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Abstract. Spectrum assignment (SA) controls the
interference among secondary and primary users
using spectrum sharing (SS) access. SA assigns
the appropriate frequency band to a secondary user
according to a predefined criterion. This work
proposes a SA approach that controls the allocation
channels to minimize network interference. The
angle modulated particle swarm optimization (AMPSO)
algorithm is applied to maximize the heterogeneous
network (HetNet) throughput when secondary users
exploit a channel simultaneously with a primary user.
The AMPSO results are compared with the memory
binary particle swarm optimization (MBPSO), the
socio-cognitive particle swarm optimization (SCPSO),
and the modified version of binary particle swarm
optimization (ModBPSO). Comparison results showed
that AMPSO is suited for scenarios with high quality
of service (QoS) requirements and many secondary
and primary users deployed in an area. AMPSO
presents the best performance by maximizing spectrum
reuse. It selects the secondary and primary users to
share a communication channel and maximizes the total
throughput in the HetNet.

Keywords. Angle modulated particle swarm
optimization, spectrum assignment, spectrum sharing,
heterogeneous network.

1 Introduction

The continued development of radio technology
and new services has increased the world’s

dependence on wireless communications, growing
the demand and the cost of the radio spectrum
finite resource [31]. By 2023, over 70 percent of
the global population will have mobile connectivity
[6]. To address this growing challenge, regulators
will require policies, new approaches, and
technological innovations to enable flexible and
efficient access to the radio spectrum.

Today, the static spectrum allocation policy
regulates wireless networks. Regulators decide
on the usage of a spectrum band, providing a
license to each user to transmit on a frequency
over a specific area. This rigid spectrum regulation
guarantees that destructive interference among
wireless technologies does not occur [4]. However,
it has led to the under-utilization of the radio
spectrum, as studies have pointed out [11]. In
this context, SS becomes a promising approach to
improving spectrum usage efficiency [3].

SS enables mobile users to use a frequency
band in a specific geographical area from different
wireless communication technologies. An SS
network has two kinds of users: the primary users
(PUs) and the secondary users (SUs). PUs have
guaranteed access since they are licensed users.
Consequently, SUs access the licensed spectrum if
they do not harm the operation of the PUs. Hence,
the PUs do not experience service degradation due
to interference caused by the SUs [24].



An important issue of SS strategy is the QoS re-
quirements concerning the signal-to-interference-
noise ratio (SINR) for both PUs and SUs during
the concurrent spectrum access. By facing
this issue, no network tiers undergo service
degradation due to the interference, achieving a
peaceful coexistence.

SA is a key task to accomplish the SS approach.
SA limits the interference between SUs and
PUs operating in the same geographical area by
assigning the appropriate frequency band to an
SU by one or more criteria: interference/power,
throughput, fairness, delay, price, energy effi-
ciency, risk, and network connectivity [32].

After that, a suitable technique is selected to
solve the objective(s) such as heuristics, graph
theory, linear programming, fuzzy logic [22],
evolutionary algorithms [25], swarm algorithms
[33], etc.

For conventional cellular networks, the SS
approach enlarges the pool of available spectrum
resources for mobile users through femtocells
(small cells), overlaid on the existing macrocell.
That mixture of different types of cells is known
as a HetNet [1]. However, in a HetNet
deployment, reusing radio resources leads to
destructive interference for macro-users (PUs)
and femto-users (SUs) [14]. The unplanned
positions of femto-base stations lead to two kinds
of interference: cross-tier (the aggressor and the
victim of interference belong to different tiers)
and intra-tier (the aggressor and the victim of
interference belong to the same tier) [5].

This work considers the underlay SS paradigm in
a HetNet to propose a solution to the SA problem.
Then, we maximize network throughput when one
or more SUs reuse a channel simultaneously with
the PU, satisfying QoS requirements. The SA
problem belongs to the class of the NP-Hard
problems, i.e., no known algorithm generates a
guaranteed optimal solution in an execution time
expressed as a finite polynomial of the problem
dimension [32]. Therefore metaheuristics are
suitable to tackle the SA problem by discarding
solutions in polynomial time [30]. This work
determines the maximum HetNet throughput from
identifying SUs and PUs that have access to the
same spectral band. That solution also ensures

a peaceful coexistence among PUs and SUs in
terms of interference. We apply metaheuristics to
solve the SA problem in HetNet.

In this case, the binary optimization algorithm
represents each solution as a binary string. The
number of vector elements equals the number of
SUs in the HetNet. If n SUs are deployed in
HetNet, then the vector solution size is n bits.
Therefore, the size of the binary search space
doubles with each element (SU) added to the
binary string (solution). It is envisioned that deploy
ultra-dense small cells in the coverage region of
macrocells will be a solution to the exponentially
increased traffic in the following years [1].

In light of this, we deal with a high-dimensionality
problem that enlarges the search space, increasing
the computational complexity. The motivation for
applying AMPSO to solve the SA problem is its
ability to handle higher-dimensional problems [23].
AMPSO reduces a particle to a four-dimensional
particle defined in continuous space, with a direct
mapping back to binary space.

In previous work, we reported an admission
control and channel allocation algorithm [19],
based on the underlay shared mode and the
MBPSO algorithm. However, from the results
obtained in [19], we observed that when the
number of SUs in the network increased (high
dimensionality), the MBPSO algorithm used
did not converge to a good solution because
the optimization complexity of the SA problem
increased. The AMPSO algorithm offers a way
to reduce the complexity of binary problems faster
than conventional BPSO algorithms. Therefore, we
consider applying the AMPSO technique to solve
the SA problem in scenarios with a high density
of SUs and QoS requirements in the wireless
network. The purpose of our work is to evaluate the
efficacy of the AMPSO algorithm to find a solution
in those complex scenarios.

Other studies have addressed the throughput
maximization in HetNets. For example, work in [29]
considers an LTE HetNet composed of femtocells
and macrocells. It proposes a centralized
scheduling approach to mitigate interference and
maximize the throughput of the HetNet. Then
an optimization problem is formulated as a
mixed-integer non-linear programming problem



(MINLP). Given that the MINLP is NP-Hard, it is
transformed to be solved in polynomial time using a
heuristic algorithm inspired by sociological theory.
This transformation only applies to a scenario that
authors call an apartment environment (OAE) with
obstructive structures.

Work in [26] addresses resource allocation
in a HetNet composed of one macrocell and
several femtocells. It aims to maximize the
femto-tier throughput. To reduce the complexity,
the authors divide the maximization problem into
two sub-problems: the clustering problem and the
resource allocation problem. The first problem
that forms the femtocell groups is solved by using
an evolutionary game. In contrast, the second
problem is posed as one of maximization of the
throughput within a cluster. By doing this, it
is possible to address it by the particle swarm
optimization (PSO) technique.

In contrast, work in [27] addresses the SS
with the primary objective of increasing the sum
throughput system using QoS constraints for both
SUs and PUs. They solve the SA problem by
applying particle swarm optimization (PSO) in a
homogeneous network (802.11), i.e., cells with
the same characteristics. Then an optimal relay
selection method is coupled. However, work in
[15] envisions that the corresponding number of
base stations in the network will increase as the
number of users increases. So, it emphasizes
that the design of the SS techniques must keep
in view picocells, femtocells, small cells, etc.,
simultaneously in the network.

In [36], the authors maximize the D2D users’
throughput with minimal interference to the cellular
users. This is done in a multi-tier HetNet. Then,
the authors propose an autonomous spectrum
allocation scheme with distributed Q-learning. The
D2D users can learn the wireless environment
and select spectrum resources autonomously to
achieve the objective through this strategy. The
D2D users operate the underlay shared mode, i.e.,
they reuse spectrum used by cellular users. The
authors simulated their scheme using the Monte
Carlo technique by executing 10000 runs.

Finally, the study [17] proposes a numerical
approach of coexisting LTE and WiFi networks
to share an unlicensed spectrum. It maximizes

total throughput in a HetNet if an access point
(AP) achieves a throughput threshold level. Then,
it applies decentralized and centralized traffic
management schemes to show a maximum
per-user link throughput of an AP and per-user
network throughput.

The authors characterize the statistical property
of the cell load and channel access probability
of each AP in a low-complexity form. The
per-user link throughput and per-user network
throughput are based on the derived mean
spectrum efficiencies and maximize them applying
Shannon transform to a non-negative random
variable. The simulation results conclude in
both schemes that offloading traffic from the LTE
network to the WiFi network initially improves the
per-user network throughput, but it finally leads to
its reduction due to too much offloading.

Unlike works [26] and [29], we do not apply any
transformation to the objective function to convert
the problem into a deterministic problem. Through
AMPSO, we handle candidate solutions with high
dimensionality. As works in [36] and [27], we also
consider QoS constraints in SUs and PUs, i.e., we
guarantee successful communication to both kinds
of users. Just as works [29] and [17], we assume
centralized management in which our proposed
approach is processed in the macro base station.

This paper has the following structure: Section
2 presents the system model and the problem
statement. Section 3 describes AMPSO. Section
4 describes AMPSO to resolve the SA problem.
Section 5 shows simulation results and conse-
quently, Section 6 presents a discussion. Finally,
Section 7 concludes the paper and addresses the
implications for further research.

2 System Model and Problem
Formulation

Fig. 1 is the down-link scenario considered in
this work. It is a HetNet where femto-cells (the
red dashed circles) exist within the coverage area
A of a macrocell (the black dashed circle). The
macrocell has a macro-base station (MBS) which
communicates with its associated macro-users
(PUs). Consequently, the union of a transmitter, i.e.
an MBS, and a receiver (a macro-user) is referred



to as a primary link. In Fig. 1, the primary links
are the black arrows; each primary link is identified
by a number beside the link (the green numbers).
Also, each primary link has a primary channel
assigned (the number in brackets). The total
number of primary links in A is Pl. The primary
links have fixed locations. On the other hand, the
femto-cell has a femto-base station (FBS) which
communicates with its attached femto-user (SU).
Then, a secondary link consists of the union of
a transmitter (i.e. an FBS) and its corresponding
receiver (a femto-user). Each secondary link is
identified by a number beside the link (the blue
numbers in Fig. 1). Then a primary channel is
assigned to several secondary links. The primary
channels assigned to each secondary link are the
number in braces in Fig. 1. The total number of
secondary links in A is Sl.

We assume that FBSs do not have channels to
assign to their femto-users, so macro-users must
share their primary channels. In the beginning,
primary channels are assigned randomly to
secondary links. In Fig. 1, we show the case when
primary channel 1 is shared among secondary
and primary links. The red number 1 means
that primary channel 1 is being shared among
secondary links 3, 4, 5, and primary link 2.

This channel assignment will generate a level
of interference between these links, and network
capacity will be affected. In the worst case, if the
interference exceeds a predefined QoS threshold,
this channel assignment will not be valid. Then, it
will be necessary to find another configuration to
assign channel 1. Also in Fig. 1, other primary
channels are being shared. For example, primary
channel 4 is being shared between secondary link
1 and primary link 1. Another example is primary
channel 3 that is being shared between secondary
link 2 and primary link 4.

The SINR (in dB) is the instantaneous ratio of
desired energy to interference. It is a metric on a
receiver. In single-hop communications, the SINR
must accomplish a minimum SINR threshold to
indicate a successful reception [2]. Then, SINR
relates to QoS. If primary links experience dropped
calls or cannot connect because of the high
interference due to the presence of the secondary
links in the geographical region, the aim of SS is

not achieved at all. Consequently, each service
has a QoS or SINR threshold to achieve. For
example, a voice service has a target QoS of 3
dB to be considered a successful communication
between the transmitter and the receiver.

The SINR in a macro-user of a primary link v is
given by [20]:

SINRv = (Pv/ldp(v)
n)/(

∑
k∈φ

Pk/dps(k, v)
n),

1 ≤ v ≤ Pl. (1)

where Pv is the transmit power of the primary link
v. ldp(v) is the link distance of the primary link v. n
is the path loss exponent (a value between 2 and
4). Those parameters characterizes the desired
signal. Consequently, φ is the set of the interferers,
i.e. the active secondary links that have assigned
the same primary channel as the primary link v.
k is the index of interferers. Pk is the transmit
power of the secondary link k. dps(k, v) is the
distance from the transmitter in secondary link k
to the receiver in primary link v.

In Fig. 1, SINRv is computed in the macro-user
of the primary link 2. There, the macro-user in
primary link 2 has three interferers: secondary
links 3, 4, and 5. The aforementioned is
the aggregated cross-tier interference, i.e., the
total interference from the secondary links that
attempt to simultaneously exploit a channel with
the primary link v.

Similarly, the SINR in a femto-user of a
secondary link u is given by [20]:

SINRu = (Pu/lds(u)
n)/(

∑
k∈φ

Pk/dss(k,u)
n+

Pv/dps(v,u)
n), 1 ≤ u ≤ Sl. (2)

where Pu is the transmit power of the secondary
link u. lds(u) is the link distance of the secondary
link u. n is the path loss exponent (a value
between 2 and 4). Those variables characterize
the desired signal. Meanwhile, φ is the set of
the interferers, i.e., the active secondary links that
have assigned the same primary channel as the
secondary link u. k is the index of interferers. Pk is
the transmit power of the transmitter of secondary
link k. dss(k,u) is the distance from the transmitter



Fig. 1. HetNet scenario

of secondary link k to the receiver of secondary
link u. Therefore, those parameters represent the
aggregate intra-tier interference.

For example, in Fig. 1, the intra-tier interference
on the femto-user of the secondary link 4 comes
from the secondary links 3 and 5. Likewise, Pv

is the transmit power of the interferer primary
link v (it has assigned the same primary channel
as secondary link u). dps(v,u) is the distance
from the transmitter of the primary link v to the
receiver of the secondary link u. Those parameters
characterize the cross-tier interference perceived
by a receiver of secondary link u. In Fig. 1,
the cross-tier interference on the femto-user of the
secondary link 4 comes from the primary link 2. In
Fig. 1, SINRu is computed in secondary link 4.

Positive values of SINR indicate that the desired
signal is greater than the interference. On the other
hand, negative values of SINR refer to that the
interference is greater than the desired signal.

Data rate (in Mbps) of the secondary link u and
the primary link v are described in equations (3)
and (4), respectively [20]:

C
′

u = Blog2(1 + SINRu), (3)

C
′′

v = Blog2(1 + SINRv), (4)

where B is the channel bandwidth that secondary
and primary links share. Positive values of SINR
result in better throughput. In contrast, negative
values of SINR lead to worse throughput.

We aim to optimize the sum throughput in the SS
network. We formulate the optimization problem
as [20]:

Maximize
Sl∑
u=1

c
′

u · xu +

Pl∑
v=1

c
′′

v , (5)

Subject to:
SINRu ≥ γ, (6)

SINRv ≥ α, (7)

c
′

u > 0,u = 1, 2, ...,Sl, (8)

c
′′

v > 0, v = 1, 2, ...,Pl, (9)

c
′

u, c
′′

v ,∈ R+, (10)

xu =

{
1, if SINRu ≥ γ and SINRv ≥ α
0, otherwise. (11)

The task is to find a binary vector xu=(x1, ...,xSl)
for which the objective function in equation (5)
is maximum. Equation (5) represents the sum
throughput of the SS network. It takes into account
the selected secondary links, xu, along with the



primary links that coexist in the same region and
share the same spectrum. Equations (6) and (7)
are the SINR requirements of the secondary links
and primary links respectively.

A successful transmission in the primary link
v is achieved if it reaches the SINR threshold
α. Similarly, a successful transmission in the
secondary link u is reached if its SINR is above
the SINR threshold γ. Each position u in the binary
vector x in equation (11) symbolizes if secondary
link u is related to the primary link v (xu = 1) or not
(xu = 0).

3 Angle Modulated Particle Swarm
Optimization Algorithm

AMPSO [23] is an alternative version of binary
particle swarm optimization (BPSO) [13] to address
high dimensionality problems.

To do so, AMPSO employs standard PSO
to optimize the coefficients of the following
trigonometric function:

g(x) = sin[2π(x− a)b · cos(2π(x− a)c)] + d]. (12)

The function in (12) is called the generating
function, and it is used as a bit string generator. To
optimize the coefficients of the generating function,
the position of a particle i is composed of a
four-dimensional vector Xi = (ai, bi, ci, di). The
coefficient a controls the horizontal shift of the
entire function. The coefficient b influences the
maximum frequency of the sine wave and controls
the amplitude of the cosine wave. The coefficient
c affects the frequency of the cosine wave (which
changes the rate at which the frequency of the sine
function changes), and d controls the vertical shift
of the function.

For example, Fig. 2 shows the evaluation of
g(x) in the [-2, 2] interval for a set of default
coefficient parameters: a=0, b=1, c=1, d=0. The
coefficient parameters are substituted in equation
(12) to generate the bit string.

Then the function g(x) is sampled nb times,
where nb is the number of bits required to represent
the solution. If the g(x) value is positive, the
corresponding bit is set to 1. Otherwise it is set to
0. A bit is generated for each interval evaluated,

Fig. 2. Angle modulation function g(x) for default
parameters a=0, b=1, c=1, and d=0

so that each set of coefficient parameters that
composes Xi has a Xbi bit string with it.

For example, to generate 10 bits from Fig. 2, we
define 10 equal separated intervals: xj= (-1.6, -1.2,
-0.8, -0.4, 0, 0.4, 0.8, 1.2, 1.6, 2). Then we evaluate
g(x) for x1=-1.6, and as Fig. 2 shows, the g(x)
value is positive, so the first bit of the particle is set
to 1. This process is repeated for all the remaining
values of x.

Once we have sampled all the values, the whole
bit string is generated Xbi=(1 0 0 1 0 0 1 1 0 0).
Xbi represents one of the possible solutions to the
discrete problem, then, it is evaluated to assign a
fitness value.

AMPSO updates the velocity vid using equation
(13) and position xid using equation (14) of Xi

according to conventional PSO [12]:

vid = wvid+c1r1d(pid−xid)+c2r2d(pgd−xid), (13)

xid = xid + vid, (14)

where c1 and c2 are positive constants used to
scale the contribution of the cognitive and social
components. r1 and r2 are vectors of random
values in the range [0, 1] which are sampled from
a uniform distribution and per dimension.

AMPSO reduces a high dimensional bit string to
a four-dimensional vector. Algorithm 1 describes
AMPSO for maximizing goodness.



Algorithm 1: AMPSO
Data: The equal intervals xj to sample generating function, the swarm size S, the initial values of the

four coefficients a, b, c and d
Result: The best solution Pbg, evaluation of the best Pbg in the fitness function f(Pbg)

1 Initialize position vector Xi, intervals vector xj , velocity vector Vi, memory vector Pi = Xi;
2 repeat
3 for each particle i = 1 to number of particles in swarm S do
4 Function Generate bit string Xbi();
5 Evaluate Xbi using the objective function;
6 Let f(Xi)=f(Xbi);
7 Function Generate bit string Pbi();
8 Evaluate Pbi using the objective function;
9 Let f(Pi)=f(Pbi);

10 if f(Xbi) > f(Pbi) then
11 for d = 1 to 4 do
12 pid = xid;
13 end
14 end
15 g=i;
16 for each particle j = 1 to number of particles in swarm S do
17 Function Generate bit string Pbj();
18 Evaluate Pbj using the objective function;
19 Let f(Pj)=f(Pbj);
20 Function Generate bit string Pbg();
21 Evaluate Pbg using the objective function;
22 Let f(Pg)=f(Pbg);
23 if f(Pbj) > f(Pbg) then
24 g=j;
25 end
26 end
27 for d = 1 to 4 do
28 Update velocity according to the equation (13);
29 vid ∈ (−Vmax, Vmax);
30 Update position according to the equation (14);
31 end
32 end
33 until stopping condition(s) satisfied ;

4 Angle Modulated Particle Swarm
Optimization Algorithm to Resolve
the Spectrum Assignment Problem

When a scenario (or snapshot) is analyzed using
algorithm 3, Xbi specifies a potential solution to
solve the SA problem; that is, the set of secondary
links that may coexist with the primary links in area

A to achieve the maximum throughput, subject to
QoS constraints for primary-secondary networks.

In algorithm 3, we include two new vectors:
X ′

i and P ′
i . Each Xbi has an X ′

i which holds
the candidate primary channels for the chosen
secondary links. Take for example the snapshot
illustrated in Fig. 3. Particle Xbi indicates
that secondary links 1, 3, 5, 6, 7, and 8 are



Algorithm 2: AMPSO, Functions
1 Function Generate bit string Xbi()
2 for j=1 to nb do
3 if g(Xi,xj) ≥ 0 then
4 xbij=1;
5 else
6 xbij=0;
7 end
8 end
9 End

10 Function Generate bit string Pbi()
11 for j=1 to nb do
12 if g(Pi,xj) ≥ 0 then
13 pbij=1;
14 else
15 pbij=0;
16 end
17 end
18 End
19 Function Generate bit string Pbj()
20 for k=1 to nb do
21 if g(Pj ,xk) ≥ 0 then
22 pbjk=1;
23 else
24 pbjk=0;
25 end
26 end
27 End
28 Function Generate bit string Pbg()
29 for k=1 to nb do
30 if g(Pg,xk) ≥ 0 then
31 pbgk=1;
32 else
33 pbgk=0;
34 end
35 end
36 End

selected as a part of the solution; hence, X ′
i is

the channel allocation for those chosen secondary
links. Consequently, P ′

i keeps the best channels
allocations find so far for Pbi.

In contrast, the spectrum status vector holds
the channel allocation for the primary links, so
that, spectrum status vector is kept fixed through
search. Mapping of X ′

i and spectrum status

Fig. 3. Representation of particles for a given spectrum
sharing access

provides the potential channels to share among the
PUs and SUs. From the example in Fig. 3, channel
2 is exploited concurrently by primary link 5 and the
secondary links 5, 6, and 7.

Once the bit strings Xbi and Pbi are generated
as indicated in STEP 8 and STEP 9, the SINR
levels for candidate SUs in Xbi and PUs in the
spectrum status vector are calculated. This is
done by mapping each element of X ′

i to its
corresponding channel in the spectrum status
vector. Also, the SINR levels for the best candidate
SUs in Pbi and PUs in the spectrum status vector
are computed.

Those SINR levels are calculated by using
equations (1) and (2). In STEP 12, if SINR
restrictions in equations (6) - (7) are achieved for
SUs and PUs, Xbi and Pbi are feasible solutions.
Then their fitness values are calculated as shown
in equation (5). Otherwise, if SINR levels are not
achieved, Xbi and Pbi are infeasible solutions that
are penalized by setting their fitness values to zero.

From STEP 14 to STEP 19, the process of
finding the best set of secondary links so far by the
i-th particle is performed. Consequently, the best
position and the best channel allocation are kept in
those steps.



Algorithm 3: AMPSO to resolve the spectrum assignment problem
Data: The total number of secondary links Sl, the total number of primary links Pl, the SINR

thresholds γ = α, the swarm size S, the set of primary channels PC, the number of iterations
Tmax, the equal intervals xj to sample generating function, the coefficients a, b, c and d

Result: The maximum data rate in the system f(Pbg), the set of selected secondary links Pbg, the
channel allocation for primary links in vector spectrum status, the best channel allocation for
secondary links P ′g

1 Locate randomly the total number of secondary links Sl and the total number of primary links Pl over
the coverage area A;

2 Initialize randomly velocity vector Vi where vid ∈ (−Vmax, Vmax). Set Pi = Xi;
3 Let coincide the personal best channel allocation vector P ′

i and candidate channel allocation vector
X ′

i;
4 Initialize randomly vector spectrum status with values from 1 to Pl;
5 Initialize position vector Xi where xid ∈ (-1, 1);
6 repeat
7 for each particle i = 1 to number of particles in swarm S do
8 Function Generate bit string Xbi();
9 Function Generate bit string Pbi();

10 Compute SINR at SUs and PUs by mapping X ′
i and spectrum status;

11 Compute SINR at SUs and PUs by mapping P ′
i and spectrum status;

12 Evaluate Xbi and Pbi at the fitness function at (5) and restrictions from (6) to (11);
13 Let f(Pi)=f(Pbi) and f(Xi)=f(Xbi);
14 if f(Xbi) > f(Pbi) then
15 Perform from STEP 11 to STEP 13 from the algorithm (1);
16 for j=1 to nb do
17 p′ij = x′

ij

18 end
19 end
20 g=i;
21 for each particle j = 1 to number of particles in swarm S do
22 Function Generate bit string Pbj();
23 Function Generate bit string Pbg();
24 Compute SINR at SUs and PUs by mapping P ′

j and spectrum status;
25 Compute SINR at SUs and PUs by mapping P ′

g and spectrum status;
26 Evaluate Pbj and Pbg at the fitness function at (5) and restrictions from (6) to (11);
27 Let f(Pg)=f(Pbg) and f(Pj)=f(Pbj);
28 if f(Pbj) > f(Pbg) then
29 g=j;
30 end
31 end
32 Perform from STEP 27 to STEP 31 from the algorithm (1);
33 for k=1 to nb do
34 Allocate randomly a new channel to x′

ik from the set of primary channels PC;
35 end
36 end
37 until number of iterations < Tmax;



Another search process is performed from STEP
21 to STEP 31 to search for the best performer in
the swarm.

The position and velocity of i-th particle are
updated as shown in STEP 32.

The loop from STEP 33 to STEP 35, updates
X ′

i. The set of primary channels PC equals the
channels in spectrum status vector. For example,
from Fig. 3, they are five channels in spectrum
status vector, so, PC = {1, 2, 3, 4, 5}.

Finally, in STEP 37, algorithm (3) repeats the
above process until the maximum number of
iterations Tmax is met. Then, the solution of
the problem is Pbg which is the set of selected
secondary links that maximize the throughput
f(Pbg) with the primary links deployed in the area.
Those selected secondary links also satisfy the
QoS constraints, needed to keep the interference
to a tolerable level for both secondary links and
primary links.

5 Experimental Evaluation

In the following subsections, we present the
scenario conditions to analyze AMPSO in the
HetNet with SS approach. Then, we show the
results obtained by the AMPSO for maximum
throughput. For comparison, the SCPSO
algorithm, the MBPSO algorithm [35], and the
ModBPSO algorithm [34] are also included to
solve the SA problem. Finally, we perform the
Wilcoxon signed ranks and the sign test for multiple
comparisons to confirm whether the AMPSO
offers a significant improvement, or not, over the
remaining BPSO variants.

5.1 Experimental Condition

We consider the downlink analysis of Fig. 1,
characterized by a fixed deployment of primary
links and a random deployment of secondary links
in a 5000 m x 5000 m grid. An experiment is
the combination of Pl, Sl, and SINR thresholds
(γ = α). For each experiment, a BPSO variant is
run for 500 independent instances (snapshots of
random secondary links location and fixed primary
links location). We incrementally vary the number
of secondary links in the area, i.e., in step sizes

of 10 secondary links. By doing that, interference
rises gradually. The QoS requirement of 4 dB
represents the less challenging scenario for the
BPSO variants.

Therefore, most of the SUs deployed in the area
will achieve that SINR threshold, i.e., most of them
will be selected by the BPSO variants. On the other
hand, the SINR threshold of 10 dB has a medium
complexity for the BPSO variants.

That means that some SUs may be able to be
above the SINR threshold of 10 dB. Finally, the
SINR threshold of 14 dB is the most challenging
scenario for the BPSO variants due to the high QoS
requirement. As more primary and secondary links
are in the coverage area, the interference can rise
to a harmful level. Then it is more challenging for
the BPSO variants to leverage it up to a tolerable
level. At this point, the task of selecting secondary
users is vital since it is the strategy that the BPSO
variants apply to cope with interference.

In regards to the HetNet, the femto-user is
set to a maximum radius of 30 m away (for
minimizing attenuation due to loss path) from the
FBS; whereas, the macro-user is deployed 1000 m
away from the MBS. We assume that secondary
links and primary links employ unit transmission
power and homogeneous traffic. Multipath and
shadow fading are not considered for the SINR
calculation. The number of channels to share
depends on the number of primary links deployed
in the area.

Table 1 and Table 2 show the parameters
used for the BPSO variants and the experiments
respectively. Increasing the number of primary and
secondary links in the HetNet under different QoS
requirements (4, 10, and 14 dB) result in increasing
the complexity to find a good solution for every
BPSO variant.

For instance, cognitive factor c1, social factor
c2, socio-cognitive factor c3, inertia weights w1

and w which are parameters for SCPSO were
set as suggested in the study [7]. The lower
bound wmin and the upper bound wmax which are
parameters of MBPSO were set as proposed in
[35]. Concerning ModBPSO, the mutation rate
rmu is set as suggested in [34]. Consequently,
we set the parameter maximum velocity Vmax as
suggested in [13].



The simulation methodology is in Fig. 4. Once
we set the parameters for a BPSO variant and
experiment, the admission control and channel
allocation algorithm based on a BPSO variant
generates a snapshot of a HetNet scenario, and
then the BPSO variant is run to solve equations
(5) - (11). After the admission control and
channel allocation algorithm based on a BPSO
variant finishes its execution, it computes the
maximum throughput for that snapshot. If the
admission control and channel allocation algorithm
based on a BPSO variant achieves the total
sample snapshots to analyze, it selects the sample
snapshot with the highest throughput.

Table 1. Parameters used for experiments

Parameters Values
Number of secondary links Sl 10:100:10
Number of primary links Pl 6, 12, 24
Runs 500
SINR thresholds γ = α 4, 10, 14 dB
Channel bandwidth B 20 MHz

Table 2. Parameters used for the BPSO variants

Parameters Values
Swarm size S 40
Maximum number of iterations Tmax 100
Cognitive, social factors c1, c2 2, 2
Socio-cognitive factor c3 (for SCPSO) 12
wmax, wmin (for MBPSO) 1.4, 0.1
Itermax (for MBPSO) 20
Inertia weight w1 (for SCPSO) 0.9
Mutation rate rmu (for ModBPSO) 0.02
Inertia weight w 0.721
Maximum velocity Vmax [-6, 6]

5.2 Experimental Results

In Figs. 5a, 5c, and 5e, we show the best solutions
found by the BPSO variants for the HetNet when
Pl = 6 at γ, α = [4, 10, 14] dB. The best
solutions found by the AMPSO outperform the
ones found by the remaining BPSO variants, in
the range of 10-60 SUs. The ModBPSO comes
next, however, for higher values of γ, α (high QoS

requirements); it cannot find a solution. In Figs. 5b,
5d, and 5f, we show the average maximum data
rate, i.e., we average the results over all samples
in the experiment.

While the curves of ModBPSO, MBPSO and
SCPSO come down in the range 30 - 40 SUs
deployed in the area, AMPSO keeps almost a
constant throughput with the highest data rates.
When the other BPSO variants fail to find a
solution, as in Fig. 5f which is the most challenging
scenario, AMPSO is able not only in finding a
solution but also in offering the one with the highest
data rate.

Concerning the experiment when Pl = 12 at γ,
α = [4, 10, 14] dB, the best solutions found and
the average data rate are shown in Figs. 6a – 6f.
In Figs. 6a, 6c, and 6e, AMPSO still outperforming
the other BPSO variants. In Fig. 6e, while MBPSO,
ModBPSO, and SCPSO could not find a solution in
the range 80-100 SUs, AMPSO can find it. Figs.
6b, 6d, and 6f show that AMPSO produces, on
average better solutions and it can find solutions
even in the most challenging scenario as plotted in
Fig. 6f.

Figs. 7a, 7c, and 7e are the best solutions found
by the different versions of BPSO when Pl = 24
at γ, α = [4, 10, 14] dB. In this context, AMPSO
performs better than the other BPSO variants, even
when the QoS requirement is the highest, as in
Fig. 7e. From that plot, we observe that AMPSO
can find a solution when the others fail, especially
in the range of 80 - 100 SUs. Figs. 7b, 7d, and
7f shows that AMPSO significantly outperforms
the other BPSO methods in average throughput,
finding solutions when the other BPSO methods
cannot offer one as in Fig. 7f.

5.3 Use of Nonparametric Statistics for
Comparing the Results

We perform the Wilcoxon signed ranks and the sign
test for multiple comparisons to confirm whether
AMPSO offers a significant improvement, or not,
over the remaining BPSO variants for the HetNet
with SS approach. Among the experiments, we
are particularly interested in ones when Sl =
100. We summarize the results obtained for each
experiment and BPSO variant in Table 3.



Fig. 4. Simulation methodology

Table 3. Average fitness obtained in the different experiments

Experiment AMPSO MBPSO ModBPSO SCPSO
6 PUs, 100 SUs, 4 dB 16610.29 12599.9 10737.3 13109.61
6 PUs, 100 SUs, 10 dB 8913.5 440.2 617.41 832.44
6 PUs, 100 SUs, 14 dB 4992.05 80.9 0 114.26
12 PUs, 100 SUs, 4 dB 20519.99 19506.12 17721.69 18941.38
12 PUs, 100 SUs, 10 dB 10769.62 594.31 524.72 852.07
12 PUs, 100 SUs, 14 dB 5957.41 0 0 0
24 PUs, 100 SUs, 4 dB 24585.18 26138.38 24820.07 24787.52
24 PUs, 100 SUs, 10 dB 13151.15 947.02 1113.33 1409.48
24 PUs, 100 SUs, 14 dB 7302.51 0 0 0

The performance measure is the average
fitness (throughput). Firstly, we present a
comparative study on AMPSO performance and
the remaining BPSO variants through pairwise
comparisons. We apply the Wilcoxon signed ranks
since it is a safe and robust nonparametric test for
pairwise statistical comparisons. Also, the outliers
(exceptionally good/bad performances) have less
effect on it [8]. Table 4 summarizes the results of
applying it, displaying the sum of rankings obtained
in each comparison and the p-value associated.

Table 4. AMPSO shows improvement over SCPSO,
ModBPSO, and MBPSO, with a level of significance
α=0.05

AMPSO vs. R+ R− p-value
SCPSO 44 1 0.011
ModBPSO 44 1 0.011
MBPSO 43 2 0.015



(a) best solutions γ, α = 4 dB (b) average γ, α = 4 dB

(c) best solutions γ, α = 10 dB (d) average γ, α = 10 dB

(e) best solutions γ, α = 14 dB (f) average γ, α = 14 dB

Fig. 5. System throughput of the BPSO variants when Pl = 6 at γ, α = [4, 10, 14] dB

As Table 4 states, AMPSO shows a signifi-
cant improvement over SCPSO, ModBPSO, and
MBPSO, with a level of significance α=0.05. Since
p-values are less than α=0.05, we reject the
null hypothesis.

The null hypothesis (H0) is stating no effect or
no difference, whereas the alternative hypothesis
(H1) represents an effect or a difference (significant
differences between algorithms) [8]. Labeling
AMPSO as our control algorithm, the sign test



(a) best solutions γ, α = 4 dB (b) average γ, α = 4 dB

(c) best solutions γ, α = 10 dB (d) average γ, α = 10 dB

(e) best solutions γ, α = 14 dB (f) average γ, α = 14 dB

Fig. 6. System throughput of the BPSO variants when Pl = 12 at γ, α = [4, 10, 14] dB

for multiple comparisons highlights those BPSO
variants whose performances are statistically
different when compared with the control algorithm.
We apply the procedure described in [10]. Table
5 summarizes the results with two levels of

significance α=0.1 and α=0.05. Let M1 be the
median response of a sample of results of the
control method and Mj be the median response
of a sample of results of the j-th algorithm. Let our
hypotheses be H0: Mj ≥ M1 and H1: Mj < M1;



(a) best solutions γ, α = 4 dB (b) average γ, α = 4 dB

(c) best solutions γ, α = 10 dB (d) average γ, α = 10 dB

(e) best solutions γ, α = 14 dB (f) average γ, α = 14 dB

Fig. 7. System throughput of the BPSO variants when Pl = 24 at γ, α = [4, 10, 14] dB

that is, our control algorithm AMPSO is significantly
better than the remaining algorithms. Reference to
Table A.1 from [10] for (k-1)=3 and n=9 reveals that
the critical values are 1 (α=0.1) and 0 (α=0.05).

Then, since the number of pluses in MBPSO,
ModBPSO and SCPSO is less than or equal
to the critical values, the AMPSO has a better
performance than them.



Table 5. Multiple sign test using AMPSO as the control algorithm

Experiment AMPSO 1 (control) MBPSO 2 ModBPSO 3 SCPSO 4
6 PUs, 100 SUs, 4 dB 16610.29 12599.9 (-) 10737.3 (-) 13109.61 (-)
6 PUs, 100 SUs, 10 dB 8913.5 440.2 (-) 617.41 (-) 832.44 (-)
6 PUs, 100 SUs, 14 dB 4992.05 80.9 (-) 0 (-) 114.26 (-)
12 PUs, 100 SUs, 4 dB 20519.99 19506.12 (-) 17721.69 (-) 18941.38 (-)
12 PUs, 100 SUs, 10 dB 10769.62 594.31 (-) 524.72 (-) 852.07 (-)
12 PUs, 100 SUs, 14 dB 5957.41 0 (-) 0 (-) 0 (-)
24 PUs, 100 SUs, 4 dB 24585.18 26138.38 (+) 24820.07 (+) 24787.52 (+)
24 PUs, 100 SUs, 10 dB 13151.15 947.02 (-) 1113.33 (-) 1409.48 (-)
24 PUs, 100 SUs, 14 dB 7302.51 0 (-) 0 (-) 0 (-)
Number of pluses 1 1 1
Number of minuses 8 8 8
Critical value at α=0.1 1 1 1
Critical value at α=0.05 0 0 0

6 Discussion

Contrasting the results among the BPSO variants
in Sect. 5.2 for maximum throughput, AMPSO
performed better. We applied statistical tests
to confirm whether AMPSO offers a significant
improvement over the BPSO variants for the
given experiments.

Firstly, we performed a pairwise statistical
comparison using the Wilcoxon signed ranks
test, confirming that AMPSO outperformed the
remaining BPSO variants. In [9] is mentioned that
the smaller the p-value, the stronger the evidence
against H0. In this context, we obtained small
p-values (less than 0.05) when we applied the
Wilcoxon signed ranks test, which indicated strong
evidence against H0.

Secondly, we performed multiple comparisons
with AMPSO as the control algorithm to determine
which of the other algorithms exhibit a different
performance. Multiple sign test, helped us to
confirm that AMPSO outperformed the BPSO
variants. We used significance levels α of 0.05 and
0.1 (95% and 90% certainty that there indeed is a
significant difference).

The experimental results and the nonparametric
tests, confirm that in the optimization problem
posed in equations (5) - (11), AMPSO produces
favorable results. AMPSO is suited for complex

scenarios, i.e., scenarios with high QoS require-
ments and many SUs and PUs deployed in the
service area. Then, the non-uniform frequency
distribution of binary solutions in the AMPSO
search space [16] is advantageous in the SA
problem due to the generating function g. As
described in [16], the generating function g leads
to more than one permutation of the coefficients
generating the same binary solution.

They also mention that the most common
solutions in the AMPSO search space are the
ones that contain repetitive patterns. This trend is
advantageous in problems whose optimal solutions
include repetitive patterns because those solutions
are common in the AMPSO search space [16].
Then in the context of the SA problem posed in
equations (5) - (11), the repetitive patterns in the
candidate solutions give an advantage to AMPSO.

For simple scenarios i.e., scenarios with low
QoS requirements (γ, α = 4 dB), the SCPSO
should be used. As more SUs are deployed in the
area, it is more challenging for SCPSO, to select
SUs to share a primary channel.

In contrast, MBPSO is unsuitable for complex
scenarios, i.e., scenarios with high QoS require-
ments and many SUs. This is due to the
decreasing inertia weight scheme that MBPSO
uses to search for a solution. Through iterations, if
fitness does not improve w increases, to stimulate
exploration; otherwise, when fitness improves, w



takes a small value to exploit a region where
MBPSO has found a candidate solution. However,
in the binary case, as the work in [18] suggests,
a smaller inertia weight enhances the exploration
capability while a larger inertia weight encourages
exploitation. In most cases, increasing inertia
weight is favorably for the discrete PSO.

Also, from the simulation, ModBPSO had the
worst performance. Although the v-shaped transfer
function has been proved to have significant
advantages [21], in the SA problem, it does not
provide a high performance.

The objective function in (5) is the metric to
measure how the HetNet efficiently uses the
spectrum. Several methods exist to measure the
efficiency of spectrum use, and no single measure
works for all scenarios [28]. In this context from
results in Sect. 5.2, maximum throughput is a
well-suited metric to measure spectrum usage
in scenarios with low dense cell deployments
(macro and femtocells) at different QoS thresholds.
Successful communications are ensured for PUs
and those SUs that simultaneously exploit a
channel through the QoS thresholds. Estimating
the efficiency of a primary system (the set of PUs)
will help to determine if it could be shared [28].

7 Conclusion and Future Work

We consider the SS paradigm in a HetNet to
propose a solution to the SA problem, maximizing
network throughput when one or more SUs exploit
a channel simultaneously with the PU, satisfying
QoS requirements on SINR. Assuming that SS
will impact future next-generation cellular networks,
we consider primary and secondary systems
operating in that frequency band. We handle
the SA problem in scenarios with high QoS
requirements and many SUs and PUs deployed in
an area.

Under such scenarios, the candidate solutions
are high-dimensional bit strings. The search
for a good solution is challenging as the QoS
requirements increase. To address this challenge,
we apply the AMPSO metaheuristic due to its
ability to handle higher-dimensional problems.
Then the AMPSO results are compared with the
MBPSO, the SCPSO, and the ModBPSO.

From the simulation, AMPSO is suited for
complex scenarios i.e., scenarios with high QoS
requirements and a large number of SUs and PUs
deployed in the service area. Then, our results
confirm the AMPSO’s ability to handle problems
defined in larger and more abstract dimensions by
combining PSO with angle modulation.

For simple scenarios i.e., scenarios with low
QoS requirements (γ, α = 4 dB), the SCPSO
should be used. Whereas ModBPSO is not
suitable for the SA problem.

In future work, we plan to address the fairness
in SUs when a channel is shared among SUs and
a PU, i.e., that the SUs have the same opportunity
to access spectrum to perform a communication.
Also, it is planned to pose the SA problem as
a multi-objective approach to maximize the data
rate and the number of selected secondary links.
Those objectives conflict due to the interference.
Finally, we will include other components of
HetNet as microcells and picocells. Those
types of small cells vary in deployment location
(outdoor/indoor), coverage, transmit power, and
deployment configuration (planned/unplanned).
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