Inception-V1 or 
Inception-V2, we decided to consider the most 
similar one that belongs to the Keras library for 
python, which was Inception-V3.  

Inception-V3 [34] is a 48-layer CNN and its 
main difference from the Inception-V2 CNN is that 

it uses RMSProp Optimizer, 7x7 factorized 
convolutions, batch normalization in the auxiliary 
classifiers and label smoothing, which is a type of 
regularizing component added to the loss formula 
that prevents the network from becoming too 
confident about a class avoiding the overfitting. 

ResNet architectures family are also common 
in the revised works, we decided to consider 
ResNet152 [35] because we want to compare only 
the most accurate CNN within a group of related 
CNN. ResNet152 is a 152-layer CNN and its CNN 
family was the first that attacked the problem of 
vanishing gradient by using residual connections 
and residual blocks. A residual block is a stack of 
layers set in such a way that the output of a layer 
is taken and added to another layer deeper in the 
block using a residual connection. Finally, a non-
linearity is applied to the result of the sum.  

For the comparative analysis, the remaining 
CNN architectures were chosen from the Keras 
library, according to the next criteria. Since we 
work with the Keras library to get the previous 
CNNs architectures, we decided to also compare 
some of the other CNNs that the Keras library 
offers to work with. 

DenseNet201 [36] was selected because it is 
the best of all DenseNet CNNs and because it 
introduced the concept of dense connections 
between features maps. This proved to be 
beneficial because it solves the vanishing gradient 
problem as ResNet did and at the same time, it 
maintains the low-level features through all the 
convolutional layers within a dense block.  

The Xception [37] CNN stands for an extreme 
version of Inception and has 36 convolutional 
layers and was chosen because it proposed the 
use of modified Depthwise Separable 
Convolutions (DSC) with no intermediate non-
linearity. These types of convolutions were stacked 
in the Xception model like Inception modules and 
the Xception accuracy on ImageNet probed to be 

 

Fig. 1. Example of an architecture CNN
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better than InceptionV3, so we wanted to know if 
this feature was maintained with the 
HMDB51 dataset. 

The EfficientNetB0 [38] and EfficientNetB3 [38] 
CNNs are part of a large family of CNNs known as 
EfficientNet. There are CNN architectures going 
from EfficientNetB0 all the way to EfficientNetB7. 

At first, we used 3 CNNs of this family, 
EfficientNetB0, EfficientNetB3 and EfficientNetB7, 
but we decide to skip the use of EfficientNetB7 in 
the experiments because the difference in 
accuracy between EfficientNetB3 and 
EfficientNetB7 was not significant and the number 
of parameters increased.  

The main contribution of this type of CNNs is 
the introduction of compound scaling which 
uniformly scales network width, depth, and 
resolution with a set of fixed scaling coefficients.  

For instance, if the aim is to use 2N times more 
computational resources, then the network depth 
can increase by αN, width by βN, and image size by 
γN, where α, β, and γ are constant parameters 
computed by a small grid search on the original 
small model. 

EfficientNet uses a compound coefficient ø to 
uniformly scale the width, depth, and resolution of 
the network in a novel manner. The use of the 
compound scaling method is justified since, when 

 

Fig. 2. Set of frames extracted per video 

 

Fig. 3. No augmentation data was used for each frame in the first set of frames 

 

Fig. 4. Image augmentation for each frame in the second set of frames 
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the input image is bigger, the network needs 
additional layers and channels to increase the 
receptive field and to capture more fine-grained 
patterns on the bigger image, respectively.  

Finally, we decided to select MobileNetV2 and 
NASNetMobile from Keras library to compare the 
accuracy of mobile CNNs in respect to the other 
ones. MobileNetV2 [39] is a 53-layer CNN and is 
the successor of MobileNetV1 which introduced 
the concept of DSC which dramatically decreased 
the number of parameters in the network. 
MobileNetV2 like its predecessor uses DSC, but 
non-linearities in narrow layers are removed this 
time, which was beneficial for the model 
classification performance. It also introduced 
inverted residual blocks (as opposed to ResNet) to 
improve parameter efficiency. 

NASNetMobile [40] CNN is part of the NASNet 
CNN family and it was built using reinforcement 
learning using an RNN that selected the best 
combinations between a predefined set of states 
and actions, these combinations are called blocks. 
The main idea behind this approach was to make 
use of transfer learning by searching for an 

                                                      
1 https://serre-lab.clps.brown.edu/resource/hmdb-a-

large-human-motion-database/#Evaluation 

architectural building block that work on a small 
dataset (CIFAR10) and then transfer the block to a 
larger dataset (ImageNet). It is also introduce a 
new regularization technique called 
ScheduledDropPath which improved the 
generalization of the NASNet models. 

4. Methodology 

4.1 HMDB51 Dataset 

HMDB51 is a 6766-video dataset with 51 human 
action classes and for each class there are at least 
100 videos. The dataset has 3 sets of videos for 
training and testing.  

The spatial resolution of the videos is 320x240 
pixels. All videos were extracted from YouTube or 
digitalized movies. The dataset can be 
downloaded using this link1. 

4.2 Set of Frames 

By the intuition that the random selection of frames 
in the training stage of a CNN affects the accuracy 
of the architecture, we decided to create 4 different 
sets of frames for the use in all CNNs. All frame 
sets described here used the videos from the set 1 
of the HDMB51 dataset. 

4.2.1. First Set of Frames 

This set of frames was built taking 10 evenly 
spaced frames from each training and testing 
video. The frames extracted from the training 
videos were saved in a different folder that the 
ones extracted from the test videos.  

To extract the frames, first the program gets the 
total number of frames in the video and this value 
is divided by 10 to calculate the position between 
each frame that will be extracted. Finally, the 
program saves the index of each frame and if the 
quotient between the frame index and the position 
between frames is zero, then the frame is 
extracted. Since the index for the first frame is 0, 
the first frame of the video is always extracted (see 
Fig. 2). For this set of frames, we did not include 

 

Fig. 5. Image augmentation for each frame in the third 
set of frames 

 

Fig. 6. Image augmentation for each frame in the fourth 
set of frames 

Computación y Sistemas, Vol. 26, No. 2, 2022, pp. 623–641
doi: 10.13053/CyS-26-2-4245

Analysis of CNN Architectures for Human Action Recognition in Video 629

ISSN 2007-9737



any sort of image augmentation, so there is only 
one image per frame (see Fig. 3). 

4.2.2 Second Set of Frames 

With the aim of evaluating the effect of data 
augmentation, we decided to use 3 different 
techniques. The first one used in this set of frames 
considers the horizontal mirror of each frame, so 
that instead of having 10 frames per video, this set 
of frames will have 20 frames (10 original and 10 
horizontal mirror). The saving and extraction of the 
frames is as described in the first set of frames (see 
Fig. 4). 

4.2.3 Third Set of Frames 

The second data augmentation technique consists 
of resizing each frame to 256x256 pixels, and from 
the resized frame cut a 224x224 region from the 
center to each one of the four corners. This 
process generated 5 sub-frames from each frame, 
so at the end each video will have 50 frames (40 
frames in total from all the corners and 10 central 
frames). The saving and extraction of the frames is 
as described in the first set of frames (see Fig. 5). 

4.2.4 Fourth Set of Frames 

The third data augmentation technique consists of 
resizing each frame to 256x256 pixels, and from 
the resized frame cut a 224x224 region from the 
center to each one of the four corners. After that, 
we took the horizontal mirror from each one of the 
5 generated images. This process generated 10 

subframes from each frame, so at the end each 
video will have 100 frames (80 frames in total from 
all the corners plus their mirrors and 20 frames 
from the center of each one and its mirror). The 
saving and extraction of the frames is as described 
in the first set of frames (see Fig. 6). 

4.3 Ensembles 

For the experiments with ensembles, we 
considered the best CNN architectures. Each 
ensemble was built by 3 or 5 CNN architectures 
and we used 5 different methods based on 
averaging and voting to obtain the final 
classification tag for each video. All CNN 
architectures were trained with the same set of 
frames. Each one of the 5 methods is 
described below. 

4.3.1 Using Simple Voting with n Frames of 
Each Test Video 

This method consists of extracting 10 frames 
evenly spaced and applying the corresponding 
image augmentation technique according to the 
set of frames used for training. Each frame of the 
set passes through all the CNNs in the ensemble 
and they generate a tag and a number which are 
added to a label dictionary. The key stored within 
the dictionary corresponds to the tag predicted by 
at least one of the CNNs and the number of 
classifiers that predicted that tag. To obtain the 
final tag, the voting method was used where the 
tag that had the most votes by CNNs within the 

 
 
 

Fig. 7. Final label generated by simple voting 
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dictionary is used to establish the final tag for the 
video (see Fig. 7). 

4.3.2 Using Simple Voting with All Frames of 
Each Test Video 

This method works exactly as the previous 
method; the only difference is that instead of using 
only 10 frames we used all the frames in the 
test  video.   

This was done with the purpose of seeing the 
change in accuracy when considering all the 
frames of the video. 

4.3.3 Using Weight Voting with n Frames of 
Each Test Video 

This method consists of extracting 10 frames 
evenly spaced and applying the corresponding 
image augmentation technique according to the 
set of frames used for training.  

Each frame of the set passes through all the 
CNNs in the ensemble and they generate a tag and 
a value which are added to a label dictionary.  

The key stored within the dictionary 
corresponds to the tag predicted by at least one of 
the CNNs and the value is the weight referred to 
the CNN. The weight of each CNN was determined 
according to its individual performance in 
experiments before ensembles.  

The best CNN has a weight of k, the second 
best has a weight of k-1, and this continues until 
we reached the weight of 1.  

This was done for proving if exist any significant 
difference between simple and weighted voting 
method when taking in consideration the individual 
performance of each CNN.  

To obtain the final tag for the video, we looking 
for the tag with the greater score within the 
dictionary (see Fig. 8). 

 
 

Fig. 8. Final label generated by weighted voting 

 
 

Fig. 9. Final label generated by prediction averaging 
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4.3.4 Using Prediction Averaging with n 
Frames of Each Test Video 

This method consists of extracting 10 frames 
evenly spaced and applying the corresponding 
image augmentation technique according to the 
set of frames used for training. Each frame of the 
set passes through all the CNNs in the ensemble. 

Each CNN generates n predictions, which are 
stored in a matrix of predictions. The final tag for 
the video is obtained by averaging all the 
predictions of all CNN in the prediction matrix, 
which gives us a vector with C classes.  

Finally, we took the index that has the greater 
value in the vector to generate the corresponding 
tag (see Fig. 9). 

4.3.5 Using Prediction Averaging with All 
Frames of Each Test Video 

This method works exactly as the method of 
section 4.3.4; the only difference is that instead of 
using only 10 frames we used all the frames in the 
test video.  

This was done with the purpose of seeing the 
change in accuracy when considering all the 
frames of the video. 

Table 1. Average accuracy of each optimizer in each fold using the best models and the first set of frames 

Optimizer Model Fold 1 Fold 2 Fold 3 Average 

Adagrad Val_Loss 43.49% 39.12% 40.22% 40.95% 

Val_Acc 44.03% 39.70% 40.69% 41.48% 

Adam Val_Loss 39.48% 37.42% 37.89% 38.26% 

Val_Acc 44.67% 43.29% 42.80% 43.59% 

Nadam Val_Loss 42.58% 40.60% 36.00% 39.73% 

Val_Acc 47.19% 45.90% 43.21% 45.43% 

RMSprop Val_Loss 43.12% 38.45% 40.95% 40.84% 

Val_Acc 42.73% 40.54% 42.84% 42.04% 

SGD Val_Loss 43.90% 40.02% 39.74% 41.22% 

Val_Acc 47.26% 45.23% 44.41% 45.63% 

Table 2. Average accuracy of each optimizer in each fold using the best models and the second set of frames 

Optimizer Model Fold 1 Fold 2 Fold 3 Average 

Adagrad Val_Loss 45.83% 42.65% 40.97% 43.15% 

Val_Acc 46.05% 42.75% 41.29% 43.36% 

Adam Val_Loss 44.76% 43.01% 43.59% 43.78% 

Val_Acc 50.59% 49.67% 48.24% 49.50% 

Nadam Val_Loss 48.57% 43.53% 43.83% 45.31% 

Val_Acc 53.80% 50.03% 49.41% 51.08% 

RMSprop Val_Loss 41.89% 39.25% 40.11% 40.42% 

Val_Acc 43.87% 39.23% 42.04% 41.71% 

SGD Val_Loss 49.04% 45.62% 44.26% 46.31% 

Val_Acc 53.71% 51.39% 49.71% 51.60% 
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4.4 Our Proposal 

The main purpose of this work is to make an 
analysis of comparison about training time and 
accuracy of 8 different CNN architectures using the 
HMDB51 dataset.  

By no means has it intended to achieve a better 
accuracy than cited works. The training of each 
CNN architecture was done by using only RGB 
frames from the set of videos of the 
HMDB51  dataset.  

By this statement, our proposal is to treat each 
CNN as an image classifier leaving aside the three 
popular approaches for the HAR problem. To make 
a prediction of human action in the video, we 
averaged the predictions of all the frames in a 
given test video. 

4.5 Environment Setup 

We used python as the programming language. 
Regarding training variables, we used the default 
input tensor dimension for all CNNs and the batch 
size that we used was set to 16. 

For the learning rate, we used the default value 
that each optimizer has in Keras; refer to 
https://keras.io/api/optimizers/ for more details. 
Since the default image size is 299x299 for 
InceptionV3 and Xception CNNs, we resized the 
frames to have that size and take advantage of the 
pre-trained weights of those CNNs. All other CNNs 
work with 224x224 size.  

We ran the experiments in 3 different 
computers each one with a different GPU. The 
GPUs that we used were as follows: NVIDIA 1060, 
NVIDIA 1080 and NVIDIA TITAN RTX. The main 
libraries used were: Keras implementation in 
TensorFlow, efficientnet, NumPy, OS, OpenCV, 
Shutil and Pickle.  

We used Tensorflow as a backend to run the 
CNN experiments. We loaded most of the CNN 
architectures using the module of Keras library 
except for the EfficientNet CNNs in which case we 
used the efficientnet library. The metric that was 
used to measure the performance of the CNNs 
was accuracy in all experiments. In some 
experiments, we also measured the training time in 
different GPUs for all the CNNs. 

5 Experiments and Results 

The first experiment consists of selecting the best 
optimizer to use in all CNNs. For this, we 
considered 5 different optimizers: “Adagrad”, 
“Adam”, “Nadam”, “RMSprop and “SGD” with their 
default values in Keras library. We used a K-Fold 
of 3 to validate our results. For this, we divided the 
training videos of set 1 in 2 folders, 70% of the 
videos were used for training and 30% 
for validation. 

Since each one of the 51 folders (classes) in the 
HMDB51 dataset has 70 videos, each class was 
divided in 49 videos for training and 21 videos for 
validation. To extract the frames of each video in 
both the training and validation folders, we used 
the process described in 4.2.1 section.  

Each fold was run 5 times to mitigate the bias 
produced by random weight initialization on the 
CNNs that was used. Due to the excessive time 
that it would take to train 15 times each CNN for 
each optimizer, we decided to use a less deep 
CNN only for the first three experiments. The CNN 
architecture is the following [41]: 

– An input layer where the dimension for the 
input tensor is 224x224x3. 

– A convolutional layer with 32 filters of 3x3 
followed by a “ReLU” activation function and a 
2x2 maxpooling. 

– A second convolutional layer with 32 filters of 
3x3 followed by a “ReLU” activation function 
and a 2x2 maxpooling. 

– A third convolutional layer with 64 filters of 3x3 
followed by a “ReLU” activation function and a 
2x2 maxpooling. 

– A flatten layer followed by a dense layer of 64 
neurons with “ReLU” activation function, a 
Dropout layer with a value of 0.5 and a final 
dense layer with 51 neurons with a “softmax” 
activation function. 

The training was done for 50 epochs and the 
model with the best validation accuracy (Val_Acc) 
as well as the model with best validation loss 
(Val_Loss) were saved.  For the validation phase, 
the final label of the video was obtained by 
averaging the predictions of the n frames 
generated of each validation video. The results 
showed the average accuracy of the 5 best 
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Val_Acc and the 5 best Val_Loss models in the 
validation set on each fold (see Table 1). 

The second experiment was realized almost 
exactly as the first one, but instead of extracting the 
frames using the previous process, we use the 
process of section 4.2.2. This was done with the 
main purpose of observing if any optimizer 
performs better than others when considering a 
larger number of frames (see Table 2). 

Based on the previous results, we decided to 
use SGD optimizer for the training of all the CNNs 
in the next experiments. For the third experiment, 
we measure the training time of all the CNNs 
architectures with the frames of the set 1. We 
trained each of the CNNs 3 times for 50 epochs. 
The CNNs were pre-trained with the ImageNet 
dataset. We reported the average running time of 
each CNN in seconds when using a GPU 1080 and 
a GPU TITAN RTX (see Table 3).  

From Table 3 we can observe that the fastest 
CNN is the MobileNetV2 architecture, which is 
understandable because it contains the lowest 
number of parameters. An interesting fact is that 
the Xception CNN is from 2 to 3 times slower than 
the Inception CNN and they share almost the same 
number of parameters. We decided to conduct 

another experiment to understand why that 
happened. 

For the fourth experiment, we used the GPU 
1060 and computed the average of the training 
time of 5 epochs on both CNNs. We also measured 
the average prediction time of 5 epochs, which was 
calculated by measuring how much time the CNN 
needed to make a prediction of all the training 
frames. Finally, with both times we calculated the 
time that the CNNs used to update their weights by 
extracting the average prediction time to the 
average training time (see Table 4). 

With the previous results, we observed that 
even if both CNNs share almost the same number 
of parameters, the inner structure of the Xception 
CNN made the network slower than the 
InceptionV3, especially when we compared the 
updating time of both networks. 

In the fifth experiment, we trained all the CNNs 
with each one of the four different sets of frames. 
For the third and fourth set of frames, we decided 
to train only four CNNs due to the excessive 
training time since this process is carried on using 
one GPU. We trained each one of the CNNs three 
times for 50 epochs. The CNNs were pre-trained 
with the ImageNet dataset. For each set of frames, 
we used the corresponding testing frames for 

Table 3. Running time in seconds of each CNN architecture on a Titan RTX and 1080 GPU. 

CNN TITAN RTX 1080 

EfficientNetB0 9133 s 18717 s 

EfficientNetB3 17464 s 35321 s 

Xception 28549 s 61730 s 

InceptionV3 12033 s 26869 s 

ResNet152 20878 s 49355 s 

DenseNet201 15239 s 33675 s 

MobileNetV2 7034 s 12913 s  

NASNetMobile 14025 s 25519 s 

Table 4.  Prediction, updating and training time of Xception CNN and InceptionV3 CNN 

CNN Prediction Updating Training 

Xception 389.17 s 1538.89 s 1928.06 s 

Inception 226.90 s 612.48 s 839.38 s 
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validation and we saved the model with the best 
validation accuracy for testing. For the testing 
phase, the final label of each video is obtained by 
averaging the predictions of the n frames 
generated from each test video according to the 
set of frames used during training. We reported the 
average accuracy of the 3 runs of each CNN on the 
testing videos for each set of frames used during 
training (see Table 5). 

According to the results of the previous 
experiment, we noticed that all the CNNs were 
benefited from using the second set of frames, but 
on the third one, only two of the four CNNs 
improved their accuracy. What is even more 
interesting and that none of the four CNNs that 
were trained on the fourth set of frames improved 
their performance, instead of that, the performance 
was worse than when using the second and third 
set of frames.  

This result can be explained by the fact that 
when building the first and second set of frames, 
we worked with the whole image, but when building 
the third and fourth set of frames, we took five 
different subsections of the whole image and some 
of them did not contain the person doing the action. 
With this in mind, we can argue that both the third 
and fourth set of frames have many frames with 
noise, and that is why the accuracy performance 
on these two sets was affected negatively. Based 
on that information, we decided to not train any of 
other remaining CNNs on the 3rd and 4th set of 
frames. Since the 2nd set of frames prove to be the 
set with better results on the CNNs, we used that 
set for the training of the CNNs for the 
next experiments. 

The sixth experiment was done with the 
purpose of proving how well the CNNs perform on 
the set 2 and set 3 of videos of the HMDB51 
dataset. Aiming at this, we used the procedure 
described in section 4.2.2 to generate new sets of 
frames from the sets 2 and 3 of videos of the 
HMDB51 dataset. We trained each one of the 
CNNs 3 times for 50 epochs. The CNNs were pre-
trained with the ImageNet dataset. For each set of 
frames, we used the corresponding testing frames 
for validation and saved the model with the best 
validation accuracy for testing. For the testing 
phase, the final label of each video was obtained 
by averaging the predictions of the 20 frames 
generated from each test video according to the 

set of frames that was used during training. We 
reported the average accuracy of the 3 runs of 
each CNN in the testing videos for each set of 
frames used during training and included the 
results obtained in the set 1 of videos using the 
second set of frames from the previous table 
(see Table 6).Something that caught our attention 
on the result of the fifth and sixth experiment was 
the fact that the Xception network proved to be 
better than the EfficienNetB3 network, which is on 
a higher rank on the ImageNet dataset.  

For knowing if these results were caused by the 
greater entry resolution of the Xception network, 
we decided that the aim of the seventh experiment 
would be to compare these two networks with the 
same input resolution.  

We fixed the input resolution of each of the two 
CNNs to be 224x224 and trained both CNN for 50 
epochs on the second set of frames of the set 1 of 
videos of HMDB51. The CNNs were pre-trained 
with the ImageNet dataset. We used the testing 
frames of the second set of frames for validation 
and saved the model with the best validation 
accuracy for testing. For the testing phase, the final 
label of each video was obtained by averaging the 
predictions of the 20 frames generated from each 
test video. We reported the average accuracy of 
the 3 runs of each CNN in the testing videos (see 
Table 7). 

Based on the previous results, we can see that 
even when both CNNs have the same input 
resolution, the Xception CNN managed to outclass 
the EfficientNetB3 CNN by a significant margin. 

We can also see that the Xception network 
works better with a 299x299 input image resolution 
and that is due that input images of 299x299 
resolution were used to generate the pre-training 
weights of the Xception CNN on the ImageNet 
dataset. 

The eighth experiment was envisioned to take 
advantage of those CNN models that showed the 
best performance on previous evaluations. For 
this, we thought of building several ensembles 
made of such CNN's to evaluate if they could, as a 
team, outperform the best individual model for 
HAR, that is, Xception. If that is the case, then, this 
ensemble can also be considered as a baseline for 
future evaluation. Since we trained 3 times each 
CNN, we selected the CNN model which test 
accuracy was the closest to the average that was 
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reported on each set of videos to be part of the 
ensembles.  

We decided to separate the ensembles that 
considered only n frames (n = 20) of each test 
video and the ones that considered all video 
frames of each test video. The ensembles were 
formed in the following way: 

– Ensemble 1: Ensemble of the 3 best CNNs 
using simple voting and n frames. 

– Ensemble 2: Ensemble of the 5 best CNNs 
using simple voting and n frames. 

– Ensemble 3: Ensemble of the 3 best CNNs 
using weighted voting and n frames. 

– Ensemble 4: Ensemble of the 5 best CNNs 
using weighted voting and n frames. 

– Ensemble 5: Ensemble of the 3 best CNNs 
using prediction averaging and n frames. 

Table 5. Average accuracy of each CNN on each set of frames 

CNN Architecture 1st set  2nd set  3rd set 4th set 

EfficientNetB0 47.39% 49.67% 51.35% 48.17% 

EfficientNetB3 47.84% 50.70% N/A N/A 

Xception 51.33% 53.99% 52.68% 50.26% 

InceptionV3 48.21% 48.56% 48.39% 46.95% 

ResNet152 44.81% 45.80% N/A N/A 

DenseNet201 45.95% 45.99% N/A N/A 

MobileNetV2 42.53% 43.75% N/A N/A 

NASNetMobile 43.86% 44.47% 45.40% 44.18% 

Table 6. Average accuracy of each CNN on each of the three set of videos of HMDB51 dataset. 

CNN Architecture Set 1 HMDB51 Set 2 HMDB51 Set 3 HMDB51 Average 

EfficientNetB0 49.67% 45.62% 45.66% 46.98% 

EfficientNetB3 50.70% 46.97% 45.88% 47.85% 

Xception 53.99% 50.00% 51.76% 51.92% 

InceptionV3 48.56% 46.25% 47.25% 47.35% 

ResNet152 45.80% 39.96% 40.46% 42.07% 

DenseNet201 45.99% 42.42% 43.75% 44.05% 

MobileNetV2 43.75% 41.33% 41.22% 42.10% 

NASNetMobile 44.47% 40.04% 40.76% 41.76% 

Table 7. Accuracy of EfficientNetB3 and Xception using 224x224 images. 

CNN Architecture Accuracy 

EfficientNetB3 50.70% 

Xception 52.46% 
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– Ensemble 6: Ensemble of the 5 best CNNs 
using prediction averaging and n frames. 

– Ensemble 7: Ensemble of the 3 best CNNs 
using simple voting and all frames. 

– Ensemble 8: Ensemble of the 5 best CNNs 
using simple voting and all frames. 

– Ensemble 9: Ensemble of the 3 best CNNs 
using prediction averaging and all frames. 

– Ensemble 10: Ensemble of the 5 best CNNs 
using prediction averaging and all frames. 

We reported the average accuracy of each 
ensemble in each set of videos of the HMDB51 
dataset (see Table 8). 

5.1 Statistical Tests 

To verify the robustness of the results of the first 
and second experiments, three paired t-test were 
conducted. The first one compared the vector 
containing the average of hits per class from the 5 
runs using the set 1 of frames, the SGD optimizer 

Table 8. Accuracy of the different type of ensembles on each set of videos of HMDB51 dataset 

Ensemble Set 1 HMDB51 Set 2 HMDB51 Set 3 HMDB51 Average 

Ensemble 1 52.88% 48.30% 50.00% 50.39% 

Ensemble 2 53.92% 49.80% 50.26% 51.33% 

Ensemble 3 54.31% 50.39% 51.31% 52.00% 

Ensemble 4 54.64% 50.98% 51.50% 52.37% 

Ensemble 5 54.77% 51.11% 51.90% 52.59% 

Ensemble 6 52.94% 50.33% 51.90% 51.72% 

Ensemble 7 52.75% 51.37% 51.18% 51.77% 

Ensemble 8 53.27% 50.65% 50.59% 51.50% 

Ensemble 9 54.64% 53.07% 52.42% 53.38% 

Ensemble 10 52.29% 52.03% 52.22% 52.18% 

Table 9. Comparison with previous models 

Paper Acc. 

I3D Spatial stream [20] 74.80% 

Two-stream Conv LSTM CNN Spatial-stream [25] 64.80% 

KAVG Spatial stream [17] 61.44% 

LSF CNN Spatial stream [1] 61.30% 

DTPP Spatial stream [16] 61.06% 

FSTCN [19] 59.10% 

TSN Spatial stream [15] 53.70% 

Best Ensemble 53.38% 

LFN Spatial stream [18] 52.14% 

Best Individual CNN 51.92% 

Visual Attention Model [24] 41.30% 

Spatial stream [14] 40.50% 
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and the best Val_Acc model, against the vector 
containing the average of hits per class from the 5 
runs using the set 1 of frames, the SGD optimizer 
and the best Val_Loss model. The p-value 
obtained was 5.512e-09.  

The second paired t-test compared the vector 
containing the average of hits per class from the 5 
runs using the set 1 of frames, the Adagrad 
optimizer and the best Val_Acc model, against the 
vector containing the average of hits per class from 
the 5 runs using the set 1 of frames, the SGD 
optimizer and the best Val_Acc model. The p-value 
obtained was 1.079e-09.  

The third paired t-test compared the vector 
containing the average of hits per class from the 5 
runs using the set 1 of frames, the SGD optimizer 
and the best Val_Acc model, against the vector 
containing the average of hits per class from the 5 
runs using the set 2 of frames, the SGD optimizer 
and the best Val_Acc model. The p-value obtained 
was 2.2e-16. With all these values, we rejected all 
the null hypotheses, and thus show the robustness 
of the results. 

5.2 Comparison of Results with Previous 
Works 

To see where our best performance individual 
CNN and ensemble with no fine-tuning stand 
against the fine-tuned models of the state of the art 
of the HMDB51 dataset, we decided to make a 
comparison with 10 of the most accurate or most 
popular models of the state of the art.  

For a fair comparison, we only cited the models 
that used only RGB frames as input (see Table 9). 
Something to take in consideration is that our work 
never intended to compete with the results of the 
state of the art, but instead to demonstrate that the 
idea of choosing the best performance CNN 
trained with an image dataset will not always lead 
to the best performance on a video dataset. 

6 Conclusions 

In this work, we compared the performance of eight 
different CNNs on the different sets of frames 
generated on the HMDB51 dataset. The Xception 
network proved to be the best individual CNNs out 
of all the CNNs that we chose to work with. We 

argued that this was because of the absence of 
non-linearity on the intermediate step of a DSC, 
which is the main difference between the Xception 
and the rest of the CNN. However, further 
experiments modifying this feature of the Xception 
CNN need to be done on the HMDB51 dataset to 
see if this network feature is truly the reason 
behind the good performance of the CNN. 

Results also showed that mobile CNNs such as 
MobileNetV2 and NASNetMobile are low on 
accuracy when comparing to newer and bigger 
models such as Xception or EfficientNets. The best 
accuracy achieved was 53.38% when we used the 
ensemble of the best three individual CNNs, 
prediction averaging and when we took into 
consideration all frames of a video during testing. 

We proved that the performance of a CNN 
above others in terms of accuracy can change 
depending on the dataset that is used, i.e., 
between the ImageNet dataset and the HMDB51 
dataset. Thus, we encourage the authors to 
include the election of the CNN (at least 
experiment with 2 different CNN) as a 
hyperparameter of their models. 

We also proved that considering more frames 
that were created using image augmentation 
techniques during training does not necessarily 
improve the accuracy of a network such as happen 
when the CNNs used the third and fourth set of 
frames; but taking into consideration, more frames 
during testing time can achieve better results like 
what happened with the ensembles. 

We have trained each CNN using only 10 
frames per video along to corresponding extra 
frames generated with the image augmentation 
techniques, nevertheless, we encourage to use 
more frames to improve classification accuracy on 
each CNN. Results can also be improved with the 
fine-tuning of hyperparameters such as learning 
rate and batch size, with the use of regularization 
techniques such as dropout and with the use of 
different data augmentation techniques such as 
RGB and scale-jittering.   

Due to the use of image classifier models, the 
accuracy on classes like sit, stand, walk, run and 
others very similar classes was very low, because 
the model was not made to capture the motion 
feature that distinguishes one class from another. 
However, these results can be improved with the 
use of more complex models that include motion 
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features like optical flow or with the use of any of 
the three popular approaches for HAR previously 
explained. Running time of the CNNs can also be 
improved with more powerful GPUs and with the 
use of a cluster of GPUs.  

For future work, we would like to test more CNN 
architectures with more different video datasets 
like UCF101. We will also like to include motion for 
the training of the CNN by extracting optical flow of 
the frames and training a temporal stream or by 
building a 3D CNN with every CNN tested.  

The idea of including motion is because we 
want to see if the current ranking of CNNs that we 
have in our experiments by using only RGB frames 
changes either with the use of only motion data or 
with the inclusion of motion data with RGB frames. 
We also want to test with more than 10 frames per 
video for training, so we would like to analyze the 
performance of CNNs while using different number 
of frames.  

Finally, as previously stated we would like to run 
different tests on the best CNN to see what part of 
its inner structure is responsible of its performance. 
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