
Modeling and Verification Analysis of Ecological Systems
via a First Order Logic Approach

Zvi Retchkiman Königsberg

Instituto Politécnico Nacional,
Centro de Investigación de Computación,

Mexico

mzvi@cic.ipn.mx

Abstract. This paper addresses the modeling and
verification analysis of the mutual relationships among
plants, animals, and their environment. We start
our study of mathematical ecology by considering the
interaction of two species, one of which the predators eat
the preys thereby affecting each other, such pairs exist
throughout nature: fish and sharks, lions and gazelles,
birds and insects, to mention some. Not all species
form predator-prey relationships, we can also have the
case of a two-species ecosystem in which both species
compete for the same limited source of nutrients. If
two competitors try to occupy the same realized niche,
one species will try to eliminate the other. Therefore,
two instances are worth to be considered. On the
one hand, there is a need to cooperate sharing part of
the resource so that both organisms will benefit from
it. On the other hand, if one of the two species is
stronger than the other, there will be no cooperation
and the strongest species will impose its conditions.
In this work, the ecological interaction system between
species is modeled as a formula of the first order
logic. Then, using the concept of logic implication,
and transforming this logical implication relation into a
set of clauses, called Skolem standard form, qualitative
methods for verification as well as performance issues,
for some queries, are applied. Mathematics Subject
Classification: 08A99, 93D35, 93D99, 39A11.

Keywords. Ecological systems, predator-prey
system, biological competition system, cooperation,
non-cooperation, first order logic, model, verification,
unsatisfiability, refutation methods.

1 Introduction

Consider the interaction of populations, in which
there are exactly two species, one of which the

predators eat the preys thereby affecting each
other. Such pairs exist throughout nature: fish and
sharks, lions and gazelles, birds and insects, to
mention some. Not all species form predator-prey
relationships, we can also have the case of a
two-species ecosystem in which both species
compete for the same limited source of nutrients.
If two competitors try to occupy the same realized
niche, one species will try to eliminate the other.

In other words, competition better defined
as interaction occurs when the capability of
the environment to supply resources is smaller
than the potential biological requirement so that
organisms interfere with each other. Plants, for
example, often compete for access to a limited
supply of nutrients, water, sunlight, and space.
Therefore, two species cannot indefinitely coexist
if they are limited by the same resource. If
two competitors try to occupy the same realized
niche, one species will try to eliminate the
other [1]. Therefore, two instances are worth to
be considered. On the one hand, there is a need
to cooperate sharing part of the resource so that
both organisms will benefit from it. On the other
hand, if one of the two species is stronger than
the other, there will be no cooperation and the
strongest species will impose its conditions.

In the study of this type of problems, Lotka-
Volterra models as well as evolutionary game
theory concepts have been used [3], [4].

This paper proposes a well defined syntax
modeling and verification analysis methodology
which consists in representing the ecological
interaction system as a formula of the first order
logic. Then, using the concept of logic implication,

Computación y Sistemas, Vol. 25, No. 2, 2021, pp. 339–349
doi: 10.13053/CyS-25-2-3936

ISSN 2007-9737



and transforming this logical implication relation
into a set of clauses, called Skolem standard form,
qualitative methods for verification (validity) as well
as performance issues, for some queries, are
addressed. The method of Putnam-Davis based
on Herbrand theorem for testing the unsatisfiability
of a set of ground clauses as well as the resolution
principle due to Robinson, which can be applied
directly to any set of clauses (not necessarily
ground clauses), are invoked. The paper is
organized as follows. In section 2, a first order
background summary is given. In section 3, the
Putnam-Davis rules and the resolution principle
for unsatisfiability, are recalled. In section 4,
the predator-prey problem is addressed. In
section 5, the biological competition problem is
considered. The cooperative and non cooperative
cases are considered. Finally, the paper ends with
some conclusions.

2 First Order Logic Background

This section presents a summary of the first order
logic theory. The reader interested in more details
is encouraged to see [5], [7], [6].

Definition 1 A first-order language L is an infinite
collection of distinct symbols, no one of which is
properly contained in another, separated into the
following categories: parentheses, connectives,
quantifiers, variables, equality symbol, constant
symbols,function symbols and predicate symbols.

Definition 2 Terms are defined recursively as
follows: (i). A constant is a term,(ii). A variable
is a term.(iii). If f is an nth-place function symbol,
and t1, t2, . . . , tn are terms, then f(t1, t2, ..., tn) is a
term.(iv). All terms are generated by applying the
above rules.

Definition 3 If P is an nth-place predicate symbol,
and t1, t2, . . . , tn are terms,then p(t1, t2, . . . , tn) is
an atom. No other expressions can be atoms.

Definition 4 An occurrence of a variable in a
formula is bound if and only if the occurrence
is within the scope of a quantifier employing the
variable, or is the occurrence in that quantifier. An
occurrence of a variable in a formula is free if and
only if this occurrence of the variable is not bound.

Definition 5 A variable is free in a formula if at
least one occurrence of it is free in the formula.
A variable is bound in a formula if at least one
occurrence of it is bound.

Definition 6 Well-formed formulas, or formulas for
short, in the first-order logic are defined recursively
as follows:(i). An atom is a formula, (ii). If F and G
are formulas then, ∼ (F ) , (F ∨ G) , (F ∧ G) , and
(F ↔ G) are formulas. (iii). If F is a formula and x
is a free variable in F , then (∀x)F and (∃x)F are
formulas. (iv). Formulas are generated only by a
finite number of applications of (i), (ii), and (iii).

Definition 7 An interpretation I of a formula F
in the first-order logic consists of a nonempty
domain D, and an assignment of ”values” to each
constant,function symbol, and predicate symbol
occurring in F as follows: (1). To each constant,
we assign an element in D,(2). To each nth-place
function symbol, we assign a mapping from Dn

to D,(3). To each nth-place predicate symbol, we
assign a mapping from Dn to T ,F , where T means
true and F means false.

Remark 8 Sometimes to emphasize the domain
D, we speak of an interpretation of the formula over
D. When we evaluate the truth value of a formula
in an interpretation over the domain D, (∀x) will be
interpreted as ”for all elements in D,” and (∃x) as
”there is an element in D. For every interpretation
of a formula over a domain D, the formula can
be evaluated to T or F according to the following
rules: (1). If the truth values of formulas G and H
are evaluated, then the truth values of the formulas
∼ (F ), (F ∨ G), (F ∧ G), (F → G), and (F ↔ G)
are evaluated according to the well known formulas
of propositional calculus ([5]. (∀x)G is evaluated to
T if the truth value of G is evaluated to T for every
d ∈ D; otherwise, it is evaluated to F , (3). (∃x)G is
evaluated to T if the truth value of G is T for at least
one d ∈ D; otherwise, it is evaluated to F .We note
that any formula containing free variables cannot
be evaluated.

Definition 9 A formula G is consistent (satisfiable)
if and only if there exists an interpretation I such
that G is evaluated to T in I. If a formula G is T in
an interpretation I, we say that I is a model of G
and I satisfies G.

Computación y Sistemas, Vol. 25, No. 2, 2021, pp. 339–349
doi: 10.13053/CyS-25-2-3936

Zvi Retchkiman Königsberg340

ISSN 2007-9737



Definition 10 A formula G is inconsistent (unsatis-
fiable) if and only if there-exists no interpretation I
that satisfies G.

Definition 11 A formula G is valid if and only if
every interpretation of G satisfies it.

Definition 12 A formula G is a logical implication
of formulas F1, F2, . . . , Fn if and only if for every
interpretation I, if F1, F2, . . . , Fn is true in I, G is
also true in I.

The following characterization of logical implica-
tion plays a very important role as will be shown in
the rest of the paper.

Theorem 13 Given formulas F1, F2, . . . , Fn and a
formula G, G is a logical implication of F1, F2, . . . ,
Fn if and only if the formula ((F1∧F2∧ . . . ,∧Fn)→
G)is valid if and only if the formula (F1 ∧ F2 ∧ . . . ∧
Fn∧ ∼ (G)) is inconsistent.

Definition 14 A formula F in the first-order logic is
said to be in a prenex normal if and only if is in the
form of (Q1x1)(Q2x2) . . . (Qnxn)(M) where every
Qixi, i = 1, 2, . . . , n is either ∀xi or ∃xi, and M is
a formula containing no quantifiers. (Q1x1)(Q2x2)
. . . (Qnxn) is called the prefix and M is called the
matrix of the formula F .

Next, given a formula F , the following procedure
transforms F into a prenex normal form. (1)
Eliminate → and ↔, (2) Move ∼, (3) Rename
variables and (4) Pull quantifiers.(details are
provided in [7]).

Let a formula F be already in a prenex normal
form i.e., (Q1x1) (Q2x2) . . . (Qnxn) (M) ,
where M is in a conjunctive normal form CNF (a
finite conjunction of clauses, see next definition).
Suppose Qi is an existential quantifier in the prefix.
If no universal quantifier appears before Qi, we
choose a new constant c different from other
constants occurring in M , replace all xi appearing
in M by c and delete Qixi from the prefix. If
(Q1x1) (Q2x2) . . . (Qkxk) (1 ≤ k < i) are all
the universal quantifiers appearing before Qixi, we
choose a new k-place function symbol f different
from other function symbols in M , replace all xi
in M by f(x1, x2, . . . , xk) delete Qixi from the

prefix. After the above process is applied to all the
existential quantifiers in the prefix, the last formula
we obtain is called a universal form, or Skolem
standard form, of the formula F . The constants and
functions used to replace the existential variables
are called Skolem functions.

Remark 15 It is important to point out that
universal forms are not unique.

Definition 16 A clause is a finite disjunction of
zero or more literals (atoms or negation of atoms).

When it is convenient, we shall regard a set of
literals as synonymous with a clause. A clause
consisting of r literals is called an r-literal clause.
A one-literal clause is called a unit clause. When
a clause contains no literal, we call it the empty
clause, denoted by �. Since the empty clause has
no literal that can be satisfied by an interpretation,
the empty clause is always false. The importance
of transforming a formula F in to its universal form
results evident, thanks to the next result.

Theorem 17 Let S be a set of clauses that
represents a universal form of a formula F . Then
F is inconsistent if and only if S is inconsistent.

By definition, a set S of clauses is unsatisfiable
if and only if it is false under all interpretations
over all domains. Since it is inconvenient and
impossible to consider all interpretations over all
domains, it would be nice if we could fix on one
special domain H such that S is unsatisfiable if and
only if S is false under all the interpretations over
this domain. Fortunately, there does exist such a
domain, which is called the Herbrand universe of
S, defined as follows.

Definition 18 Let H0 be the set of constants
appearing in S. If no constant appears then, H0

is to consist of a single constant, say H0 = a. For
i = 0, 1, 2, . . . let Hi+1 be the union of Hi, and
the set of all terms of the form f(t1, t2, . . . , tn)
for all n-place functions f occurring in S, where
tj = 1, 2, . . . n are members of the set Hi. Then
each Hi is called the i-level constant set of S, and
H∞, is called the Herbrand universe of S.

Computación y Sistemas, Vol. 25, No. 2, 2021, pp. 339–349
doi: 10.13053/CyS-25-2-3936

Modeling and Verification Analysis of Ecological Systems via a First Order Logic Approach 341

ISSN 2007-9737



Definition 19 Let S be a set of clauses. The set of
ground atoms of the form P (t1, t2, . . . , tn) for all
n-place predicates P occurring in S, where t1, t2,
. . . , tn are elements of the Herbrand universe of S,
is called the atom set, or the Herbrand base of S. A
ground instance of a clause C of a set S of clauses
is a clause obtained by replacing variables in C by
members of the Herbrand universe of S.

We have seen that the problem of logical
implication is reducible to the problem of satisfi-
ability, which in turn is reducible to the problem
of satisfiability of universal sentences. Next,
Herbrand’s theorem is presented, which states that
to test whether a set S of clauses is unsatisfiable,
we need consider only interpretations over the
Herbrand universe of S. This can be used together
with algorithms for unsatisfiability (Davis Putnam
rules discussed in section 3) to develop procedures
for this purpose.

Theorem 20 Let a formula F be already in a
prenex normal form i.e., (Q1x1) (Q2x2) . . . (Qnxn)
(M), where M is in a conjunctive normal form CNF
and contains no quantifiers, i.e., is universal. Let
H∞ be the Herbrand universe of S (with S the set
of clauses that represents the universal form of F ).
Then F is unsatisfiable if and only there is a finite
unsatisfiable set Ś of ground instances of clauses
of S.

Remark 21 Herbrand’s theorem suggests a refu-
tation procedure: that is, given an unsatisfiable
set S of clauses to prove, if there is a mechanical
procedure that can successively generate sub-sets
S1, S2 . . . of ground instances of clauses in S and
can successively test S1, S2 . . . for unsatisfiability,
then, as guaranteed by Herbrand’s theorem, this
procedure can detect a finite n such that Sn is
unsatisfiable, otherwise it will continue forever i.e.,
it is undecidable.

3 Unsatisfiability Methods

3.1 Davis and Putnam Rules [7]

Davis and Putnam introduced a method for testing
the unsatisfiability of a set of ground clauses,
therefore it is immediately applicable to a set

of clauses S considering interpretations over the
Herbrand universe. Their method consists of the
following rules: (1) Delete all the ground clauses
from S that are tautologies. The remaining set Ś
is unsatisfiable if and only if S is, (2) If there is
a unit ground clause L in S, obtain Ś from S by
deleting those ground clauses in S containing L. If
Ś is empty then, S is satisfiable, otherwise obtain a
set ´́

S by deleting ∼ (L) from Ś.
´́
S is unsatisfiable if and only if S is, (3) A literal

L in a ground clause of S is said to be pure in S if
and only if the literal ∼ (L) does not appear in any
ground clause in S. If a literal L is pure in S, delete
all the ground clauses containing L. The remaining
set Ś is unsatisfiable if and only if S is, (4) If the set
S can be written as: (A1 ∨ L) ∧ (A2 ∨ L) . . . (Am ∨
L) ∧ (B1∨ ∼ L) ∧ (B2∨ ∼ L) . . . (Bm∨ ∼ L) ∧ R
where Ai, Bi and R are free of L and ∼ L then,
obtain the sets S1 = A1 ∧ A2 . . . Am ∧ R and S2 =
B1 ∧ B2 . . . Bm ∧ R. S is unsatisfiable if and only if
both, S1 ∪ S2 are.

3.2 The Resolution Principle [2]

The procedure introduced by Davis and Putnam
relies on Herbrand’s theorem which has one major
drawback: It requires the generation of sets
S1, S2 . . . of ground instances of clauses. For most
cases, this sequence grows exponentially. We
shall next introduce the resolution principle due to
Robinson, a more efficient method than Davis and
Putnam procedure. It can be applied directly to any
set S of clauses (not necessarily ground clauses)
to test the unsatisfiability of S.

Resolution is a sound and complete algorithm,
i.e., a formula in clausal form is unsatisfiable if and
only if the algorithm reports that it is unsatisfiable.
Therefore it provides a consistent methodology
free of contradictions. However, it is not a
decision procedure because the algorithm may not
terminate.

Definition 22 A substitution is a finite set of the
form {t1/v1, t2/v2, . . . , tn/vn}, where every vi is a
variable, every ti, is a term different from vi. When
the ti are ground terms, the substitution is called a
ground substitution. The substitution that consists
of no elements is called the empty substitution and
is denoted by ε.

Computación y Sistemas, Vol. 25, No. 2, 2021, pp. 339–349
doi: 10.13053/CyS-25-2-3936

Zvi Retchkiman Königsberg342

ISSN 2007-9737



Definition 23 Let θ = {t1/x1, t2/x2, . . . , tn/xn}
and λ = {u1/y1, u2/y2, . . . , um/ym} be two
substitutions. Then the composition of θ and
λ is the substitution, denoted by θ ◦ λ, that is
obtained from the set {t1λ/x1, t2λ/x2, . . . , tnλ/xn,
u1/y1,u2/y2, . . . ,um/ym} by deleting any element
tjλ/xj for which tjλ = xj , and any element ui/yi
such that yi is among x1,x2, . . . ,xn.

Definition 24 A substitution θ is called a unifier for
a set E1,E2, . . . ,En if and only if E1θ = E2θ =
. . . , Enθ The set {E1, E2, . . . , En} is said to be
unifiable if there is a unifier for it.

Definition 25 A unifier σ for a set E1,E2, . . . ,En of
expressions is a most general unifier if and only if
for each unifier θ for the set there is a substitution
λ such that θ = σ ◦ λ.

Definition 26 If two or more literals (with the same
sign) of a clause C have a most general unifier σ,
then Cσ is called a factor of the clause C. If Cσ is
a unit clause, it is called a unit factor of C.

Definition 27 Let C1 and C2 be two clauses
(called parent clauses) with no variables in
common. Let L1 and L2 be two literals in C1

and C2, respectively. If L1 and ∼ (L2) have a
most general unifier σ, then the clause (C1σ −
L1σ) ∪ (C2σ − L2σ) is called a binary resolvent
of C1 and C2. The literals L1 and L2 are called the
literals resolved upon.

Definition 28 A resolvent of (parent) clauses C1

and C2 is one of the following binary resolvents:
(1) a binary resolvent of C1 and C2, (2) a binary
resolvent of C1 and a factor of C2, (3) a binary
resolvent of a factor of C1 and C2, (4) a binary
resolvent of a factor of C1 and a factor of C2.

Definition 29 Given a set S of clauses, a
deduction of C from S is a finite sequence of
clauses C1, C2, . . . , Cn such that each Ci, either
is a clause in S or a resolvent of clauses preceding
Ci,, and Ck = C. A deduction of � from S is called
a refutation, or a proof of S.

The following result, called lifting lemma, plays
a key role in the proof of the soundness
and completeness theorem for the resolution
procedure.

Lemma 30 If Ć1 and Ć2 are instances of C1 and
C2, respectively, and if Ć is a resolvent of Ć1 and
Ć2 then there is a resolvent C of C1 and C2 such
that Ć is an instance of C.

The main result of this subsection, the
soundness and completeness theorem for the
resolution procedure, is next presented.

Theorem 31 A set S of clauses is unsatisfiable if
and only if there is a deduction of the empty clause
from S.

Theorem 32 The set of unsatisfiable sentences is
undecidable.

4 Predator-Prey System

Consider the interaction of populations, in which
there are exactly two species, one of which the
predators eats the other the preys thereby affecting
each other,s growth rates. Such pairs exist
throughout nature: fish and sharks, lions and
gazelles, birds and insects, to mention some. It
is assumed that, the predator species is totally
dependent on a single prey species as its only food
supply, the prey has unlimited food supply, and
that there is no threat to the pray other than the
specific predator.

The predator-prey system behavior is described
as follows: (1) States: S: preys are safe, D: the
preys are in danger, B: the preys are being eaten,
I: the predators are idle, L: the predators are
in search for a prey, CL: the predators continue
searching for a prey, A: the predators attack a prey,
F : the predator has finished eating the prey, P : the
predator dies; (2) Rules of Inference: (a) if S and L
then CL, (b) if S and CL then P , (c) if D and (L or
CL) then A, (d) if A then B, (e) if B then F (f) if F
then I, (g) if I then L.

Therefore, by associating variables to the states,
we can define the following predicates: S(x) : x is
a safe prey, D(x) : the prey x is in danger, B(x,
y) : the prey x is being eaten by predator y, I(x)
: the predator x is idle, L(x, y) : the predator y
is in search for a prey x, CL(x, y) : the predator
y continues searching for a prey x, A(x, y) : the
predator y attacks prey x, F (x, y) : the predator y

Computación y Sistemas, Vol. 25, No. 2, 2021, pp. 339–349
doi: 10.13053/CyS-25-2-3936

Modeling and Verification Analysis of Ecological Systems via a First Order Logic Approach 343

ISSN 2007-9737



has finished eating prey x, P (x) : the predator x
passed away.

Remark 33 The main idea consists of: the
predator-prey behavior is expressed by a formula
of the first order logic, some query is expressed
as an additional formula. The query is assumed
to be a logical implication of the predator-prey
formula (see theorem 13). Then, transforming this
logical implication relation into a set of clauses by
using the techniques given in section 2, its validity
can be checked. Even more using the resolution
principle, unifications done during the procedure
provide answers to some specific queries. The
domainD of the interpretation will be considered to
be formed by a set of predators and a set of preys.

The formula that models the predator-prey
behavior turns out to be:

[(∀x) (∀y) (S(x) ∧ L(x.y) → CL(x, y) ) ] ∧
[(∀x)(∀y)(S(x)∧CL(x.y)→ P (y))]∧ [(∃x)(∀y)
(D(x) ∧ (L(x, y) ∨ CL(x, y))) → A(x, y)) ] ∧
[(∃x) (∀y) (A(x, y) → B(x, y) ) ] ∧ [(∃x) (∀y)
(B(x, y) → F (x, y) ) ] ∧ [(∃x) (∀y) (F (x, y) →
I(y))] ∧ [(∃x)(∀y)(I(y)→ L(x, y))].

(1)

We are interested in verifying the following
statements:
(S1) Claim: If D and (L or CL) then B. Specifically,
we want to know if there is prey p such that
the following formula is a logical implication of
equation 1: (∃p)(∀q)(D(p)∧ (L(p, q)∨CL(p, q)))→
B(p, q)).

The set of clauses for this case is given by:
S = {(∼ S(x)∨ ∼ L(x.y) ∨ CL(x.y)), (∼ S(x)∨ ∼
CL(x, y)∨P (y)), (∼ D(c1)∨ ∼ L(c1, z)∨A(c1, z), (∼
D(c2)∨ ∼ CL(c2,w) ∨ A(c2, w) ) , (∼ A(c3,u) ∨
B(c3, u) ) , (∼ B(c4, v) ∨ F (c4, v) ) , (∼ F (c5, r) ∨
I(r) ) , (∼ I(s) ∨ L(c6, s) ) , (D(p) ) , (L(p, f(p) ) ∨
CL(p, f(p)), (∼ B(p, f(p)))}.

Then a resolution refutation proof, with its
required substitutions, is as follows:
(a) p = c1, (∼ L(c1, z) ∨ A(c1, z) ) → z = u, c3 =
c1, (∼ L(c1, z) ∨ B(c1, z)) → p = c1, z = f(p), (∼
L(c1, f(p)))→ p = c1, (CL(c1, f(p))).
(b) p = c2, (∼ CL(c2,w) ∨ A(c2,w)) → w = u, c2 =
c3, (∼ CL(c2,w)) ∨ B(c2, w) ) → p = c2, z =
f(p), (∼ CL(c2, f(p)))).

Now, from the last two equations of (a) and (b),
setting c2 = c1, we get a proof of S i.e.

Therefore we can conclude that: we not only
have proved that the claim is true, but we have
computed a value for p, p = c1 = c2 = c3. which tell
us that the same prey that has been attacked, it has
to be the same that is being eaten, and not another
one, otherwise, the refutation procedure fails. This
result is consistent with reality.
(S2) Claim: if D and (L or CL) then I. Specifically,
we want to know if there is prey p such that
the following formula is a logical implication of
equation 1: (∃p)(∀q)(D(p)∧ (L(p, q)∨CL(p, q)))→
I(q)).

The set of clauses for this case is given by: S =
{(∼ S(x)∨ ∼ L(x.y) ∨ CL(x.y) ) , (∼ S(x)∨ ∼
CL(x, y)∨P (y)), (∼ D(c1)∨ ∼ L(c1, z)∨A(c1, z), (∼
D(c2)∨ ∼ CL(c2,w) ∨ A(c2, w) ) , (∼ A(c3,u) ∨
B(c3, u) ) , (∼ B(c4, v) ∨ F (c4, v) ) , (∼ F (c5, r) ∨
I(r) ) , (∼ I(s) ∨ L(c6, s) ) , (D(p) ) , (L(p, f(p) ) ∨
CL(p, f(p)), (∼ I(q))}.

Then a resolution refutation proof, with its
required substitutions, is as follows:
(a) r = q, (∼ F (c5, q)) → c5 = c4, q = v, (∼
B(c4, v)) from (a) of (S1) we know (∼ L(c1, z) ∨
B(c1, z)) therefore c1 = c4, v = z, (∼ L(c1, z)) →
p = c1, z = f(p), (CL(c1, f(p))).
(b) r = q, (∼ F (c5, q)) → c5 = c4, q = v, (∼
B(c4, v)) from (b) of (S2) we know (∼ CL(c2,w)) ∨
B(c2,w)) therefore c2 = c4, v = w, (∼ CL(c2,w)).

Now, from the last two equations of (a) and (b),
setting c2 = c1, w = f(p) , we get a proof of S i.e.
Therefore, the claim holds for p = c1 = c2 = c3 =
c4 = c5, and the same conclusion given in (S1)
extrapolates for this case.

5 The Biology Competition Problem

5.1 The Cooperative Case

Consider the biological cooperative competition
problem among organisms of the same or different
species associated with the need for a common
resource that occurs in a limited supply relative
to demand. In other words, competition better
defined as interaction occurs when the capability
of the environment to supply resources is smaller
than the potential biological requirement so that

Computación y Sistemas, Vol. 25, No. 2, 2021, pp. 339–349
doi: 10.13053/CyS-25-2-3936

Zvi Retchkiman Königsberg344

ISSN 2007-9737



organisms interfere with each other. Plants, for
example, often compete for access to a limited
supply of nutrients, water, sunlight, and space.

Therefore, two species cannot indefinitely
coexist if they are limited by the same resource.
If two competitors try to occupy the same realized
niche, one species will try to eliminate the other
[1]. Therefore, there is a need to cooperate sharing
part of the resource so that both organisms will
benefit from it.

The biological cooperative competition system
behavior is described as follows: (1) States:
S: resources are safe, D: the resources are
in danger, B: the resources are being eaten,
I1, I2: the organisms are inactive, L1, L2: the
organisms are in search for a resource, CL1,CL2:
the organisms continue searching for a resource,
A1, A2: the organisms attack the resource, F1, F2:
the organisms have finished eating the resource,
P1, P2: the organisms die; (2) Rules of Inference:
(a) if S and L1 and L2 then CL1 and CL2, (b) if S
and CL1 and CL2 then P1 and P2, (c) if D and ((L1

or CL1) and not(L2 or CL2)) then A1 and not(A2),
(d) if D and (not(L1 or CL1) and (L2 or CL2)) then
not(A1) and A2, (e) if A1 and not(A2) then B1 and
not(B2),(f) if not(A1) and A2 then not(B1) and B2,
(g) if B1 and not(B2) then F1 and not(F2), (h) if
not(B1) and B2 then not(F1) and F2, (i) if F1 and
not(F2) then I1 and not(I2), (j) if not(F1) and F2

then not(I1) and I2,(k) if I1 and not(I2) then L1 and
not(L2), (l) if not(I1) and I2 then not(L1) and L2.

Remark 34 It important to underline that the
inference rules express the cooperative property
of the biological competition system over the
resource, where one organism takes control over
part of the resource while the other one takes
control over part of the rest. As a result
there is no possible contradiction when two
complementary rules execute at the same time.
This cooperative competitive behavior differs from
the strictly competitive where there exists just
one of the organisms (the winner) who takes
completely control of the resource.

Therefore, by associating variables to the states,
we can define the following predicates i = 1, 2:
S(x): x is a safe resource, D(x): the resource x is

in danger, Bi(x, y) : the resource x is being eaten
by the organisms y, Ii(x) : the organisms x are
inactive, Li(x, y) : the organisms y is in search for
a resource x, CLi(x, y): the organisms y continue
searching for a resource x, Ai(x, y): the organisms
y attack the resource x, Fi(x, y) : the organisms
y have finished eating the resource x, Pi(x) : the
organisms x passed away.

Remark 35 The main idea consists of: the
biological cooperative competition system behavior
is expressed by a formula of the first order logic.
Then, after doing skolemitization i.e., obtaining a
Skolem standard form, some query is expressed
as an additional formula. The query is assumed to
be a logical implication of the biological cooperative
competition formula (see theorem 13). Then,
transforming this logical implication relation into
a set of clauses by using the techniques given
in section 2, its validity can be checked. Even
more using the resolution principle, unifications
done during the procedure provide answers to
some specific queries. The domain D of the
interpretation will be considered to be formed by
the two organisms and the resources.

The formula that models the biological coopera-
tive competition system behavior turns out to be:

[(∀x) (∀y) (S(x) ∧ L1(x.y) ∧ L2(x.y) →
CL1(x, y) ∧ CL2(x.y) ) ] ∧ [(∀x) (∀y) (S(x) ∧
CL1(x.y) ∧ CL2(x.y) → P1(y) ∧
P2(y) ) ] ∧ [(∃x) (∀y) (D(x) ∧ (L1(x, y) ∨
CL1(x, y) ) ∧ ∼ (L2(x, y) ∨ CL2(x, y)) →
A1(x, y) ∧ ∼ A2(x, y)) ] ∧ [(∃x) (∀y) (D(x)
∧ ∼ (L1(x, y)∨CL1(x, y)) ∧ (L2(x, y) ∨
CL2(x, y) ) →∼ A1(x, y) ∧ A2(x, y) ) ] ∧
[(∃x) (∀y) (A1(x, y) ∧ ∼ A2(x, y) →
B1(x, y) ) ∧ ∼ B2(x, y)) ] ∧ [(∃x) (∀y) (∼
A1(x, y) ∧ A2(x, y) →∼ B1(x, y) ∧ B2(x, y))] ∧
[(∃x)(∀y)(B1(x, y)∧ ∼ B2(x, y)→ F1(x, y)∧ ∼
F2(x, y))]∧ [(∃x)(∀y)(∼ B1(x, y)∧B2(x, y)→∼
F1(x, y) ∧ F2(x, y) ) ] ∧ [(∃x) (∀y) (F1(x, y)∧ ∼
F2(x, y) → I1(y) ∧ ∼ I2(y)) ] ∧ [(∃x) (∀y) (∼
F1(x, y) ∧ F2(x, y) →∼ I1(y) ∧ I2(y) ) ] ∧
[(∃x) (∀y) (I1(y) ∧ ∼ I2(y) → L1(x, y) ∧ ∼
L2(x, y)) ] ∧ [(∃x) (∀y) (∼ I1(y) ∧ I2(y) →∼
L1(x, y) ∧ L2(x, y))].

(2)

Computación y Sistemas, Vol. 25, No. 2, 2021, pp. 339–349
doi: 10.13053/CyS-25-2-3936

Modeling and Verification Analysis of Ecological Systems via a First Order Logic Approach 345

ISSN 2007-9737



We are interested in verifying the following
statements:

(S1) Claim: If D and ((L1 or CL1) and not(L2

or CL2)) then B1 and not(B2). Specifically, we
want to know if there is resource m such that
the following formula is a logical implication of
equation 2: (∃m) (∀q) (D(m) ∧ (L1(m, q) ∨
CL1(m, q) ) ∧ ∼ (L2(m, q) ∨ CL2(m, q)) →
B1(m, q) ∧ (∼ B2(m, q)) ) . The set of clauses
for this case is given by: S = {(∼ S(x)∨ ∼
L1(x.y)∨ ∼ L2(x.y) ∨ CL1(x.y) ) , (∼ S(x)∨ ∼
L1(x.y)∨ ∼ L2(x.y) ∨ CL2(x.y) ) , (∼ S(x)∨ ∼
CL1(x, y)∨ ∼ CL2(x, y) ∨ P1(y) ) , (∼ S(x)∨ ∼
CL1(x, y)∨ ∼ CL2(x, y) ∨ P2(y) ) , (∼ D(c1)∨ ∼
L1(c1, z) ∨ L2(c1, z) ∨ CL2(c1, z) ∨ A1(c1, z)) , (∼
D(c1)∨ ∼ L1(c1, z) ∨ L2(c1, z) ∨ CL2(c1, z) ∨ ∼
A2(c1, z)) , (∼ D(c1)∨ ∼ CL1(c1, z) ∨ L2(c1, z) ∨
CL2(c1, z) ∨ A1(c1, z)), (∼ D(c1)∨ ∼ CL1(c1, z) ∨
L2(c1, z) ∨ CL2(c1, z)∨ ∼ A2(c1, z)), (∼ D(c2)∨ ∼
L2(c2, t) ∨ L1(c2, t) ∨ CL1(c2, t)∨ ∼ A1(c2, t)), (∼
D(c2) ∨ L1(c2, t) ∨ ∼ L2(c2, t) ∨ CL1(c2, t) ∨
A2(c2, t) ) , (∼ D(c2) ∨ CL1(c2, t) ∨ L1(c2, t)∨ ∼
CL2(c2, t)∨ ∼ A1(c2, t)) , (∼ D(c2) ∨ CL1(c2, t) ∨
L1(c2, t) ∨ ∼ CL2(c2, t) ∨ A2(c2, t) ) , (∼
A1(c3, s) ∨ A2(c3, s) ∨ B1(c3, s) ) , (∼ A1(c3, s) ∨
A2(c3, s)∨ ∼ B2(c3, s)), (∼ A2(c4, d) ∨A1(c4, d)∨ ∼
B1(c4, d)), (∼ A2(c4, d) ∨ A1(c4, d) ∨ B2(c4, d)), (∼
B1(c5, j) ∨ B2(c5, j) ∨ F1(c5, j) ) , (∼ B1(c5, j) ∨
B2(c5, j)∨ ∼ F2(c5, j)), (∼ B2(c6,h) ∨B1(c6,h)∨ ∼
F1(c6,h)), (∼ B2(c6,h) ∨ B1(c6, h) ∨ F2(c6, h)), (∼
F1(c7, r) ∨ F2(c7, r) ∨ I1(c7) ) , (∼ F1(c7, r) ∨
F2(c7, r)∨ ∼ I2(c7)) , (∼ F2(c8, k) ∨ F1(c8, k)∨ ∼
I1(c8)) , (∼ F2(c8, k) ∨ F1(c8, k) ∨ I2(c8) ) , (∼
I1(w) ∨ I2(w) ∨ L1(c9, w) ) , (∼ I1(w) ∨ I2(w)∨ ∼
L2(c9,w)) , (∼ I2(p) ∨ I1(p) ∨ L1(c10, p) ) , (∼
I2(p) ∨ I1(p) ∨ L2(c10, p)), (D(m)), (L1(m, f(m)) ∨
CL1(m, f(m) ) , (∼ L2(m, f(m))) , (∼
CL2(m, f(m))), (∼ B1(m, f(m)) ∨B2(m, f(m)))}.

Where, due to the cooperation behavior the
following conditions must be imposed: c1 6=
c2, c3 6= c4, c5 6= c6, c7 6= c8, c9 6= c10.

Then a resolution refutation proof, with its
required substitutions, is as follows:

(a) m = c3, s = f(c3) , (∼ A1(c3, f(c3)) ∨ A2(c3,
f(c3) ) ∨ B1(c3, f(c3) ) ) (∼ B1(c3, f(c3)) ∨ B2(c3,
f(c3) ) ) → (∼ A1(c3, f(c3)) ∨ A2(c3, f(c3) ) ∨
B2(c3, f(c3))).

(b) (∼ A1(c3, f(c3)) ∨ A2(c3, f(c3) ) ∨ B2(c3, f(c3)
) ) (∼ A1(c3, s) ∨ A2(c3, s) ∨ ∼ B2(c3, s)) → (∼
A1(c3, f(c3)) ∨A2(c3, f(c3))).

(c) m = c1, s = f(c1) , (∼ D(c1)∨ ∼
CL1(c1, f(c1)) ∨ L2(c1, f(c1)) ∨ CL2(c1, f(c1))∨ ∼
A2(c1, f(c1))) (D(c1) ) (∼ L2(c1, f(c1))) (∼
CL2(c1, f(c1))) → (∼ CL1(c1, f(c1))∨ ∼
A2(c1, f(c1))).

(d) (m = c1, s = f(c1), (∼ D(c1)∨ ∼ L1(c1, f(c1)) ∨
L2(c1, f(c1) ) ∨ CL2(c1, f(c1) )∨ ∼ A2(c1, f(c1)))
(D(m) ) (∼ L2(c1, f(c1))) (∼ CL2(c1, f(c1))) → (∼
L1(c1, f(c1))∨ ∼ A2(c1, f(c1))).

(e) (m = c1) (∼ L1(c1, f(c1))∨ ∼ A2(c1, f(c1)))
(L1(c1, f(c1) ) ∨ CL1(c1, f(c1) ) →
CL1(c1, f(c1))∨ ∼ A2(c1, f(c1))).

(f) (∼ CL1(c1, f(c1))∨ ∼ A2(c1, f(c1))) (CL1(c1,
f(c1))∨ ∼ A2(c1, f(c1)))→ (∼ A2(c1, f(c1))).

(g) m = c1, s = f(c1) , (∼ D(c1)∨ ∼
CL1(c1, f(c1)) ∨ L2(c1, f(c1) ) ∨ CL2(c1, f(c1) ) ∨
A1(c1, f(c1) ) ) (D(m) ) (∼ L2(c1, f(c1))) (∼
CL2(c1, f(c1))) → (∼ CL1(c1, f(c1)) ∨
A1(c1, f(c1))).

(h) m = c1, s = f(c1), (∼ D(c1)∨ ∼ L1(c1, f(c1)) ∨
L2(c1, f(c1) ) ∨ CL2(c1, f(c1) ) ∨ A1(c1, f(c1) ) )
(D(m) ) (∼ L2(c1, f(c1))) (∼ CL2(c1, f(c1))) → (∼
L1(c1, f(c1)) ∨A1(c1, f(c1))).

(i) (∼ L1(c1, f(c1)) ∨ A1(c1, f(c1)))(L1(c1, f(c1)) ∨
CL1(c1, f(c1))→ (CL1(c1, f(c1) ∨A1(c1, f(c1))).

(j) (∼ CL1(c1, f(c1)) ∨ A1(c1, f(c1)))(CL1(c1, f(c1)
∨A1(c1, f(c1)))→ (A1(c1, f(c1)).

Now, from (b) and (j) setting c1 = c3, we get:

(k) (∼ A1(c1, f(c1)) ∨ A2(c1, f(c1)))(A1(c1, f(c1))
→ (A2(c1, f(c1)).

Therefore, from the conclusion of (f) and (k), we
get a proof of S i.e.

Therefore we can conclude that: we not only
have proved that the claim is valid, but we have
computed a value for m, m = c1 = c3, which
tell us that the same resource that has been
attacked, it has to be the same that is being eaten,
and not another one, otherwise, the refutation
procedure fails.

Computación y Sistemas, Vol. 25, No. 2, 2021, pp. 339–349
doi: 10.13053/CyS-25-2-3936

Zvi Retchkiman Königsberg346

ISSN 2007-9737



Remark 36 It is also true that the claim: If D
and not(L1 or CL1) and (L2 or CL2) then not(B1)
and B2 i.e., that the following formula is a logical
implication of equation 2: (∃w) (∀χ) (D(w) ∧ ∼
(L1(w,χ) ∨ CL1(w,χ)) ∧ (L2(w, χ) ∨ CL2(w, χ)
) → (∼ B1(w,χ)) ∧ B2(w, χ) ) , getting w = c2 =
c4, The proof follows the same steps as the one
provided, just changing names.

(S2) Claim: If D and ((L1 or CL1) and not(L2

or CL2)) then B1 and not(B2) and If D and
not(L1 or CL1) and (L2 or CL2) then not(B1)
and B2. Specifically, we want to show that the
cooperative behavior of the organisms over the
resource holds. Therefore, we want to prove
that there exist m and w m 6= w such that
the following formula is a logical implication of
equation 2: (∃m) (∀q) (D(m) ∧ (L1(m, q) ∨
CL1(m, q) ) ∧ ∼ (L2(m, q) ∨ CL2(m, q)) →
B1(m, q) ∧ (∼ B2(m, q))) ∧ (∃w) (∀χ) (D(w) ∧ ∼
(L1(w,χ) ∨ CL1(w,χ)) ∧ (L2(w, χ) ∨ CL2(w, χ) )
→ (∼ B1(w,χ)) ∧B2(w,χ)).

The set of clauses for this case is given by: S =
{(∼ S(x)∨ ∼ L1(x.y)∨ ∼ L2(x.y) ∨ CL1(x.y)), (∼
S(x)∨ ∼ L1(x.y)∨ ∼ L2(x.y) ∨ CL2(x.y) ) , (∼
S(x)∨ ∼ CL1(x, y)∨ ∼ CL2(x, y) ∨ P1(y) ) , (∼
S(x)∨ ∼ CL1(x, y)∨ ∼ CL2(x, y) ∨ P2(y) ) , (∼
D(c1)∨ ∼ L1(c1, z)∨L2(c1, z)∨CL2(c1, z)∨A1(c1,
z)), (∼ D(c1)∨ ∼ L1(c1, z) ∨ L2(c1, z) ∨ CL2(c1, z)
∨ ∼ A2(c1, z)), (∼ D(c1)∨ ∼ CL1(c1, z)∨L2(c1, z)∨
CL2(c1, z) ∨ A1(c1, z)), (∼ D(c1)∨ ∼ CL1(c1, z) ∨
L2(c1, z) ∨ CL2(c1, z)∨ ∼ A2(c1, z)), (∼ D(c2)∨ ∼
L2(c2, t) ∨ L1(c2, t) ∨ CL1(c2, t) ∨ ∼ A1(c2, t)) ,
(∼ D(c2) ∨ L1(c2, t) ∨ ∼ L2(c2, t) ∨ CL1(c2, t) ∨
A2(c2, t) ) , (∼ D(c2) ∨ CL1(c2, t) ∨ L1(c2, t)∨ ∼
CL2(c2, t)∨ ∼ A1(c2, t)) , (∼ D(c2) ∨ CL1(c2, t) ∨
L1(c2, t)∨ ∼ CL2(c2, t) ∨ A2(c2, t)), (∼ A1(c3, s) ∨
A2(c3, s) ∨ B1(c3, s)), (∼ A1(c3, s) ∨ A2(c3, s)∨ ∼
B2(c3, s)), (∼ A2(c4, d)∨A1(c4, d)∨ ∼ B1(c4, d)), (∼
A2(c4, d) ∨ A1(c4, d) ∨ B2(c4, d) ) , (∼ B1(c5, j) ∨
B2(c5, j) ∨ F1(c5, j)), (∼ B1(c5, j) ∨ B2(c5, j)∨ ∼
F2(c5, j)), (∼ B2(c6,h)∨B1(c6,h)∨ ∼ F1(c6,h)), (∼
B2(c6,h) ∨ B1(c6, h) ∨ F2(c6, h) ) , (∼ F1(c7, r) ∨
F2(c7, r) ∨ I1(c7) ) , (∼ F1(c7, r) ∨ F2(c7, r) ∨ ∼
I2(c7)) , (∼ F2(c8, k) ∨ F1(c8, k) ∨ ∼ I1(c8)) , (∼
F2(c8, k) ∨ F1(c8, k) ∨ I2(c8)) , (∼ I1(w) ∨ I2(w) ∨
L1(c9, w) ) , (∼ I1(w) ∨ I2(w) ∨ ∼ L2(c9,w)) , (∼
I2(p) ∨ I1(p) ∨ L1(c10, p) ) , (∼ I2(p) ∨ I1(p) ∨

L2(c10, p) ) , (D(m) ) , (L1(m, f(m) ) ∨ CL1(m,
f(m) ) , (∼ L2(m, f(m))) , (∼ CL2(m, f(m))) , (∼
B1(m, f(m)) ∨ B2(m, f(m) ) ) , (D(w) ) , (L2(w,
f(w) ) ∨ CL2(w, f(w) ) , (∼ L1(w, f(w))) , (∼
CL1(w, f(w))), (∼ B2(w, f(w)) ∨B1(w, f(w))}.

Where, due to the cooperative behavior the
following conditions must be imposed: c1 6=
c2, c3 6= c4, c5 6= c6, c7 6= c8, c9 6= c10.

Corollary 37 The proof follows from what was
discussed in claim (S1) getting: m = c1 = c3, and
w = c2 = c4, and since c1 6= c2 and c3 6= c4 i.e.,
m 6= w claim (S2) results to be valid.

5.2 The Non Cooperative Case

Consider the biological competition problem
among organisms in the case when one of the
two species is stronger than the other, and as
a consequence there is no need to cooperate
and the strongest species finishes imposing its
conditions.

The system behavior is described as follows: (1)
States: S: resources are safe, D: the resources
are in danger, B: the resources are being eaten,
I1, I2: the organisms are inactive, L1, L2: the
organisms are in search for a resource, CL1,CL2:
the organisms continue searching for a resource,
A1, A2: the organisms attack the resource, F1, F2:
the organisms have finished eating the resource,
P1, P2: the organisms die; (2) Rules of Inference:
(a) if S and L1 and L2 then CL1 and CL2, (b) if S
and CL1 and CL2 then P1 and P2, (c) if D and (L1

or CL1) then A1 and not(A2), (d) if D and (not(L1

or CL1) and (L2 or CL2)) then not(A1) and A2, (e)
if A1 then B1 and not(B2),(f) if not(A1) and A2 then
not(B1) and B2, (g) if B1 then F1 and not(F2), (h)
if not(B1) and B2 then not(F1) and F2, (i) if F1 then
I1 and not(I2), (j) if not(F1) and F2 then not(I1) and
I2,(k) if I1 then L1 and not(L2), (l) if not(I1) and I2
then not(L1) and L2.

Remark 38 It important to underline that the
inference rules express the non cooperative
property of the biological competition system over
the resource, where one organism takes complete
control over the resource while the other one
gives up.

Computación y Sistemas, Vol. 25, No. 2, 2021, pp. 339–349
doi: 10.13053/CyS-25-2-3936

Modeling and Verification Analysis of Ecological Systems via a First Order Logic Approach 347

ISSN 2007-9737



Therefore, by associating variables to the states,
we can define the following predicates i = 1, 2:
S(x): x is a safe resource, D(x): the resource x is
in danger, Bi(x, y) : the resource x is being eaten
by the organisms y, Ii(x) : the organisms x are
inactive, Li(x, y) : the organisms y is in search for
a resource x, CLi(x, y): the organisms y continue
searching for a resource x, Ai(x, y): the organisms
y attack the resource x, Fi(x, y) : the organisms
y have finished eating the resource x, Pi(x) : the
organisms x passed away.

The formula that models the biological non
cooperative competition system behavior turns out
to be:

[(∀x) (∀y) (S(x) ∧ L1(x.y) ∧ L2(x.y) →
CL1(x, y) ∧ CL2(x.y) ) ] ∧ [(∀x) (∀y) (S(x) ∧
CL1(x.y) ∧ CL2(x.y) → P1(y) ∧ P2(y) ) ] ∧
[(∃x) (∀y) (D(x) ∧ (L1(x, y) ∨ CL1(x, y) ) →
A1(x, y)∧ ∼ A2(x, y)) ] ∧ [(∃x) (∀y) (D(x)∧ ∼
(L1(x, y) ∨ CL1(x, y)) ∧ (L2(x, y) ∨
CL2(x, y) ) →∼ A1(x, y) ∧ A2(x, y) ) ] ∧
[(∃x)(∀y)(A1(x, y)→ B1(x, y))∧ ∼ B2(x, y))] ∧
[(∃x)(∀y)(∼ A1(x, y) ∧ A2(x, y) →∼ B1(x, y) ∧
B2(x, y))] ∧ [(∃x)(∀y)(B1(x, y) → F1(x, y)∧ ∼
F2(x, y))]∧ [(∃x)(∀y)(∼ B1(x, y)∧B2(x, y)→∼
F1(x, y) ∧ F2(x, y) ) ] ∧ [(∃x) (∀y) (F1(x, y) →
I1(y) ∧ ∼ I2(y)) ] ∧ [(∃x) (∀y) (∼ F1(x, y) ∧
F2(x, y)→∼ I1(y)∧I2(y))]∧ [(∃x)(∀y)(I1(y)→
L1(x, y) ∧ ∼ L2(x, y)) ] ∧ [(∃x) (∀y) (∼
I1(y) ∧ I2(y)→∼ L1(x, y) ∧ L2(x, y))].

(3)

We are interested in verifying the following
statements:
(S1) Claim: If D and ((L1 or CL1) and (L2

or CL2)) then B1 and not(B2). Specifically, we
want to know if there is resource m such that
the following formula is a logical implication of
equation 3: (∃m) (∀q) (D(m) ∧ (L1(m, q) ∨
CL1(m, q) ) ∧ (L2(m, q) ∨ CL2(m, q) ) →
B1(m, q) ∧ (∼ B2(m, q))).

The set of clauses for this case is given by: S =
{(∼ S(x)∨ ∼ L1(x.y)∨ ∼ L2(x.y) ∨ CL1(x.y)), (∼
S(x)∨ ∼ L1(x.y)∨ ∼ L2(x.y) ∨ CL2(x.y) ) , (∼
S(x)∨ ∼ CL1(x, y)∨ ∼ CL2(x, y) ∨ P1(y) ) , (∼
S(x)∨ ∼ CL1(x, y)∨ ∼ CL2(x, y) ∨ P2(y) ) , (∼
D(c1)∨ ∼ L1(c1, z) ∨ A1(c1, z)∨ ∼ CL1(c1, z)), (∼
D(c1)∨ ∼ L1(c1, z)∨ ∼ CL1(c1, z)∨ ∼ A2(c1, z)) ,
(∼ D(c2)∨ ∼ L2(c2, t) ∨ L1(c2, t) ∨ CL1(c2, t)∨ ∼

A1(c2, t)) , (∼ D(c2) ∨ L1(c2, t) ∨ ∼ L2(c2, t) ∨
CL1(c2, t) ∨ A2(c2, t) ) , (∼ D(c2) ∨ CL1(c2, t) ∨
L1(c2, t)∨ ∼ CL2(c2, t)∨ ∼ A1(c2, t)) , (∼ D(c2) ∨
CL1(c2, t) ∨ L1(c2, t)∨ ∼ CL2(c2, t) ∨A2(c2, t)), (∼
A1(c3, s)∨B1(c3, s)), (∼ A1(c3, s)∨ ∼ B2(c3, s)), (∼
A2(c4, d) ∨ A1(c4, d)∨ ∼ B1(c4, d)), (∼ A2(c4, d) ∨
A1(c4, d) ∨ B2(c4, d)), (∼ B1(c5, j) ∨ F1(c5, j)), (∼
B1(c5, j)∨ ∼ F2(c5, j)), (∼ B2(c6,h) ∨B1(c6,h)∨ ∼
F1(c6,h)), (∼ B2(c6,h) ∨ B1(c6, h) ∨ F2(c6, h)), (∼
F1(c7, r) ∨ I1(c7) ) , (∼ F1(c7, r)∨ ∼ I2(c7)) , (∼
F2(c8, k)∨F1(c8, k)∨ ∼ I1(c8)), (∼ F2(c8, k)∨F1(c8,
k) ∨ I2(c8) ) , (∼ I1(w) ∨ L1(c9, w) ) , (∼ I1(w)∨ ∼
L2(c9,w)) , (∼ I2(p) ∨ I1(p) ∨ L1(c10, p) ) , (∼
I2(p) ∨ I1(p) ∨ L2(c10, p)), (D(m)), (L1(m, f(m)) ∨
CL1(m, f(m)), (L2(m, f(m)) ∨ CL2(m, f(m)), (∼
B1(m, f(m)) ∨B2(m, f(m)))}.

Then a resolution refutation proof, with its
required substitutions, is as follows:
(a) m = c3, s = f(c3) , (∼ A1(c3, f(c3)) ∨ B1(c3,
f(c3) ) ) (∼ B1(c3, f(c3)) ∨ B2(c3, f(c3) ) ) → (∼
A1(c3, f(c3)) ∨ B2(c3, f(c3) ) ) , (∼ A1(c3, f(c3)) ∨
B2(c3, f(c3) ) ) (∼ A1(c3, f(c3))∨ ∼ B2(c3, f(c3)))
→∼ A1(c3, f(c3)).

(b) m = c1, z = f(c1)(∼ D(c1)∨ ∼ L1(c1, f(c1)) ∨
A1(c1, f(c1))∨ ∼ CL1(c1, f(c1))) ((D(c1)), (L1(c1,
f(c1)) ∨ CL1(c1, f(c1)))→ A1(c1, f(c1)).

(c) Now, from the conclusions of (a) and (b) setting
c1 = c3, the validity of (S1) follows: (A1(c1f(c1)))(∼
A1(c1, f(c1)))→.
(S2) Claim: If D and ((L1 or CL1) and (L2

or CL2)) then F1 and not(F2). Specifically, we
want to know if there is resource m such that
the following formula is a logical implication of
equation 3: (∃m) (∀q) (D(m) ∧ (L1(m, q) ∨
CL1(m, q))∧(L2(m, q)∨CL2(m, q))→ F1(m, q)∧(∼
F2(m, q))).

The set of clauses for this case is given by: S =
{(∼ S(x)∨ ∼ L1(x.y)∨ ∼ L2(x.y) ∨ CL1(x.y)), (∼
S(x)∨ ∼ L1(x.y)∨ ∼ L2(x.y) ∨ CL2(x.y) ) , (∼
S(x)∨ ∼ CL1(x, y)∨ ∼ CL2(x, y) ∨ P1(y) ) , (∼
S(x)∨ ∼ CL1(x, y)∨ ∼ CL2(x, y) ∨ P2(y) ) , (∼
D(c1)∨ ∼ L1(c1, z) ∨ A1(c1, z)∨ ∼ CL1(c1, z)), (∼
D(c1)∨ ∼ L1(c1, z)∨ ∼ CL1(c1, z)∨ ∼ A2(c1, z)) ,
(∼ D(c2)∨ ∼ L2(c2, t) ∨ L1(c2, t) ∨ CL1(c2, t)∨ ∼
A1(c2, t)) , (∼ D(c2) ∨ L1(c2, t) ∨ ∼ L2(c2, t) ∨
CL1(c2, t) ∨ A2(c2, t) ) , (∼ D(c2) ∨ CL1(c2, t) ∨
L1(c2, t)∨ ∼ CL2(c2, t)∨ ∼ A1(c2, t)) , (∼ D(c2) ∨
CL1(c2, t) ∨ L1(c2, t)∨ ∼ CL2(c2, t) ∨A2(c2, t)), (∼

Computación y Sistemas, Vol. 25, No. 2, 2021, pp. 339–349
doi: 10.13053/CyS-25-2-3936

Zvi Retchkiman Königsberg348

ISSN 2007-9737



A1(c3, s)∨B1(c3, s)), (∼ A1(c3, s)∨ ∼ B2(c3, s)), (∼
A2(c4, d) ∨ A1(c4, d)∨ ∼ B1(c4, d)), (∼ A2(c4, d) ∨
A1(c4, d) ∨ B2(c4, d)), (∼ B1(c5, j) ∨ F1(c5, j)), (∼
B1(c5, j)∨ ∼ F2(c5, j)), (∼ B2(c6,h) ∨B1(c6,h)∨ ∼
F1(c6,h)), (∼ B2(c6,h) ∨ B1(c6, h) ∨ F2(c6, h)), (∼
F1(c7, r) ∨ I1(c7) ) , (∼ F1(c7, r)∨ ∼ I2(c7)) , (∼
F2(c8, k)∨F1(c8, k)∨ ∼ I1(c8)), (∼ F2(c8, k)∨F1(c8,
k) ∨ I2(c8) ) , (∼ I1(w) ∨ L1(c9, w) ) , (∼ I1(w)∨ ∼
L2(c9,w)) , (∼ I2(p) ∨ I1(p) ∨ L1(c10, p) ) , (∼
I2(p) ∨ I1(p) ∨ L2(c10, p)), (D(m)), (L1(m, f(m)) ∨
CL1(m, f(m)), (L2(m, f(m)) ∨ CL2(m, f(m)), (∼
F1(m, f(m)) ∨ F2(m, f(m)))}.

Then a resolution refutation proof, with its
required substitutions, is as follows:
(a) m = c3, s = f(c3) (∼ B1(c3, f(c3)) ∨
F1(c3, f(c3)))(∼ F1(c3, f(c3))∨F2(c3, f(c3)))→ (∼
B1(c3, f(c3)) ∨ F2(c3, f(c3) ) ) , (∼
B1(c3, f(c3)) ∨ F2(c3, f(c3) ) ) (∼ B1(c3, f(c3))∨ ∼
F2(c3, f(c3))) →∼ B1(c3, f(c3)), (∼ B1(c3, f(c3)))
(∼ A1(c3, f(c3)) ∨B1(c3, f(c3)))→∼ A1(c3, f(c3)).

(b) The rest of the proof follows straightforwardly
from step (b) and (c) of (S1).

6 Conclusions

The main contribution of the paper consists in the
study of Ecological systems by means of a formal
reasoning deductive methodology based on first
order logic theory. The Predator-Prey system as
well as the Biological competition system, were

considered. Cooperative and non cooperative
cases were addressed. Verification (validity) as
well as performance issues, for some queries
were proved.

References

1. Gause, G.F. (1934). The struggle for existence.
Baltimore: Williams and Wilkins.

2. Robinson, J.A. (1965). A machine-oriented logic
based on the resolution principle. Journal of the ACM,
Vol. 12, No. 1. DOI: 10.1145/321250.321253.

3. Weibull, J.W. (1977). Evolutionary game theory. The
MIT press.

4. Haberman, R. (1977). Mathematical models in
mechanical vibrations, population dynamics, and
traffic flow. Prentice Hall.

5. Chin-Liang Chang, Richard Char-Tung Lee (1973).
Symbolic logic and mechanical theorem proving.
Academic Press.

6. Ben Ari, M. (2012). Mathematical logic for computer
science. Spinger Verlag.

7. Davis, M., Sigal, R., Weyuker, E. (1983). Com-
putability, complexity, and languages. Fundamentals
of theoretical computer science. Academic Press.

Article received on 20/08/2019; accepted on 05/02/2020.
Corresponding author is Zvi Retchkiman Königsberg.

Computación y Sistemas, Vol. 25, No. 2, 2021, pp. 339–349
doi: 10.13053/CyS-25-2-3936

Modeling and Verification Analysis of Ecological Systems via a First Order Logic Approach 349

ISSN 2007-9737


