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Abstract.The use of mobile robots has increased for its 

application in various areas such as supply chains, 

factories, cleaning, disinfection, medical assistance, 

search, and exploration. It is a fact that most of these 

robots, if not all, use batteries to power themselves. 

During a mobile robot task execution, the battery's 

electric charge tends to deplete as a function of the 

energy load demands, which would cause the robot to 

shut down if the discharge is critical, leaving its task 

inconclusive. Therefore, it is of utmost importance that 

the robot learns when to charge its batteries, avoiding 

turning off. This work shows a reactive navigation 

scheme for a mobile robot that integrates a module for 

battery-level monitoring. A robot moves from a starting 

point to a destination according to the battery level. 

During the navigation, the robot decides when to change 

the course toward a battery charging station. This paper 

presents a rules-based reinforcement learning 

architecture with three entries; these entries correspond 

to the robot's battery level, the distance to the 

destination, and the distance to the battery charging 

station. According to the simulations, the robot learns to 

select an appropriate action to accomplish its task. 

Keywords. Mobile robot, navigation, path-planning, 

fuzzy Q-learning, artificial potential fields, reinforcement 

learning, autonomous recharging problem. 

1 Introduction 

Mobile robot navigation includes all the actions that 
lead a robot to move from its current position to its 
destination [2, 5]. Path planning is an essential 
navigation task that generates a collision-free 
trajectory that a robot follows during its movement 

[5]. The fuzzy inference systems (FIS) [7, 15], the 
artificial potential fields (APF) [9], reinforcement 
learning (RL) [6, 11, 18], and the neuronal 
networks (NN) [10, 19] are some of the considered 
approaches for robot navigation demonstrating 
advantages and disadvantages. 

An attractive path planning method is the APF, 
thanks to its simplicity and low computational cost 
demands [9].  

Researchers rely on and use these methods [1] 
to complete the navigation tasks for path planning 
and obstacle avoidance. However, to prevent a 
sudden robot's shutdown, it is also essential to 
propose a solution considering that the battery 
charge level tends to run out during regular 
execution tasks. This issue is known as the 
autonomous recharging problem (ARP) [4]. 

The ARP arises due to the importance of mobile 
robots to have autonomy and self-sufficiency when 
using batteries. Hence, suitable strategies must be 
chosen to allow these robots to function for as long 
as possible.  

The more straightforward approach consists of 
placing a threshold allowing the robot's task 
execution while the battery level is above the 
threshold. If the battery level is below the 
threshold, the robot leaves its programmed task to 
recharge the batteries. 

However, this strategy induces inflexible and 
inefficient robot behavior [17]. With this in mind, the 
following question arises, how could a robot learn 
to select actions to complete its task autonomously 
and at the same time to cope with the ARP? One 
of several solutions consists of making the robot 
learn based on tests and errors. 
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To this end, this paper presents a learning 
technique for the robot's action selection combined 
with a reinforcement learning paradigm.  

The proposed navigation technique consists of 
a module for path planning using APF and a 
second module for decision-making, including an 
architecture based on Fuzzy Q-Learning (FQL) to 
select when to go to a charging station. 

The rest of the paper is organized as follows. 
Section 2 describes the related works, while 
section 3 is focused on presenting the theoretical 
concepts related to the proposed methods. Section 
4 is oriented to define the problem statement, while 
section 5 is focused on explaining the proposal. 
Section 6 shows the simulation results, while 
section 7 is dedicated to present the discussions. 
Finally, in section 8, the conclusions 
are  enumerated. 

2 Related Work 

Among the sub-tasks that are part of any mobile 

robot navigation system are obstacle avoidance, 

path planning, and decision-making. In this work, 

we focus on decision-making. Therefore, the 

related work shows below talks about the ARP. If 

the robot does not recharge its batteries, it could 

shut down before completing its tasks. 

A simple strategy to solve this problem is to 
place a threshold that makes the robot a little 
flexible. As in Rappaport's work, some approaches 
use this philosophy [13] that selects an adaptative 
threshold to choose a charging station to go to 
when the battery level is below that threshold. On 
the other hand, Cheng [3] proposes a strategy 
based on an algorithm to program the minimum 
time of meetings between mobile robots and 
mobile chargers.  

This strategy consists of having a series of 
mobile battery recharging stations, which the 
robots look for every so often to recharge their 
batteries. Similarly, Ma [12] proposes to work with 
time windows and focuses on the recharging of 
autonomous vehicles. The proposal considers the 
charging station's capacity and the delays in the 
queue for recharging vehicles. Meanwhile, Tomy 
[17] also manages a recharge program, and he 
uses Markov models, which provides his proposal 
with a dynamic behavior based on the environment 

and a reward system. Another strategy used to 
solve the problem is a rule-based strategy thanks 
to a FIS, which allows the robot to have flexibility 
according to the inputs, as can be seen in Lucca's 
[4] work. 

A point noted in previous work is the lack of 
learning algorithms that allow robotic systems to 
learn when to recharge their batteries. For that 
reason, this work faces that problem with the use 
of reinforcement learning. 

3 Preliminaries 

This section summarizes the methods analyzed 
and used in this work for path planning; first, the 
APF method is described and ends with the FQL 
method description used in the decision-
making module. 

3.1 The Artificial Potential Field Method 

This method is based on attractive and repulsive 
forces that are used to reach a goal and avoid 
obstacles. Equation (1) computes the attractive 
force, where 𝜉 is the attractive factor, 𝜌(𝑞, 𝑔) is the 
euclidean distance between the robot and the goal, 
𝑞 is the robot position, and 𝑔 its goal position: 

𝐹𝑎𝑡𝑡𝑟(𝑞, 𝑔) = −𝜉𝜌(𝑞, 𝑔). (1) 

The expressions shown in equation (2) are 
used to compute the repulsive force, where η is the 
repulsive factor,𝑝𝑜𝑗  is the obstacle radius threshold, 

and 𝑑  is the distance between the robot and 

obstacle 𝑗: 

𝐹𝑟𝑒𝑝(𝑞) =

{
 
 

 
  η(

1

d
−
1

ρ𝑜𝑗
)d,              𝑖𝑓 𝑑 < ρ𝑜𝑗

η(−
1

ρ𝑜𝑗
) ,                   𝑖𝑓 𝑑 = ρ𝑜𝑗

   0                                   𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒.

 (2) 

Finally, the resultant force (3) is the sum of 
attractive and repulsive forces: 

𝐹𝑟𝑒𝑠 = 𝐹𝑎𝑡𝑡𝑟(𝑞, 𝑔) + 𝐹𝑟𝑒𝑝(𝑞) . (3) 

Computación y Sistemas, Vol. 25, No. 4, 2021, pp. 683–693
doi: 10.13053/CyS-25-4-4050

Elizabeth López-Lozada, Elsa Rubio Espino, Juan Humberto Sossa-Azuela, Víctor Hugo Ponce-Ponce684

ISSN 2007-9737



3.2 Fuzzy Q-Learning Method 

FQL method [8] is an extension of the FIS. The 
method starts with the fuzzification of the inputs to 
obtain the fuzzy values identifying the system's 
current fuzzy rule 𝒮𝑖 , which corresponds to the 
agent state. Each rule has a numerical value 𝛼𝑖 
associated, that is called the rule's strength, where 
𝒾  is the number of the rule. This 𝛼𝑖  defines the 
degree to which the agent is in a particular state 
allowing the agent to choose an action from the set 
of actions 𝒜 , the 𝒿-th possible action in the 𝒾-th 

rule is called 𝑎(𝒾, 𝒿) and its corresponding q-value 

is 𝑞(𝒾, 𝒿). The formed FIS is in the following way: 

If 𝑥 is 𝒮𝑖  then 𝑎(𝒾, 𝒿) with 𝑞(𝒾, 𝒿) or ... or 𝑎(𝒾, 𝒿) 

with 𝑞(𝒾, 𝒿). 

The learning agent's goal is to find the action 
with the best q-value, which is stored on a table 

containing 𝒾 × 𝒿 q-values. The actions are selected 
with a learning policy based on the quality of a 
state-action pair, which is computed via 
equation (4): 

𝑉(𝑥, 𝑎) =
∑ 𝛼𝑖(𝑥) × 𝑞(𝑖, 𝑖

∗)𝑁
𝑖=1

∑ 𝛼𝑖(𝑥)
𝑁
𝑖=1

, (4) 

where 𝓍  is the input value in state 𝑖 , 𝑎  is the 

inferred action, and 𝒾∗ corresponds to the optimal 

action index, which is the action index with the 

highest q-value. Furthermore, the equation 𝜖 =
10

10+Τ
 is the exploration-exploitation probability 

assumed in this work, where 𝛵 corresponds to the 

step number. 

The inferred action 𝑎(𝑥)  and the q-value 

𝑄(𝑥, 𝑎) are computed given the equation in (5) and 

(6), respectively: 

𝑎(𝑥) =
∑ 𝛼𝑖 × 𝑎(𝑖, 𝑖

𝑜)𝑁
𝑖=1

∑ 𝛼𝑖(𝑥)
𝑁
𝑖=1

 , (5) 

𝑄(𝑥, 𝑎) =
∑ 𝛼𝑖 × 𝑞(𝑖, 𝑖

𝑜)𝑁
𝑖=1

∑ 𝛼𝑖(𝑥)
𝑁
𝑖=1

 , 
(6) 

where 𝑖𝑜  is the inferred action index, and 𝑁  is a 

positive number 𝑁 ∈ 𝑁+, that corresponds to the 

total number of the rules. 
On the other hand, to update the q-value, in the 

table, is used an eligibility value 𝑒(𝑖, 𝑗). 

That is rendered from an array of 𝑖 × 𝑗 values; 
usually, this array is initialized with zeros. The 
𝑒(𝑖, 𝑗)  value is updated employing equation (7), 

where 𝑗  is the selected action, γ  is the discount 

factor 0 ≤ γ ≤ 1, and 𝜆 is the decay parameter 𝜆 ∈ 
[0,1): 

𝑒(𝑖, 𝑗) = {
𝜆𝛾𝑒(𝑖, 𝑗) +

𝛼𝑖(𝑥)

∑ 𝛼𝑖(𝑥)
𝑁
𝑖=1

, 𝑖𝑓 𝑗 = 𝑖𝑜

                 𝜆𝛾𝑒(𝑖, 𝑗) ,            𝑜𝑡ℎ𝑒𝑟 𝑐𝑎𝑠𝑒,

 (7) 

Δ𝑞(𝑖, 𝑗) = 𝜖 × Δ𝑄𝑟 × 𝑒(𝑖, 𝑗) . (8) 

Finally, equation (8) allows updating the q-

value, where 𝜖 is a small number , and Δ𝑄 

is computed by means of equation (9): 

Δ𝑄 = 𝑟 + 𝛾𝑉(𝑥, 𝑎) − 𝑄(𝑥, 𝑎), (9) 

where 𝑟 corresponds to the reward. 

4 Problem Statement 

The problem addressed in this paper is focused on 

learning to select between moving on to the 

destination or going to recharge the batteries. For 

this purpose, a robot is considered in a static 

environment with twenty scattered obstacles in a 

10 × 10 grid. The robot must move without collision 

from a starting point to a destination. According to 

its battery level, the robot must decide whether to 

continue to the destination or detour to recharge it. 

The robot can move forward, backward, left or 

right. 

Four main elements are considered in this 
research: (1) A robot denoted as 𝑅,  (2) 𝑁 
obstacles denoted as 𝑂 =  [𝑂1, 𝑂2, . . . , 𝑂𝑁], and 𝑁 

∈  [1,20], (3) The destination denoted as 𝐷, and 

(4) A battery charging station denoted as 𝐵𝐶𝑆.  

The robot can execute two actions denoted as 
𝐴 =  [𝑎1, 𝑎2], where 𝑎1  corresponds to the action 

go to 𝐷, and 𝑎2 is going to the 𝐵𝐶𝑆. 

Elements 2, 3, and 4 are static, where the 𝑂,𝐷, 
and 𝐵𝐶𝑆 do not change their position concerning 

time. The robot uses a coordinate map of 10 × 10 
dimensions. At the beginning, the robot knows the 
position of 𝐷  and 𝐵𝐶𝑆  and uses a path planning 

module to generate a route to 𝐷 and other to 𝐵𝐶𝑆.  
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Figure 1 shows the discharge curve with the 
voltage levels and percentage of charge of a Li-Po 
11.1v battery for the robot battery simulation [15].  

The equation 𝐵𝐿(𝑡)  =  −1.8245𝑡 +  100 , 

where 𝐵𝐿 corresponds to the battery level, serves 
to approximate this discharge curve, and Figure 1 
shows this approximation with a dash and dot line. 

At each step, the robot calculates the Euclidean 
distance of its position to 𝐷 and BCS. The distances 

calculated at the beginning are IDC, the initial 
distance between the R and BCS, and 𝐼𝐷𝐷  the 

initial distance to 𝐷.  

Simultaneously, the distances calculated in 
each step are CDD, the current distance to D, and 
𝐶𝐷𝐶 the current distance to the 𝐵𝐶𝑆: 

𝐷𝑅𝐷 = 𝑚𝑖𝑛 {100 ×
𝐶𝐷𝐷

𝐼𝐷𝐷
, 100}. (10) 

The function 𝐷𝑅𝐷 in (10) is used to normalize 

the current distance to the 𝐷 , while the function 

𝐷𝑅𝐶 in (11) is used to normalize the distance to 
the 𝐵𝐶𝑆: 

𝐷𝑅𝐶 = 𝑚𝑖𝑛 {100 ×
𝐶𝐷𝐶

𝐼𝐷𝐶
, 100}. (11) 

5 Navigation Approach 

Algorithm 1 is proposed to handle the course of a 
robot so that it can navigate in a scenario with static 
obstacles, integrating a path planning module and 
a rule-based RL approach with FQL to select the 
action to be executed by the robot. 

5.1 Path planning 

The path planning module conducted with the APF 

uses the equations shown in section 3. The 

selection of the attractive and repulsive factors 

( 𝜉 =  2.3 , and 𝜂 =  61.5 ) was implemented, 

employing a differential evolution algorithm [14] 

with interval values in [0,100].  

Algorithm 1. Navigation 

 r_pos ← initial position; 

d_pos, bcs_pos ← insert 𝐷 and 𝐵𝐶𝑆 position; 

Initialize obs_pos_list; 
destiny ← d_pos; 

Generate the MF’s and rules;  

d_path, bcs_path←generate the paths; 
while r_pos != destiny do  

action ← get from action selection; 

next destiny ← update the destiny; 

if next_destiny != destiny then  

Update the path to next_destiny; 

destiny ← next_destiny 

Update next_r_pos;  

         if there is an obstacle in next r pos then 

Set obstacle in obs_pos_list ; 
Update the d_path, and bcs_path;  

     else 
Move to new position; 
Update r_pos; 

Algorithm 2. Path planning  

robot_pos ← insert 𝑅 position;  

dest_pos ← insert 𝐷 or 𝐵𝐶𝑆 position;  

path_pos_list ← initialize an empty list;  

res_force list←get the resultant force; 

 i ← 0;  

while robot pos != dest pos 

do 

path_pos_list[i] ← from the neighborhood 

obtain the position corresponding to the 

value of the highest resultant force; 

robot_pos ← update with path_pos_list[i];  
i++; 

return path_pos_list; 

 

Fig. 1. Battery discharge curve 

Computación y Sistemas, Vol. 25, No. 4, 2021, pp. 683–693
doi: 10.13053/CyS-25-4-4050

Elizabeth López-Lozada, Elsa Rubio Espino, Juan Humberto Sossa-Azuela, Víctor Hugo Ponce-Ponce686

ISSN 2007-9737



Algorithm 2 shows the procedure followed to 

generate a path, where the entries are the R 
position and the D's position. This algorithm runs 
twice at starting to generate a path for going to the 
D and going to the 𝐵𝐶𝑆. 

5.2 Action Selection 

The proposal for action selection consists of three 
inputs and two possible outputs. These inputs are 
BL, CDD, and CDC. The outputs are associated 
with a numerical value used to define which action 
to select, the action with the highest numerical 
value is chosen. 

In the same way that FIS uses membership 
functions (MF), this architecture occupies the MFs 
shown in Figure 2. The MF of the BL input has 
three fuzzy sets that correspond to the level of the 
battery full (FB), low (LB), and very low (VLB); the 
MFs of the CDD and CDC inputs have fuzzy sets 
far (F), near (N), and very near (C).  

Algorithm 3. Action Selection  

r_pos ← insert 𝑅 position;  

d_pos ← insert 𝐷 position;  

bcs_pos ← insert 𝐵𝐶𝑆 position;  

obs_pos_list ← initialize an empty list;  

state ← get current rule;  

action ← select an action;  

output ← compute with eq. (5);  

q ← compute the q value with eq. (6);  

new_state ← get the current rule;  

reward ← get the reward from (12);  

states value ← compute with the eq. (4); 

∆𝑄 ← compute with eq. (9); 

eligibility ← get value from eq. (7);  

new q ← compute the new q with eq. (9);  

Update the Q value in the q-table;  

return the action; 

Using the three proposed entries with their 
corresponding MFs, this system has the twenty-
seven fuzzy rules shown in Table1, where the 
output can be 𝑎1 or 𝑎2 depending on the computed 
q-values.  

To calculate the numerical value for actions 𝑎1 

and 𝑎2, we can use the equations given in section 
3 as it is shown in Algorithm 3. On the other hand, 
𝛼  is equal to 0.01, and 𝛾  is equal to 0.9. these 

values were selected after obtaining a faster 
learning rate than other tested values. 

The method starts with a table of q values equal 

to zero. The update of the q-values occupies the 

reward function defined in equation (12): 

Table 1. Fuzzy rules 

Rule BL CDD CDC Output 

1 VLB C C action=𝑎1|𝑎2 

2 VLB C N action=𝑎1|𝑎2 

3 VLB C F action=𝑎1|𝑎2 

4 VLB N C action=𝑎1|𝑎2 

5 VLB N N action=𝑎1|𝑎2 

6 VLB N F action=𝑎1|𝑎2 

7 VLB F C action=𝑎1|𝑎2 

8 VLB F N action=𝑎1|𝑎2 

9 VLB F F action=𝑎1|𝑎2 

10 LB C C action=𝑎1|𝑎2 

11 LB C N action=𝑎1|𝑎2 

12 LB C F action=𝑎1|𝑎2 

13 LB N C action=𝑎1|𝑎2 

14 LB N N action=𝑎1|𝑎2 

15 LB N F action=𝑎1|𝑎2 

16 LB F C action=𝑎1|𝑎2 

17 LB F N action=𝑎1|𝑎2 

18 LB F F action=𝑎1|𝑎2 

19 FB C C action=𝑎1|𝑎2 

20 FB C N action=𝑎1|𝑎2 

21 FB C F action=𝑎1|𝑎2 

22 FB N C action=𝑎1|𝑎2 

23 FB N N action=𝑎1|𝑎2 

24 FB N F action=𝑎1|𝑎2 

25 FB F C action=𝑎1|𝑎2 

26 FB F N action=𝑎1|𝑎2 

27 FB F F action=𝑎1|𝑎2 

 

Fig. 2. Input variables and fuzzy sets 
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𝑟(𝑡) = {

+1             if 𝑅 is C of 𝐷                  
+0.1         if 𝑅 is  C of 𝐵𝐶𝑆            
  −1            if 𝑅 is F, and 𝐵𝐿 is VLB
   0            other case.                      

  
(12) 

6 Simulation Results 

Simulations constrain the R's movement on a 
10 × 10 grid, where the R can move forward, right, 

left, and backward. The initial position of the R 
starts at the coordinates (0,0) of the grid, 𝐷 is at (5, 

9), and 𝐵𝐶𝑆 is at (9,5). Given the MFs shown in 
Figure 2, this section shows the simulations in 
fifteen scenarios tested. For experimentation, the 
battery behavior is simulated using the expression 
BL(t), described in section 4, where t corresponds 
to a time step, and so, every step execution, the 
battery level decrease accordingly to expression 

BL(t). Alternatively, increase every time the R 
reaches BCS. The current BL can replace this 
arrangement during implementation in a real robot. 
The navigation proposal trained until completing 
five successful trajectories to the 𝐷.  

The following tables show a comparison 
between the QL method and a FIS, while the 
figures illustrate the behavior of the proposal 
presented in this paper. QL method uses the same 
learning rate, discount factor, and reward function 
used for our proposal. Like the proposed FQL 
method, QL and FIS methods use the three inputs 
corresponding to the BL, CDC, and CDD. 

Figure 3 shows the total epochs taken in each 
scenario. In two scenarios, the number of epochs 
to complete the trajectory was higher than in the 

others. It means that for these two scenarios, the R 
spent more time deciding which actions to execute 
to complete the path to the D. However, in Table 2, 
it is observed that the number of epochs our 
proposal takes is smaller in comparison with the 
QL method, which is advantageous because the 
time it took the R to select and execute the actions 
was reduced. Note that since the FIS method does 
not have learning, this variable does not apply, so 
it is denoted as NA in the table. 

Figure 4 shows the BL and the number of steps 
obtained in one of the epochs where the R 
completed its trajectory in each scenario using the 
FQL method. 

According to the observed results, the BL with 
which the R completed the trajectory was above 

 

Fig. 3. Number of epochs it took the simulation to 

complete the trajectory successfully five times in fifteen 

scenarios 

 

Fig. 4 Battery level and the number of steps with which 

the robot completed each of the proposed scenarios 

Table 2. Number of epochs it took for the simulation to 

complete the trajectory successfully five times with the 

FQL proposal and QL method 

Scenarios FIS QL FQL 

1 NA 17 5 

2 NA 23 6 

3 NA 22 5 

4 NA 13 5 

5 NA 166 5 

6 NA 22 67 

7 NA 59 5 

8 NA 25 10 

9 NA 13 5 

10 NA 110 5 

11 NA 33 71 

12 NA 80 10 

13 NA 39 5 

14 NA 17 8 

15 NA 24 5 
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70% in most scenarios. Likewise, the number of 
steps executed remained below 20. Table 3 shows 
that the BL value at the end of each scenario is very 

close to the BL at the end of the FIS; contrarily to 

the QL method, there were five cases where the BL 
was inferior to 50%, showing that our proposal 
performs better compared to QL method. 
Nevertheless, Table 3 also shows that the FIS 

ended the simulation with the highest BL in almost 
all cases. This behavior is because, with the FIS, 

there were no deviations towards the BCS, and the 
simulated R went straight to D,  contrary to the case 
of the FQL and QL methods. However, the results 
show that the FQL method learns to select the 

actions that help it finish with a BL similar to the 
FIS method. 

Additionally, in the graph presented in Figure 5, 
the R sometimes selected action 𝑎2 which caused 

a route change towards the BCS. Under whose test 
conditions, in most cases, the R selected the action 
of going to the 𝐷, meaning that the number of steps 

to D could have been less, however during the 
action selection, the R decides that it has to charge 
the battery and deviates from the original route. 
The executed steps varied between two and six 
compared to those that the FIS method executed, 
as shown in Table 4, whose the executed steps 
were between 14 and 18 according to the scenario. 

The FIS, being a rule-based method and 
lacking any learning stage, completes the task with 
the fewest number of steps executed. Whereas 
methods that have to learn to select actions that 
help to complete the task execute more steps. 
According to Table 4 results, the proposed FQL 
method completes the task in a minor sequence of 
steps than QL method.  

The breakdown of the actions selected in each 
scenario is depicted in Table 5. The results show 
that the simulated R always selects to go towards 

D using the FIS method. Unlike QL and FQL 
methods, which in some cases selected action 𝑎2 
causing the simulated R to divert towards the BCS 
instead of going towards D, and therefore, it caused 

that they took longer to get to D than the 
FIS method. 

Furthermore, Figure 6 shows the accumulated 

reward. When the training lasted longer, the 

accumulated reward rises because the R was 

moving towards the 𝐵𝐶𝑆 . While the number of 

Table 3. The battery level at which the simulation ended 

using FIS, QL, and FQL methods in each scenario 

during the fifth completed trajectory 

Scenarios FIS QL FQL 

1 78.0 51.0 74.4 

2 78.0 65.0 67.1 

3 74.4 65.0 74.4 

4 78.0 76.0 78.0 

5 78.0 40.0 78.0 

6 78.0 14.0 78.0 

7 74.4 80.0 70.7 

8 78.0 69.0 78.0 

9 78.0 73.0 78.0 

10 78.0 32.0 67.1 

11 70.1 80.0 70.7 

12 78.0 47.0 78.0 

13 78.0 40.0 74.4 

14 78.0 73.0 74.4 

15 78.0 58.0 78.0 

 

Fig. 5. Number of times that the actions 𝑎1 and 𝑎2 were 

selected during the displacement to the destination 

 

Fig. 6. Reward accumulated in each scenario 
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steps to complete the trajectory was minor in the 

scenarios, the reward remained below 50. 

Finally, Figure 7 shows a sample of three of the 

fifteen scenarios in which the tests were carried 

out. The graphs in this figure are composed of 

five elements: 

1. The squares represent the obstacles, 

2. The cross corresponds to the position of 

the  BCS, 

3. The star positions the D 

4. The circle represents the starting point of 

the  R  

5. The line with circles is the trajectory 

followed by R. 

7 Discussion 

During simulations, the obstacles used in 
scenarios were placed in different positions. The 
variations of the path generated with the path 
planning method affected the task performance 
reflected in the number of steps invested by the 
system to complete the path to 𝐷. During training, 

when the robot was close to the 𝐵𝐶𝑆, and the BL 

was different from BF, the robot followed the 𝐵𝐶𝑆 

path instead of 𝐷, and it remained there. 
So, the robot failed to complete its task to go to 

𝐷. With this approach, an expert can define the 
number of states that the agent takes, as in a 
traditional FIS. With the addition that the system 
can learn based on trial and error using QL 
method. Comparing our proposal with the 
traditional QL method, the number of states that 
the agent can take is reduced to the number of 
rules that the expert defines. To visualize this, take 
the example of the battery level input.  

In QL method, the number of states that the 
agent can take ranges from 0 to 100, while with this 
proposal, there are 27 states, which helps to 
reduce computational complexity. By adding the 
distances to D and 𝐵𝐶𝑆 as inputs, the number of 
states would grow even more until 1,030,301. 
Among the disadvantages, the system might not 
necessarily choose the shortest path at all times, 
since in some steps, the learning agent may select 
to remain in standby mode. However, with the 
acquired learning, the system manages to select 
the actions that allow it to complete its task. 

Table 4. The number of steps at which the simulation 

ended using FIS, QL, and FQL methods in each scenario 

during the fifth completed trajectory 

Scenarios FIS QL FQL 

1 14 30 16 

2 14 22 20 

3 16 22 16 

4 14 16 14 

5 14 36 14 

6 14 50 14 

7 16 14 18 

8 14 20 14 

9 14 18 14 

10 14 40 20 

11 18 14 18 

12 14 32 14 

13 14 36 16 

14 14 18 16 

15 14 26 14 

 

Fig. 7. Visualization of three of the fifteen scenarios used 

and the respective route that was taken. 
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8 Conclusions 

The proposed navigation technique demonstrates 
the robot's capability of duly selecting any of the 
actions 𝑎1 and 𝑎2, which allows it to fulfill its goal to 
reach a predetermined destination maintaining the 

battery charge level in appropriate condition, 
based on a decision-making methodology. 

Using the FQL method, the number of defined 
rules assigns the system's complexity, unlike the 
classical QL method, where the states would 
correspond to possible battery level 
measurements. The proposed methodology limits 
the number of states to the ranges assigned with 
the MFs and helps a robot learns to select tasks 
autonomously and complete its task. 

In this paper's case, the assigned tasks were 

the displacement to some destination D or BCS. 

The simulated robot reached the D successfully, 
although sometimes, the robot took a deviation to 

the BCS to maintain its battery in conditions to finish 
the started task.  

However, whether other functions are added to 
the list of tasks, like taking a bottle, it will be 
necessary to consider the task time execution and 
the discharge battery curve to guarantee that the 
robot will select the best action to maintain itself 
working and finish the started job successfully. 

For future work, we propose to study how to 
integrate this functionality in the proposed 
algorithms to guarantee success with any assigned 
task and test the proposal in realistic scenarios. 

This approach, compared to a traditional QL 
method or a FIS, has certain advantages. Unlike 
the FIS method, in an FQL, an expert does not 
need to assign the output to be executed since the 
proposal made with the FQL allows a robot to learn 
autonomously to select actions. According to the 
results presented, the proposal can match the 
results of a FIS during the decision-making 
process since the battery levels and the number of 
steps with which the simulations ended were 
similar in most of the scenarios tested. While it 
dramatically improves the results obtained with the 
QL method. Besides, it significantly reduces the 
number of states. Consequently, it reduces the 
among of memory occupied for learning, which will 
allow the implementation of the proposal in a robot 
with low computing capabilities. 
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