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Abstract. Deep learning-based object detection
and classification have been widely investigated for
neuroimaging. Magnetic resonance imaging (MRI)
data serve as a diagnostic tool for the detection and
classification of brain disorders such as Parkinson’s,
Alzheimer’s disease (AD), and Multiple Sclerosis (MS).
In addition, the use of the Convolutional Neural Network
(CNN) framework helps in the development of predictive
models from the available MRI images. This work
aims to develop a CNN-based model with a pre-trained
MobileNet model to detect and classify multiple sclerosis
using the MRI image dataset. In this article, we have
proposed a pre-trained MobileNet-2D-CNN architecture
for the accurate prediction of multiple sclerosis from
various MRI images. Initially, the proposed model
extracted images from MRI images of the affected
patient with MS and healthy control. We used MRI
images to train the MobileNet-2D-CNN model to identify
the MS features map that predicts MS. The proposed
architecture has been validated on standard MRI scans.
We also performed a class activation map for the
interpretation of the prediction provided by the proposed
model, which represents the behavior of neurons in
the early stages. The proposed approach achieves a
classification precision of 98.15% and AUC=1.00.

Keywords. CNN, deep learning, feature map,
mobilenet, MRI, multiple sclerosis.

1 Introduction

Automatic detection and classification of various
brain disorders such as Alzheimer’s disease (AD),
brain tumors, multiple sclerosis, schizophrenia,
and Parkinson’s have become a major concern
in modern healthcare. Multiple sclerosis (MS)
is an irreversible degenerative brain disorder
characterized by loss of cognitive function and
has no proven cure. MS is a condition and
demyelinating disease of the central nervous
system that affects mainly the brain and spinal
cord and damages the protective covering of
nerve fibers resulting in vision loss, depression,
decreased sensitivity, mobility problems, and
several other issues related to thinking, learning,
and planning [3, 32]. The progression of MS can be
classified into two subsequent classes known as
Benign and Malignant. These two terms represent
the severity of MS, where benign MS represents a
mild course of multiple sclerosis and malignant MS
represents a significant level of disability in various
patients. To examine the extent of psychometric
properties, the Expanded Disability Status Scale
(EDSS) is used as an indicator for patients affected

Computación y Sistemas, Vol. 28, No. 3, 2024, pp. 1229–1242
doi: 10.13053/CyS-28-3-4197

ISSN 2007-9737



(a)

(b)

Fig. 1. Sample image of brain MRI scan dataset (a) Normal healthy control (b) Multiple sclerosis (MS)

by MS [30]. Saliency maps are applied to healthy
and Alzheimer’s fMRI images by the authors in [25].

Among the various medical imaging techniques,
magnetic resonance imaging is one of the most
efficient and suitable neuroimaging methods for
detecting the presence of white matter lesions in
the brain that suggest MS and also effectively

diagnose the abnormality in the brain region due
to MS [4, 18]. The appearance and shape of the
lesions can vary during the MRI scan at each time
point [4, 5]. Moreover, measuring the growth of the
lesion by using the white signals visible in various
MRI scans is another challenging task, as in some
MRI scans the lesion disappears at a single time
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Fig. 2. Proposed architecture using brain MRI images for multiple sclerosis detection and classification

Fig. 3. Preprocessing steps involve cropping the brain MRI image

point or lesion time point (LTP) [12]. As shown
in Fig. 1, magnetic resonance imaging is used to
detect the presence of a white matter lesion in the
specific region of the brain to find the MS lesion.

Through experimental studies, deep learning
networks such as LiviaNet, HyperDenseNet, and
the Convolutional Neural Network (CNN) are
widely used for the detection and classification

of various neural syndromes [1, 8]. In this
work, an experiment is presented to perform
a two-dimensional CNN (2D-CNN) model that
selects the slices and training input. In the first
case, we perform numerical and gradient-based
learning at each stage of the densely connected
network and are treated as a feature extraction
engine that processes a set of effective features
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Fig. 4. Augmented image of brain MRI scan dataset (a) Augmented healthy brain MRI (b) Augmented multiple sclerosis
brain MRI

Fig. 5. MobileNet architecture

of the MRI dataset. In this study, we have
demonstrated the feature extraction of MRI
images from the proposed MobileNet-2D-CNN
architecture. The size of the MobileNet network
is small, which reduces the computation time and
reduces the problem of overfitting [17, 29].

Once the feature extraction process is
completed, then fed to the 2D-CNN which
constructs the feature map from the input segment

through the convolutional layer, the max pooling
layer, and the fully connected layer handles various
3D-MRI images for detection and classification of
MS. The main highlights of this research study are
as follows:

– Detect and classify the MS lesion from the MRI
images by using the deep learning method.
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Fig. 6. Proposed MobileNet-2D-CNN model

– The proposed model trains the network using
the MRI images that show the high signal in
the periarterial white matter on the T2 weighted
image data.

– Generates the class activation map, which
provides the visual diagnosis and classification
of MS lesions.

2 Related Work

Various studies have been conducted with
essential findings that discriminate MS disease
from healthy control [18]. These studies focus
on the use of machine learning and deep
learning-based frameworks and consider MRI
scans to find the severity of the disease.

The authors of [4] have considered a CNN
architecture based on deep learning and used
a vast volume of brain MRI data voxel data for
further analysis of MS lesion segmentation. Using
4D-fMRI images, the authors of [26] developed a
deep learning model and a reshaping algorithm for
the classification of ADHD conditions.

The authors in [20]have proposed a CNN-based
MS classifier known as DeepScan for the
identification of MS lesions. In [1], the authors
have discussed the various deep learning-based
techniques that consider the publicly available
Brain MRI image segmentation dataset.

In [2], authors have discussed the framework
known as an ITK toolkit and applied the watershed
transform method for the detection of region
boundaries in MRI scans. In [27], the authors
have focused on effective neural network training

to classify MRI images with limited data and to
prevent overfitting the network.

They have simply adopted the proposed model
to increase the size of the dataset by using image
data augmentation that improves accuracy. In [17],
the authors have used precision reduction methods
to reduce spatial resolution in different features of
the feature map generated by the LeNet-5 network.

The authors in [22, 23], discussed the
discrimination of the region in the input image,
and the class activation map is influenced by the
deep learning model for classification. The authors
of [10, 11] have discussed various predictive
frameworks and algorithms for the classification
and detection of various diseases.

3 Materials and Methods

3.1 Data Analysis

The experimental MRI dataset used in this study
consists of unlabeled brain images from MRI
scans to detect and classify MS injury from the
healthy control.

This data set is acquired from the publicly
available Whole Brain Atlas1. This data set
consists of standard slices and axial orientations of
various MRI scans of the brain. Furthermore, the
abnormalities appearing in the data set are based
on pre-arterial white matter, pre-gadolinium, and
post-gadolinium in the T1 and T2-weighted MRI
images, respectively.

1www.med.harvard.edu/AANLIB/
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Table 1. Proposed architecture of MobileNet-2D-CNN

OPERATION DATA DIM WEIGHTS(N)

Input Layer 224× 224× 3 −
MobileNet 1.00 224 7× 7× 1024 3228864

Conv2D 5× 5× 32 294944

Batch Normalization 5× 5× 32 128

Max Pooling 2D 1× 1× 32 −
Global Avg Pooling 2D 32 −
Dense − 8448

ReLU 256 −
Dropout 256 −
Dense − 257

Sigmoid 1 −

This data set also consists of distinct 4D
images of brain magnetic resonance imaging
scans of 30-year-old patients acquired with
axial T1-weighted data. These brain magnetic
resonance images show a high signal in white
matter in the T2-weighted images.

Here, the MRI images obtained from the normal
control and MS subjects are four-dimensional (4D)
brain images. These 4D images are defined as
(256 × 256 × 22 × 3) along with the dimension of
the pixel (1 × 1 × 1) mm3 and the size of the voxel
3 mm3. The 4D MRI image data with 22 slices and
a voxel size of 3 mm3 are isotropic for the detection
and classification of MS from the normal control.
The ratio of MRI images of patients affected with
MS with healthy subjects is 22:52.

3.2 Methodology

In this section, we have described the proposed
model for the detection and classification of MS
lesions, as shown in Fig. 2.

The proposed model consists of three modules,
i.e. Image preprocessing, MobileNet, and
2D-CNN. The detailed functioning of these
modules is discussed in the following subsections.
The architecture of the pre-trained MobileNet
convolutional neural network is used for the initial
stage of dataset training, the MobileNet contains a
stack of layer blocks named as convolutional layer,
Batch Normalization, Depthwise convolutional

layer followed by Global Average Pooling (GAP)
layer. Using the MobileNet to classify the natural
images is not similar to the numerical data array, so
more convolutional blocks are required to properly
tune the brain MRI image dataset.

3.2.1 MRI Pre-processing

Here, we apply various preprocessing steps,
such as adjusting, readjusting, and enhancing,
to the MRI images before feeding them into the
MobileNet-2D-CNN model. These preprocessing
steps are discussed as follows:

3.2.2 Cropping and Resizing

Due to the computational task and limitation of
fitting a complete MRI image into the model,
we reduce the size of the brain image from
(256 × 256 × 3) to (131 × 176 × 3). The target
size of the brain image is selected in such a way
that includes the most of the brain image scanned
by the scanner after performing the cropping and
resizing effect on the original brain image. In
this work, we have worked with the data-driven
strategy and performed the cropping on the Brain
MRI scans to remove the undesired regions.

– Edge detection: To compute the gradient
magnitude of the Brain image, we have applied
the Sobel edge detection method to obtain
minimum and maximum gradient, inside and at
the edge of the various MRI scans of the brain
as shown in Fig. 3.

– Thresholding: Once the edge is detected, we
perform the thresholding that divides the pixel of
the grayscale image and converts the MRI scans
into binary images [21].

– Filtering: Further, filtering uses the Sobel filter
and removes the noise of low frequencies from
the MRI images.

– Segmentation and Contour: Here, we apply a
watershed algorithm on the filtered image that
extracts the segmented regions by the finding of
watershed lines [2].
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Fig. 7. Visualization of multiple sclerosis affected vs. healthy MRI image size (224×224) on the proposed model (a)
Class activation map of multiple sclerosis (b) Class activation map for healthy brain MRI

Choosing the Largest Contour of the watershed
transformed image and applying grayscale to
convert it into binary images [31]. The main steps
of the MRI image cropping and resizing procedure
are described below.

– Step-1: We have considered the MRI dataset
of MS-affected and healthy subjects. Here, the
dimension of each input image is (256×256×3).

– Step-2: Further, we have applied the Binary
Thresholding on the input image.

– Step-3: Applies the Sobel filter for filtering
the thresholding image where the gradient
operator are:

Gx [-1, 0, 1], [-2, 0, 2], [-1, 0, 1]=

Gy [ 1, 2, 1], [ 0, 0, 0], [-1, -2, -1]=

– Step-4: Applies the watershed transformation
for segmenting the region in the filtered MRI
image. This provides an accurate and effective
segmentation of input MRI images.

– Step-5: Applies the chain approximation
algorithm on the segmented MRI image and
generates green points on all the contours.

– Step-6: Detect each contour find the largest
contour on the MRI image and apply crop
operation on the largest contour to obtain
cropped MRI image of dimension (131×176×3).

3.2.3 Image Augmentation

Applying the MobileNet-2D-CNN model to an MRI
image of the brain is one of the challenging tasks
as a limited amount of training dataset is available.
To overcome this problem, data augmentation
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Table 2. Generated feature map from
activation channels

Activation Layer No. of Feature Map

Mobilenet 1.00 224 32

Conv2d 128

Batch Normalization 1 256

Max Pooling2d 1 512

GlobalAveragePooling2D 512

techniques are used that enhance the size and
quality of the training dataset and also improve the
performance of the proposed model.

The image augmentation strategy that the
network will use for more training data also
reduces the overfitting of the proposed model.
Image augmentation comes from transformation,
color space, random cropping, orientation, mixing
images, kernel filters, etc.

The classification accuracy of the deep learning
model performs much better in the augmented
test data set [27]. We have performed data
augmentation on magnetic resonance images,
using ImageDataGenerator API from Keras inside
the Tensorflow 2.5 before we feed into the
MobileNet network.

The augmentation of images includes factors
such as rotation, shifting, shear, horizontal flip,
vertical flip, and brightness that generate the new
training dataset as shown in Fig. 4.

The augmentation operation is performed by
random rotation by 450 and then applies to the
shift, shearing with the rotated images, and then
applying horizontal and vertical flipping of the
transformed image. Finally, resize the MRI images
that correspond to the input size of the MobileNet
model, that is, (224× 224) pixels.

3.2.4 MobileNet Network Architecture

The Standard convolution model uses a layer
stack in which the CNN image features include
channel-wise and spatial-wise information. Unlike
spatial convolution, depth convolution deals with

spatial dimension and depth dimension or the
number of channels [14].

A deep separable convolution commonly known
as a separable convolution is related to the
grouped convolution and inception modules of the
Inception family [7]. The depth-wise convolution is
followed by a point-wise convolution with (1 × 1)
window and project the new channel space. In
MobileNet, the separable convolution allows one
to build an image classification model such as
MobileNet 224.

In this work, we have used MobileNet as it is
a lightweight CNN architecture built primarily from
deep separable convolution, as shown in Fig. 5.
The small network and low latency achieve good
efficiency relative to standard convolution.

The shape of the image has three dimensions
of the input feature map F to the convolution layer
is (spatial map × height × input depth) produces
another feature map G that is defined as (spatial
map × height× output depth) and the size of the
convolution kernel K is given as (DK×DK×M×N )
where (DK × DK) corresponds to squared spatial
dimension of kernel and M , and N are input and
output depths respectively.

The depth-wise convolutional kernel performs
a single convolution on each channel and can be
defined as follows:

Xk, l, m =
∑
i,j

Ki, j, m · Fk+i−1, i+j−1, m. (1)

The computational cost of the depth-wise
convolution is calculated as:

DK ·DK ·M ·N ·DF ·DF , (2)

where DK ,DF ,M and N are dimensions of the
convolutional kernel, spatial width, height, input
channel, and output channel, respectively.
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(a) (b)

Fig. 8. Learning curve of the proposed model (a)Training and validation accuracy (b) Training and validation loss

3.2.5 Proposed MobileNet-
2D-CNN Architecture

The architecture of the proposed MobileNet 2D
CNN is shown in Fig. 5 which is based on a
separable filter for depth and performs a single
convolution for each input channel. For the target
network adding one convolution layer followed
by one maximum grouping layer and two fully
connected layers of size 256 and 2, the dropout
is 0.5% and we have used the root mean square
propagation RMSprop optimizer [9] to train the
model with the learning rate being 0.0001. Here,
RMSprop optimizer is defined as per following:

E[g2]t = 0.9E[g2]t−1 + 0.1g2t , (3)

θt+1 = θt +
η√

E[g2]t + ϵ
gt, (4)

where E[g2]t is the running average in time t
depending on momentum γ=0.9 [24] and the
default value of the learning rate η = 0.001 on the
previous average E[g2]t−1, gradient of the objective
function is denoted by gt for the update parameter
θ at every time step t.

The combination of these 2D-CNN layers is
applied along the MobileNet network. The features
generated from the MobileNet are further fed to
a shallow custom CNN architecture, as shown in
Fig. 2. The obtained output shape of the MobileNet
MRI image will be input to 2D-CNN.

The proposed MobileNet-2D-CNN model is
trained in 20 epochs since we used a training and
testing scheme of 80-20%. The proposed model
shows an accuracy of 98.15%. Since the data set
used in this research is gray images, therefore, the
value of pixels in the MRI images is between 0 and
255. The visualization of MRI images shows how
perfectly the proposed model extracts the features
for the MS classification.

3.3 Class Activation Map (CAM)

For a specific class, the class activation map
with the global average grouping is applied to
the proposed MobileNet-2D-CNN model. These
weighted activation maps are generated by the
hidden layers of the MRI images.

The network visualization pattern is activated by
each unit of the network [16]. CNN learns while
being trained to recognize the object [15]. The
features obtained are fed into the fully connected
layer (FC), regulated by the Softmax activation
function, and provide the result of the calculated
probabilities for further classification [28].

We have illustrated the activation from the
convolutional layer. Consider the activation k of
the convolution layer at the location (i, j), then
the activation function for the MRI image will be
denoted as fk(i, j).
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Fig. 9. Classified MS affected brain MRI

Here, global average pooling (GAP) at
activation k is represented by Gk as shown
in Eq. 5:

Gk =
∑
i,j

fk(i, j). (5)

The softmax activation function is used for the
computation of class label Ci probablities PCi [16]:

σCi
=

∑
k

ωCi

k Gk, (6)

where, the weight vector ωCi

k of the network
corresponds to the class label Ci at the
activation k. Therefore class probablities PCi and
the softmax activation function σCi is defined as:

PCi =
exp(σCi)∑

Ci

exp(σCi
)
, (7)

σCi
=

∑
k

ωCi

k

∑
k

fk(i, j). (8)

The class activation map (CAM) is obtained by
using the weighted feature map governed by the
softmax weight σCi

that classifies the heat map
corresponding to a specific class.

3.3.1 Visualization of Class Activation

In the forward network, the MRI image input fk(i, j)
with height h, width w, and depth d is processed
through the proposed MobileNet–2D-CNN
model. The MRI image tensor (h × w) maps
each pixel dimension to its corresponding color
class Ci. Additionally, the classifier maps the input
MRI image to the class saliency map H ∈ Rh×w

and applies the activation function Gk to each
pixel of the input image fk(i, j). The weighted
neurons are computed as the gradient of the
softmax activation function σCi with respect to
the activation of the feature map fk from the
convolutional layer, as defined below:

ωCi

k =
∂σCi

∂fk

∣∣∣∣
fk(i,j)

. (9)

Taking the partial derivative of Gk with respect
to fk(i, j), that is:

1

N
=

∂Gk

∂fk(i, j)
, (10)

H = relu

{∑
k

ωCi

k fk(i, j)

}
. (11)

This formulation of the computation allows us to
generate the visualization of the saliency map of
the multiple sclerosis (MS) MRI image.
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Fig. 10. ROC curve estimates the AUC between 0 - 1
with the binary classifier and plots the true positive rate
vs. false positive rate

4 Experiments and Results

The proposed model evaluates the classification of
Multiple Sclerosis present in MRI images. Based
on the formulae described above, the proposed
model considers the size of the MRI images
(224×224 ×3) that includes 475 training images
for the training set, 19 images for validation to
perform the support dataset and 95 images for the
test dataset. We have observed the hidden layer
gradient images, the MS classification, and the
performance of the proposed model. We begin by
presenting the class activation map using gradients
to interpret the proposed network, experimental
training strategy, and classification followed by
model evaluation.

4.1 Implementation Details

The experimental setup of the MobileNet-2D-CNN
model has been designed and trained on MRI
images as shown in Fig. 2. The MobileNet input
layer has a size of (224×224×3) to preprocess
the MRI image data. The next layer is the 2D
convolutional layer with kernel size (3×3) it is
determined the receptive field that received input
with the dimension of (7×7×1024) then applying
the ReLU activation function to the output of the
convolution, after that the batch normalization
layer takes the input size of the data (5×5×32)
it is used to normalize the data and reduces the

data loss between the processing layers, a max
pooling layer is used to downsample to the output
of size (1×1×32). The global average pooling
layer converts the 3D feature map matrix from
the maximum pooling layer to the vector 1D and
generates a single feature map.

Subsequently, the two fully connected (FC)
layers are used for classification purposes. Here,
the first FC layer has 256 output neurons followed
by the dropout layer with probability = 0.5, and the
next FC layer consists of 256 input neurons with 2
output neurons for the two-class classification.

We have trained the proposed
MobileNet–2D-CNN model with the binary
cross-entropy loss function and the RMSprop
optimizer, where the batch size is 32, and 20
epochs are applied to the MRI image data. To
classify MS, the proposed MobileNet 2D-CNN
architecture is implemented by using Tensorflow
and Keras open source library.

The proposed model is trained on the powerful
NVIDIA Geforce GTX 1080 GPU. All parameters
used in the proposed network are summarized in
Table 1. The classification accuracy obtained from
the proposed MobileNet 2D-CNN model is 98.15%.
Here, Fig. 8 shows the training and validation
accuracy of the proposed model.

4.2 Grad-CAM Visualization

The proposed MobileNet–2DCNN architecture is
trained to produce heat maps from input MRI
images. These heat maps detect the location of
the MS lesion on the MRI image as per Fig. 7. The
heat maps generated from the convolutional layer
use a single input channel due to grayscale MRI
images. Here, the convolutional layer considers the
weighted average output.

In each channel, the feature map uses the
weight in the FC layer. The softmax layer performs
the computation for the class prediction of the
heatmaps. The output of a softmax layer gradient
with respect to each channel forms a feature map
of a specific layer that displays a gradient of the
respective output channel. We have obtained
feature maps generated from each activated layer
as per Table 2.
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These gradient feature maps of MRI images are
fed into the Global Average Pooling (GAP) layer
that considers the size of the MRI image tensor as
(5×5×32) and performs the averaging across the
(5×5) convolution. The average value of each of
the input channels generates one output channel,
i.e. a one-dimensional tensor with 32 images.
These weighted feature maps 2D, as generated by
the GAP layer, are used as heat maps.

4.3 Classification of MS Lesion

MRI images are classified using the proposed
model, which predicts class labels as illustrated in
Fig. 9. The model is trained and tested on a dataset
of 475 preprocessed MRI images, including both
healthy controls and MS-affected individuals. This
dataset is split into 80% for training and 20% for
testing, with 5% of the training data reserved for
validation. The classification utilizes a 2D CNN to
identify MS lesions, as demonstrated in Fig. 9.

4.4 Model Evaluation

In the binary classification, the prediction of
classes for the computed probabilities is based on
the continuous variable. Probability is classified as
positive if the computed probabilities > threshold
value otherwise negative. The classification
performance of the proposed model is measured
using the area under the curve (AUC).

The receiver operating characteristic (ROC)
curve between the TPR and FPR, computes the
area under the ROC curve [6, 19]. The AUC
ranges from 0.5 to 1.0, generally interpreted as the
probability that the diseased subject is randomly
selected which has a higher test value compared
to the random selection of the healthy subject [13].

The AUC value measures the overall
performance of the classification model. Here,
Fig. 9 shows that the classifier of the proposed
MobileNet-2D CNN has AUC = 1.00, which shows
that the performance of the model is based on the
MRI scan data and is perfectly classified by the
proposed model. A model with multiple sclerosis
is shown by an orange curve that travels from the
bottom left to the top right and above the threshold
diagonal line.

5 Conclusion and Future Work

We have proposed a MobileNet - 2D-CNN model
for the detection and classification of MS-affected
lesions in brain MRI images. The proposed model
uses the threshold-based extraction method from
the MRI image. Further, we have applied the data
augmentation methods for generating the dataset
during the pre-processing steps.

The learning process of the proposed model
depends mainly on the selection of the training
data set. Using the augmented data to experiment
with our proposed MobileNet–2D-CNN architecture
as shown in Fig. 6 generates the gradient class
activation map for the detection and classification
of MS lesions from MRI images.

The experimental results obtained to find the
MS-affected classification from the test dataset are
shown in Fig. 8. In these results, we have achieved
a classification accuracy of 98.15% from the binary
classifier. An ROC curve shows the classification
performance with AUC = 1.00.

For both detection and classification, it is
expected that an in-depth study can achieve a
similar quality of feature that can be achieved by
a nonlinear deep learning model. For that reason,
future research towards creating a more refined
structure that can take the findings forward to the
systematic exploration of the lesion map in terms
of clinical application.
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