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Abstract. Multi-valued logics form a family of
formal languages with several applications in computer
sciences, particularly in the field of Artificial intelligence.
Paraconsistent multi-valued logics have been successful
applied in logic programming, fuzzy reasoning, and even
in the construction of paraconsistent neural networks.
G′

3 is a 3-valued logic with a single represented truth
value by 1. CG′

3 is a paraconsistent, 3-valued logic
that extends G′

3 with two truth values represented by 1
and 2. The state of the art of CG′

3 comprises a Kripke
semantics and a Hilbert axiomatization inspired by the
Lindenbaum-Łos technique. In this work, we show that
G′

3 and CG′
3 are algebrizable in the sense of Blok and

Pigozzi. These results may apply to the development of
paraconsistent reasoning systems.

Keywords. Paraconsistent logics, blok-pigozzi
algebrization, non-monotonic reasoning.

1 Introduction

In computer science, it is well known the
successful application of logics as a foundation
of programming languages, that is, programs can
be characterized as proofs in logical inference
systems (Curry-Howard isomorphism) [11]. In
development Artificial Intelligence (AI), logical
languages have also played a key role: in the
burgeoning of reasoning systems and even as a
tool for proving algorithm correctness. There are
even cases in which some logical theories have
served for the advanced programming paradigms,
such as logic programming [25].

Paraconsistent logics form a family of languages
designed to analyze and reason from incon-
sistencies (from the point of view of classical

logic), as is often useful in many AI contexts,
such as signal and image processing and expert
systems [26]. Within the family of paraconsistent
logics, Annotated logics, which encompass fuzzy
set theory, are the most widely applied in AI
[1]. Another scope of paraconsistent logic is
non-monotonic reasoning, a fundamental notion in
the development of intelligent systems.

In [2, 3], it is introduced a standard semantics
for non-monotonic reasoning in the setting of
annotated logics and annotated logic programs.
Multi-valued logics are non-classical logics [5]. Like
in logic classical, multi-valued logics also enjoy
the principle of truth functionality: the truth value
of a compound sentence is determined through
the truth values of its component sentences and
remains the same when one of the component
sentences is replacing by another sentence with
the same truth value. However, in contrast to the
classical case, multi-valued logics do not restrict
the number of truth values to just two. A larger set
of degrees of truth is the distinctive feature in the
context of many-valued logics.

In [15], it is reported a detailed summary
of multi-valued logics. Some multi-valued logic
systems are presented as families of systems
of uniformly defined finite and infinite values,
for example, Łukasiewicz logic, Gödel’s logic,
systems based on the t-norm, 3-valued systems,
Dunn-Belnap’s 4-value system. Most common
inference systems for multi-valued logics are
Hilbert and Gentzen (sequent) calculus, and
Tableaux [15]. A broad class of infinitely valued
logics is described by [20].
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Classical logic, as well as intuitionistic logic,
suffer a disadvantage when reasoning with
inconsistent information. According to the principle
of explosion, also known as “ex contradictione
sequitur quodlibet”, all theory or inconsistent
knowledge base is trivial. Classical logic is
then useless to reason with inconsistencies. As
a result, alternatives to classical logic that do
not have this drawback have been developed,
called “paraconsistent” approaches. In 1954 F.
Asenjo, in his doctoral dissertation, proposes
for the first time to use multi-valued logic as
a form of paraconsistent logic (logics whose
logical consequence relationship semantics or
proof theory is not explosive [16]). The focus
of many truth values is to abandon the classical
assumption and allow more than two values. The
most common strategy is to use three truth values:
true, false, and both (true and false) for evaluation
of formulas.

George Boole introduced the algebra of logic or
algebraic logic in [7] as an explicit algebraic system
showing the underlying mathematical structure of
logic. The methodology started by Boole was
continued in the 19th century for the work of A.
De Morgan, W. S. Jevons, C. S. Peirce, and E.
Schröder. A summary of these works can be
found in [8]. The relationship between logic and
algebra from the contemporary perspective goes
back to the ideas of Lindenbaum and Tarski, as
follows: formulas of a given logic are interpreted
in algebras with operations associated with the
logical connectives. In [6], Blok and Pigozzi
proposed a generalization of the techniques of
original algebra to encompass a broader range
of logics. Generalization of the Blok and Pigozzi
method was suggested in the literature [12, 13,
14]. Algebraic foundations for logic have been
shown useful in the development of reasoning
systems [10, 17]. In this paper, we show that
CG′3 and G′3 are Blok-Pigozzi algebrizable. We
believe this result may help in the development of
paraconsistent reasoning systems.

This article is organized as follows: in Section
2, we present some known definitions and results
according to the setting of the present manuscript;
in Section 3, we study the CG′3 and G′3 logics
which are defined in terms of four connectives ∧,

∨, → and ¬ where the implication is deductive
to CG′3. The main result of the paper is also
described in this Section, that is, it is shown that
CG′3 and G′3 are algebraizable logics with the
Blok-Pigozzi method. Finally, in the last Section,
we give a summary of the paper and we describe
a list of open problems to be studied in the future.

2 Background

We first introduce the syntax of the logical formulas
considered in this paper. We follow standard
notation and basic definitions as W. Carnielli and
M.Coniglio in [9].

Definition 1 (Propositional signatures). A proposi-
tion signature is a set Θ of symbols called connec-
tives, together with the information concerning the
arity of each connective.

The following symbols will be used for logical
connectives: ∧ (conjunction, binary); ∨ (disjunc-
tion, binary); → (implication, binary); ¬ (weak
negation, unary); • (inconsistency operator, unary);
∼ (strong negation, unary); ⊥ (bottom formula,
0-ary).

Definition 2 (Propositional language). Let V ar =
{p1, p2, . . .} be a denumerable set of propositional
variables, and let Θ be any propositional signature.
The propositional language generated by Θ from
V ar will be denoted by LΘ.

Definition 3 (Standard logic). A logic L defined
over a language L which has a consequence
relation `, is Tarskian if it satisfies the following
properties, for every Γ ∪∆ ∪ {α} ⊆ L:

(i) If α ∈ Γ then Γ ` α;

(ii) If Γ ` α and Γ ⊆ ∆ then ∆ ` α;

(iii) If ∆ ` α and Γ ` β for every β ∈ ∆, then
Γ ` α.

A logic satisfying item (ii) above is called
monotonic. A logic L is said to be finitary if it
satisfies the following:

(iv) If Γ ` α, then there exists a finite subset Γ0 of
Γ such that Γ0 ` α.
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A logic L defined over a propositional language L
generated by a signature from a set of propositional
variables is namely structural, if it satisfies the
following property:

(v) Is Γ ` α then σ[Γ] ` σ[α], for every substitution
σ of formulas for variables.

Propositional logic is standard if it is Tarskian,
finitary, and structural.

From now on, a logic L will be represented
by a pair L = 〈L,`〉, where L and ` denote
the language and the consequence relation of L,
respectively. L is generated by a propositional
signature Θ from V ar, this is, L = LΘ then we will
write L = 〈Θ,`〉.

Let L = 〈L,`〉 be a logic. Let α be a formula in
L and let X1 . . . Xn be a finite sequence (for n ≥ 1)
such that each Xi is either a set for formulas in L
or formula in L. Then, as usual, X1, . . . ,Xn ` α will
stand for X ′1 ∪ · · · ∪X ′n ` α, where, for each i, X ′i
is Xi, if Xi is a set of formulas, or X ′i is {Xi} if Xi

is a formula.

Definition 4 (Paraconsistent logic). A Tarskian
logic L is paraconsistent if it has a (primitive or
defined) negation ¬ such that α,¬α 6`L β for some
formulas α and β in the language of L .

Remark 1. If L has a deductive implication
→, in the sense that it satisfies the Deduction
meta-theorem DMT, then L is paraconsistent if
and only if the schema formula ϕ → (¬ϕ → ψ)
is not valid, i.e., the explosion law is not valid in
L with respect to the negation ¬. That is, the
negation ¬ is not explosive.

Now, we present the notion of Logic of
Formal Inconsistency.

Definition 5 (Logic of Formal Inconsistency). Let
L = 〈Θ,`〉 be a standard logic. Assume that the
signature Θ of L contains a negation ¬, and let
©(p) be a nonempty set of formulas depending
exactly on the propositional variable p. Accordingly,
L is a Logic of Formal Inconsistency, (LFI), with
respect to ¬ and©(p) if the following holds:

(i) ϕ,¬ϕ 6` ψ for some ϕ and ψ;

(ii) There are two formulas α and β such that:

(a) ©(α),α 6` β;

(b) ©(α),¬α 6` β;

(iii) ©(ϕ),ϕ,¬ϕ ` ψ for every ϕ and ψ.

Remark 2.

— When © is a singleton, its elements are
denoted by ◦p, where ◦ is the consistency
operator.

— A logic that satisfies the property (iii) is called
gently explosive.

Finally, we define a stronger notion of LFIs for
more reference, see [9].

Definition 6 (Strong Logic of Formal Inconsis-
tency). Let L = 〈Θ,`〉 be a standard logic.
Assume that the signature Θ of L contains a
negation ¬, and let ©(p) be a nonempty set of
formulas depending exactly on the propositional
variable p. Then L is a strong LFI with respect
to ¬ and©(p) if the following holds:

(i) there are two formulas α and β such that:

(a) α,¬α 6` β;

(b) ©(α),α 6` β;

(c) ©(α),¬α 6` β; and

(ii) ©(ϕ),ϕ,¬ϕ ` ψ for every ϕ and ψ.

Remark 3.

— Any strong LFI is an LFI.

— If L is a propositional logic then L is a strong
LFI whenever the following holds:

(i) there are two formulas p and q such that:

(a) p,¬p 6` q;
(b) ©(p), p 6` q;
(c) ©(p),¬p 6` q; and

(ii) ©(ϕ),ϕ,¬ϕ ` ψ for every ϕ and ψ.
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Definition 7 (Blok and Pigozzi algebraizability).
Let Θ be a propositional signature, and let L
be a standard propositional logic defined over the
language LΘ, with a consequence relation `L.
Then L is algebraizable in the sense of Blok and
Pigozzi if there exists a nonempty set ∆(p1, p2) ⊆
LΘ of formulas depending on variables p1 and p2,
and a nonempty set E(p1) ⊆ LΘ × LΘ of pairs of
formulas depending on variable p1 satisfying the
following properties:

(i) `L δ(p1, p1), for every δ(p1, p2) ∈ ∆(p1, p2);

(ii) ∆(p1, p2) `L δ(p2, p1), for every δ(p1, p2) ∈
∆(p1, p2);

(iii) ∆(p1, p2), ∆(p2, p3) `L δ(p1, p3), for every
δ(p1, p2) ∈ ∆(p1, p2);

(iv) ∆(p1, pn+1), . . . , ∆(pn, p2n) `L

δ(#(p1, . . . , pn), #(pn+1, . . . , p2n)), for every
δ(p1, p2) ∈ ∆(p1, p2), every n-ary connective
# of Θ and every n ≥ 1;

(v) p1 `L δ(γ(p1), ε(p1)), for every δ(p1, p2) ∈
∆(p1, p2) and every 〈γ(p1), ε(p1)〉 ∈ E(p1);

(vi)
{
δ(γ(p1), ε(p1)) : δ(p1, p2) ∈

∆(p1, p2), 〈γ(p1), ε(p1)〉 ∈ E(p1)
}
`L p1.

The sets ∆(p1, p2) and E(p1) are called systems
of equivalence formulas and defining equations,
respectively.

Definition 8 (Relation). Let Θ be a propositional
signature, and let θ ⊆ LΘ×LΘ be a relation defined
over the algebra of formulas LΘ if it satisfies the
following properties:

(i) αθα for every α ∈ LΘ (reflexivity);

(ii) αθβ implies βθα for every α,β ∈ LΘ

(symmetry);

(iii) αθβ and βθγ implies αθγ for every α,βγ ∈ LΘ

(transitivity);

(iv) Given αi and βi in LΘ (for 1 ≤ i ≤ n)
such that α1θβ1, . . . ,αnθβn, then
#(α1, . . . ,αn)θ#(β1, . . . ,βn) for every n-ary
connective # of Θ and every n ≥ 1.

A congruence θ in LΘ is trivial if either θ = LΘ×LΘ

or θ = {(α,α) : α ∈ LΘ}.

Definition 9 (Logical congruence). Let L be a
standard logic defined over the language LΘ.

(i) A congruence θ in LΘ is compatible with a
theory Γ ⊆ LΘ if it satisfies the following:

αθβ and Γ `L α implies that Γ `L β.

(ii) A congruence θ in LΘ is a logical congruence
in L if θ is compatible with every theory Γ.
Equivalently, θ is a logical congruence in L if,
for every α and β:

αθβ implies that α `L β and β `L α.

The usual mode to define the many-valued
semantics of logic is through a matrix. We
introduce the definition of the deterministic matrix,
also known as the logical matrix or just as a matrix.
In [19], we can find and an exhaustive discussion
about many-valued logic and some examples.

Definition 10 (Matrix). Given a logic L in the
language L, the matrix of L is a structure M =
〈D,D∗,F 〉, where:

(i) D is a non-empty set of truth values (domain),

(ii) D∗ is a subset ofD (set of designated values),

(iii) F = {fc|c ∈ C} is a set of truth functions, with
one function for each logical connective c of L.

Definition 11 (Interpretation). Given a logic L in
the language L, an interpretation t, is a function
t : V ar → D that maps propositional variables to
elements in the domain.

Any interpretation t can extend to a function on
all formulas in LΣ as usual, i.e., applying recur-
sively the truth functions of logical connectives in
F . If t is a valuation in the logic L , we will say
that t is an L -valuation. Interpretations allow us to
define the notion of validity in this type of semantics
as follows:

Definition 12 (Valid formula). Given a formula ϕ
and an interpretation t in a logic L , we say that the
formula ϕ is valid under t in L , if t(ϕ) ∈ D∗, and
we denote it as t |=L ϕ.
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Let us note that validity depends on the
interpretation, but if we want to talk about “logical
truths” in the system, then the validity should be
absolute, as stated in the following definition:

Definition 13 (Tautology). Given a formula ϕ in the
language of a logic L , we say ϕ is a tautology in
L , if for every possible interpretation, the formula
ϕ is valid, and we denote it as |=L ϕ.

If ϕ is a tautology in the logic L , we say that ϕ
is an L -tautology. When logic defined via a many-
valued semantics, it is common to define the set of
theorems of L as the set of tautologies obtained
from the many-valued semantics, i.e., ϕ ∈L if and
only if |=L ϕ.

Definition 14 (Translation between Logics). Let
L1 and L2 be logics with sets of formulas L1 and
L2, respectively. A mapping ∗ : L1 → L2 is said
to be a translation from L1 to L2 if, for every
Γ ∪ {α} ⊆ L1 :

Γ |=L1
α then Γ∗ |=L1

α∗.

And it is said to be a conservative translation if if
satisfies the stronger property:

Γ |=L1 α if and only if Γ∗ |=L1 α
∗.

If ∗ is a mapping defined on formulas and Γ is a
set of formulas, then Γ∗ = {γ∗ : γ ∈ Γ}.

3 Blok-Pigozzi Algebrization

In this section, we study the CG′3; and G′3 logics,
which are defined in terms of four connectives ∧,
∨, →, and ¬ where the implication is deductive
to CG′3. We establish that CG′3 and G′3 are
algebraizable logics with the Blok-Pigozzi method.

Table 1. Truth functions of the connectives in CG′
3

and G′
3

∨ 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

∧ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

→ 0 1 2
0 2 2 2
1 0 2 2
2 0 1 2

¬
0 2
1 2
2 0

3.1 The CG′3 logic

This section aims to analyze the algebraizability
of CG′3 in the sense of Blok and Pigozzi, and
we see the CG′3 logic as a Logic of Formal
Inconsistency (LFI).

Osorio et al. defined CG′3 logic as a
three-valued logic in [21], where the matrix is giving
by the structureM = 〈D,D∗,F 〉 over Σ = {∨,∧,→
,¬}, where D = {0, 1, 2}, the set D∗ of designated
values is {1, 2}, and F is the set of truth functions
defined in Table 1.

Remark 4.

— Observe that → is a deductive implication:
Γ,α |=CG′

3
β if and only if Γ |=CG′

3
α→ β.

— Considering the natural order 0 ≤ 1 ≤ 2
in D, the ∨ corresponds to the supremum,
∧ corresponds to the infimum and → is the
residuum of ∧:

z ∧ x ≤ y if and only if z ≤ x→ y,

for every x, y, z ∈ D.

— The CG′3 logic was axiomatized in [23]
applying the Lindenbaum-Łos method. Fur-
thermore, the authors define two connectives
(strong negation and inconsistency operator):

1. ∼ϕ = ϕ→ ⊥ (Strong negation),

2. •ϕ = ∼∼ϕ∧¬ϕ (inconsistency operator).

Computación y Sistemas, Vol. 25, No. 4, 2021, pp. 751–759
doi: 10.13053/CyS-25-4-4046

On the Algebrization of the Multi-valued Logics CG´3 and G´3 755

ISSN 2007-9737



Table 2. Truth functions of the connectives ∼, •, and ◦ in
CG′

3

∼
0 2
1 0
2 0

•
0 0
1 2
2 0

◦
0 2
1 0
2 2

We define the inconsistency operator as
follows:

3. ◦ϕ = ¬ • ϕ (consistency operator)

Truth functions for the connectives ∼, •, ◦ in
CG′3 are displayed in Table 2.

In [6], Blok and Pigozzi gave a mathematical
concept of algebraizable logic. The main idea of
this definition is the following:

A logic is algebraizable if there exists a class of
algebras associated with the system of reasoning.
In the same way as the class of Boolean algebras
is related to classical propositional logic.

Proposition 1. The logic CG′3 is a strong LFI with
consistency operator ◦ defined as above.

Proof. Assume that p and q are two different
propositional variables. By considering the
valuation v1 such that v1(p) = 1, v1(¬p) = 2,
and v1(q) = 0, it follows that p, ¬p 6`CG′

3
q and

clause (i.a) of Remark 3 is verified. Consider the
valuation v2 such that v2(p) = 2, v2(◦p) = 2, and
v2(q) = 0, it follows that p, ◦p 6`CG′

3
q and clause

(i.b) of Remark 3 is satisfied. Now, considering
the valuation v3 such that v3(¬p) = 1, v3(◦p) = 2,
and v3(q) = 0, it follows that ¬p, ◦p 6`CG′

3
q and

clause (i.c) of Remark 3 is verified. Finally, there
is no valuation that makes formulas ϕ, ¬ϕ, and
◦ϕ simultaneously true. Thus, item (ii) of Remark
3 is satisfied. Thus CG′3 is a strong LFI w.r.t ¬
and ◦.

Proposition 2. Let h be a valuation for CG′3.
Then:

(i) h(p1 → p2) ∈ D∗ if and only if h(p1) = 0 or
h(p2) ∈ D∗;

(ii) h(p1 ∧ p2) ∈ D∗ if and only if h(p1) ∈ D∗ and
h(p2) ∈ D∗;

(iii) h(p1 ∨ p2) ∈ D∗ if and only if h(p1) ∈ D∗ or
h(p2) ∈ D∗;

(iv) h(p1 ↔ p2) ∈ D∗ if and only if either h(p1) ∈
D∗ and h(p2) ∈ D∗, or h(p1) = h(p2) = 0.

Proof. Immediate from the truth-tables.

Definition 15. Let δ(p1, p2) be the following
formula of LΣ:

δ(p1, p2) = (p1 ↔ p2) ∧ (◦p1 ↔ ◦p2).

Proposition 3. Let α and β be formulas in LΣ.
Then for every valuation h for CG′3 it holds that:

1. h(δ(α,β)) ∈ D∗ if and only if we have:

(a) either h(α) ∈ D∗ and h(β) ∈ D∗, or
h(α) = h(β) = 0; and

(b) h(◦α) = h(◦β).

Thus, h(δ(α,β)) ∈ D∗ if and only if h(α) =
h(β).

2. h(•α→ α) ∈ D∗.

3. h(◦α) = h(◦(•α→ α)).

4. h(δ(α, •α→ α)) ∈ D∗ if and only if h(α) ∈ D∗.

Proof.

1. “Only if” part. h(δ(α,β)) ∈ D∗ if and only if in
accordance with Proposition 2(ii), h(α ↔ β) ∈
D∗ and h(◦α ↔ ◦β) ∈ D∗. By Proposition
2(iv), h(α ↔ β) ∈ D∗ is equivalent to either
h(α) ∈ D∗ and h(β) ∈ D∗, or h(α) = h(β) = 0,
while h(◦α ↔ ◦β) ∈ D∗ if and only if either
h(◦α) ∈ D∗ and h(◦β) ∈ D∗, or h(◦α) =
h(◦β) = 0. By the definition of ◦, h(◦α ↔
◦β) ∈ D∗ is equivalent to h(◦α) = h(◦β). Now,
suppose that h(δ(α,β)) ∈ D∗. If h(α) = 2
and h(β) = 1, then h(◦α) = 2 and h(◦β) = 0,
violating that h(◦α) = h(◦β). Analogously, it is
impossible to have h(α) = 1 and h(β) = 2.
This shows that h(α) = h(β). “If” part is
obvious, in light of the clauses.

2. The proof is straightforward.
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3. If h(◦α) = 2 then h(α) ∈ {0, 2} and h(•α) =
0 and so h(•α → α) = 2; hence, h(◦(•α →
α)) = 2. If h(◦α) = 0 then h(α) = 1 and so
h(•α) = 2; hence, h(•α → α) = 1; therefore,
h(◦(•α→ α)) = 0.

4. “Only if” part. By item 1, h(δ(α, •α → α)) ∈
D∗ implies that h(α) = h(•α→ α). So, by item
2, h(α) ∈ D∗. “If” part. Suppose that h(α) ∈
D∗. By item 2, h(•α → α) ∈ D∗ and, by item
3, h(◦α) = h(◦(•α → α)). Finally, applying
item 1, h(δ(α, •α→ α)) ∈ D∗.

Theorem 1. The logic CG′3 is algebraizable in
the sense of Blok and Pigozzi with a system
of equivalence formulas given by ∆(p1, p2) =
{δ(p1, p2)} and a system of defining equations
given by E(p1) = {p1, •p1 → p1}.

Proof. It is easy to prove that the system ∆(p1, p2)
satisfies conditions (i)-(iv) by item 1 of Proposition
3. By item 4 of the same proposition, conditions
(v)-(vi) follow easily.

3.2 The G′3 Logic

The logic G′3 is defining as a three-valued logic
in [22]. The matrix is giving by the structure
M = 〈D,D∗,F 〉 over Σ = {∨,∧,→,¬}, where
D = {0, 1, 2}, the set D∗ of designated values is
{2}, and F is the set of truth functions defined in
Table 1. Note that G′3 is defined in the signature
of CG′3.

It is easy to check from truth functions that |=CG′
3

((α→ β)→ α)→ α but 6|=G′
3

((α→ β)→ α)→ α.
So the two deductive systems are different.

We now define a mapping CG′3 into G′3.

Definition 16. Let the mapping ∗ : LΣ → LΣ given
by α∗ = ∼α→ α.

We now show the mapping defined above is a
conservative translation.

Proposition 4. For every Γ ∪ {α} ⊆ LΣ :

Γ |=CG′
3
α if and only if Γ∗ |=G′

3
α∗.

Proof. “Only if” part. Suppose otherwise, that is,
Γ |=CG′

3
α and Γ∗ 6|=G′

3
α∗. Then there are a

valuation h such that h(Γ∗) ∈ D∗ and h(α∗) = 0,
then h(∼α) ∈ {1, 2} and h(α) = 0, but Γ |=CG′

3
α

then for that valuation h(α) ∈ D∗, is a contradiction.
“If” part. Γ∗ |=G′

3
α∗ implies Γ |=CG′

3
α∗, hence,

using the following valid formula (∼α → α) → α in
CG′3, we obtain Γ |=CG′

3
α.

Corollary 1. G′3 is algebraizable in the sense of
Blok and Pigozzi.

The systems CG′3 and G′3 despite, being
different, are algebraizable in the sense of Blok
and Pigozzi.

4 Conclusions and Future Work

CG′3 is defined by multi-valued semantics. The
logic matrix is given by CG′3 is given by M =
(D,D∗,F ); where the domain is D = {0, 1, 2}
and the set of values designated is D∗ = {1, 2}.
This logic is paraconsistent and can be seen as an
extension of the G′3 logic, introduced by Osorio in
2008 [22]. In this article, we expanded the studies
on these logics, in particular, we showed some
results related to algebraic logic. The main result
of the work is the algebrization using the Blok and
Pigozzi technique.

Algebraic semantics of logical languages implies
generality and compositionality in the design,
implementation and maintenance of reasoning
systems [10].

Among the applications, it is of our particular
attention the verification of systems [18]. Another
research question of our interest is regarding
the relationship of G′3 and CG′3 and the
annotated paraconsistent logics family, defined by
Subrahmanian in [24].

Nowadays, many applications to paraconsistent
logic are known in many fields of computer science,
such as electrical circuits, non-monotonous rea-
soning, control systems, automation, and robotics,
to mention a few [4].

Computación y Sistemas, Vol. 25, No. 4, 2021, pp. 751–759
doi: 10.13053/CyS-25-4-4046

On the Algebrization of the Multi-valued Logics CG´3 and G´3 757

ISSN 2007-9737



Acknowledgments

Research funded by Dirección General de Asuntos
del Personal Académico, Universidad Nacional
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