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Abstract. Gastric cancer has positioned itself among
the leading causes of cancer death worldwide. Most
of these tumors are gastric adenocarcinomas, which
originate in the gastric mucosa from a chronic infection
linked to H. Pylori bacterium. Traditional treatments are
not entirely effective, however, there are high expecta-
tions of using the immunotherapies for gastric cancer
treatment. Nevertheless, knowledge of the mechanisms
of tumor evolution and their interactions with the immune
system is limited. For this reason, we present a quali-
tative mathematical model of first-order Ordinary Differ-
ential Equations (ODEs), which describes some survival
mechanisms of intestinal-type gastric adenocarcinoma
and its interaction with the immune system, assuming
that H. Pylori and cellular cannibalism influence the tu-
mor growth. We study the local and global dynamics
of the model and propose sufficient conditions in an
immunotherapy treatment parameter to eradicate gastric
cancer. Finally, we perform numerical simulations and
discuss the biological implications of our results.

Keywords. Mathematical modelling, gastric adenocar-
cinoma, adoptive cellular immunotherapy, localizing do-
main, global stability.

1 Introduction

Currently, cancer-related rates of incidence, preva-
lence, and mortality at global level have increased
considerably, the latter represents a problem for
every health system. According to the incidence
and mortality statistics from GLOBOCAN in 2020,
approximately 19.3 million diagnoses and 9.9 mil-
lion deaths were attributed to cancer [35]. Further-
more, according to statistics from the International
Agency for Research on Cancer (IARC) [13], lung,

colorectum, liver, stomach, and breast cancers
were associated with the highest deaths that year.

The high percentage of detection in advanced or
metastatic stages is one of the main factors that
influence the survival of many types of cancer, as
in the case of gastric cancer, which has one of the
highest mortality rates worldwide [13].

Gastric cancer, often known as stomach cancer,
is the third most common cause of cancer death
[2, 13], the survival of affected patients rarely ex-
ceeds 12 months [33]. The highest incidence and
mortality from gastric cancer occurs in developing
countries that are part of Central and South Amer-
ica, as well as developed countries in East Asia,
and Central and Eastern Europe [2].

The vast majority of malignant tumors of the
stomach are adenocarcinomas produced in gastric
epithelia where there is an uncontrolled prolifera-
tion of epithelial cells. Histologically, adenocarcino-
mas are classified into intestinal and diffuse types
[2]. Intestinal type of gastric adenocarcinoma is
the most usual in countries with a high incidence of
gastric cancer [2]. The most common cause for the
formation of this tumor is associated with a chronic
bacterial infection of the gastric epithelium linked
with Helicobacter Pylori (H. Pylori) [2, 37].

H. Pylori is a bacterium known for its associ-
ation with chronic gastritis, peptic ulcers and the
tumorigenesis of gastric adenocarcinomas [37]. It
has been theorized that H. Pylori infection affects
gastric epithelial cells, causing them to mutate and
proliferate uncontrollably [5, 37]. H. Pylori success-
fully performs a persistent bacterial infection de-
spite the presence of a rigorous immune response
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that generally favors its colonization. Prolonged
exposure to this bacterium can cause glandular
atrophy or metaplasia, greatly increasing the risk
of gastric cancer [37]. However, the action-specific
mechanism of this bacterium in the tumor remains
unclear [25].

Traditional gastric cancer treatments, such as
surgery, radiotherapy, and chemotherapy are not
entirely effective [2] and their results are not very
encouraging during the metastatic phase. Another
novel strategy is immunotherapy, which has been
applied effectively and safely in patients with other
types of tumors, generating significant interest for
its application to treat gastric cancer [38]. Concern-
ing the current types of immunotherapies, Adoptive
Cellular Immunotherapy (ACI) is one of the most
effective for the treatment of malignant tumors.
This therapy works by injecting modified T cells
at the tumor site, whose purpose is to stimulate
an immune response. The modified T cells have
the same impact as regular T cells in combating
the immune evasion and suppression of gastric
cancer cells. However, research is still needed to
determine the best mode of treatment due to lim-
ited knowledge of the interactions between tumor
evolution and the immune system [24, 38].

Cancer research is focused to some extent on
tumor survival mechanisms such as immune eva-
sion and suppression, angiogenesis, metastasis,
and recently, cannibalism [3, 11, 27]. These mech-
anisms make cancer biology a complex process to
understand. This is demonstrated in the problems
surrounding laboratory tests and clinical trials for
this disease [24, 30, 39]. Nonetheless, it has been
shown that the application of biomathematics in
oncology provides scientists and doctors a pow-
erful tool that enables them to determine useful
information on tumor growth and its response to
diverse treatments [10]. Hence, assumptions are
established to simplify the complexity of cancer
and mathematical models may be formulated to
achieve a qualitative view of this disease.

The tumor growth and its interaction with the im-
mune system can be interpreted using a system of
first-order ODEs and, through mathematical anal-
ysis and in silico experimentations, predictions are
performed at different stages of cancer evolution as
well as the response to treatments that would be

difficult to reproduce in a real-life scenarios [10].
Many mathematical models of tumor growth are
formulated from empirical data and clinical results,
in order to fit the model to experimental data and
obtain an adequate estimation for the parameters
involved. Some examples of these types of models
are [8, 21, 22]. Other models have been proposed
without using empirical data, in order to capture
the cancer complexity through the application of
dynamical systems theory, chaos theory, control
theory and game theory, among other approaches
[10, 39]. Some examples of these models are
[4, 9, 14, 23]. In general, the importance of these
cancer models lies in studying the qualitative dy-
namics of tumor growth, analyze the critical param-
eters through a sensitivity and bifurcation analysis,
and exploring numerous scenarios such as drug
dosing and combination of treatments [8, 39].

In virtue of the application of biomathematics to
investigate tumor-immune dynamics, the focus of
our work is to analyze mathematically, the long-
term dynamics of intestinal-type gastric adenocar-
cinoma and its interaction with the immune sys-
tem under ACI treatment. Although, literature on
mathematical models that generally describe these
interactions is limited, we propose a mathemati-
cal model composed of three nonlinear first-order
ODEs, capable of reflecting tumor response when
considering an immunotherapy treatment applica-
tion. The model consists of three types of cell
populations: gastric adenocarcinoma cells (gastric
cancer cells), antigen-presenting cells (dendritic
cells), and effector cells of the adaptive immune
response (T cells). Furthermore, we cover interest-
ing aspects such as cell cannibalism and the pro-
longed presence of H. Pylori that could stimulate
tumor growth and survival beyond its initial carrying
capacity. The model was designed based on set of
assumptions describing tumor-immune dynamics
and treatment application. In order to study the
qualitative properties of our model, we analyzed
its global dynamics by appliying the Localization of
Compact Invariant Sets (LCIS) method [18, 19, 34]
and stability theories such as the direct Lyapunov
method and the LaSalle's invariance principle [16].
This approach allows us to establish sufficient con-
ditions on the ACI treatment to eliminate the gastric
cancer cell population. We expect our work to
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be helpful in better understanding the dynamics
of gastric cancer and the effect of immunotherapy
on its long-time evolution, which could lead to the
design of personalized strategies for treatment ad-
ministration.

The remainder of this paper proceeds as fol-
lows. In section 2 we show the assumptions for
the model formulation and describe each equa-
tion. In section 3, we analyze the stability of some
equilibrium points. In section 4 we provide the
mathematical preliminaries on the LCIS method
and compute the bounds of the so-called localizing
domain. In section 5, we establish conditions for
the elimination of gastric cancer cell population
with the imunotherapy treatment. In section 6, we
illustrate the results of our analysis by performing
numerical simulations and discuss the biological
implications. Finally, the conclusions of our results
are given in section 7.

2 Mathematical Model

The limited efficacy of gastric cancer treatments
has promoted research for new strategies across
different areas of science and engineering. Due to
the usefulness of the biomathematics to modelling
and analyzing oncological dynamics, we decided to
propose a qualitative mathematical model in order
to investigate the response of intestinal-type gas-
tric adenocarcinoma to ACI treatment. In this way,
we expect to provide useful information concerning
gastric cancer evolution and the effects of the ACI
treatment. It should be noted that the model takes
place on a cellular scale and it was formulated to
describe some survival mechanisms in the gastric
adenocarcinoma growth. In order to construct our
model, assumptions are established which we ex-
plain in detail in the following subsection, as well
as the description of each equation and all param-
eters.

2.1 Biological Assumptions

The biological assumptions made are based on
literature concerning gastric cancer biology, tumor
immunology and mathematical oncology. The as-
sumptions are as follows:

1. In the absence of an immune response and a
proper treatment, the gastric adenocarcinoma
grows logistically, as this is the most accepted
growth law to describe a solid tumor [10].

2. There is evidence in [3, 11] to support the
statement that gastric cancer cells cannibalize
neutrophils. Further, in other tumor types,
malignant cells have also been shown to can-
nibalize other effector cells such as cytotoxic
T cells [11, 27]. Therefore, cannibalism is
considered as a mechanism to suppress the
immune response.

3. There is an abnormal proliferation of gastric
epithelial cells due to the presence of bac-
terium H. Pylori, which may contribute to the
formation of gastric adenocarcinoma [5, 37].
Hence, we assume H. Pylori stimulates the
proliferation of gastric cancer cells [5, 25].

4. The main antigen-presenting cells, Dendritic
Cells (DCs), remain in a homeostatic state.
Nonetheless, these cells become activated
through stimulation of their cellular receptors
by identifying tumor antigens of gastric cancer
cells [36]. We assume that the population
of DCs grows logistically in response to the
cancer cell presence. The latter allows us
to consider a maximum carrying capacity for
these population.

5. The mature DCs die by apoptosis after pre-
senting tumor antigens to the T cells [36].

6. T cells are activated and are capable of elim-
inating gastric cancer cells by interacting with
them. We describe this process by the law of
mass action.

7. There is natural death of T cells. Furthermore,
such cells are eventually inactivated after a
certain number of encounters with gastric can-
cer cells [10, 24, 36].

8. The total tumor cells population eliminated by
ACI treatment is a factor of the number of T
cells supplied which we represent as a treat-
ment parameter.
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2.1.1 Model Equations

Under the assumptions above, the model that
describes the interactions between the immune
system and gastric cancer cells is represented
by the following system of three nonlinear first-
order ODEs:

ẋ = αxx(1− βxx) + ηxx+ δxxz − γxxz, (1)
ẏ = αyy(1− βyy) + δyxy − γyyz, (2)
ż = δzyz − γzxz − µzz + αz, (3)

where the amount of cells populations over time
t are denoted by x(t) as the gastric cancer cell
population, y(t) as the DCs population, and z(t)
as the T cells population. This set of equations has
the general initial conditions x(0) = x0, y(0) = y0
and z(0) = z0. It should be noted that the dynamics
of the system is located in the nonnegative orthant
defined by:

R3
+,0 = {x(t) ≥ 0, y(t) ≥ 0, z(t) ≥ 0} , (4)

under the positivity property for dynamical systems
established by De Leenheer et al. [7]. The pos-
itivity of the system implies that, given the initial
nonnegative conditions, all solutions to Eqs. (1)-(3)
will be forward positively invariant in R3

+,0.
Equation (1) describes the rate of change of

the gastric cancer cell population, where the first
term represents the logistic growth of x(t) in which
1/βx is the maximum carrying capacity. The term
ηxx symbolizes the increase of gastric cancer cells
by stimulation of an H. Pylori population attached
to the infected mucosa. We emphasize that the
mechanisms involved in colonization of the gastric
mucosa by H. Pylori are not examined in this work,
but an interesting example can be found in [17].
The third term δxxz represents T cell cannibalism
by gastric cancer cells, which benefits tumor sur-
vival. Finally, gastric cancer cells death due to an
immune response by T cells is considered through
the law of mass action by the term γxxz.

Equation (2) describes the rate of change of
the DCs population and is mainly governed by a
logistic growth, considering a maximum carrying
capacity 1/βy. The immune response is carried
out by the DCs activation in the term δyxy due to
their interaction with gastric cancer cells. Logistic

growth is assumed for the sake of simplicity and
to limit the maximum amount of this cell popula-
tion during the immune response. The term γyyz
symbolizes the death of mature DCs by presenting
peptides derived from tumor-associated antigens
to T cells.

Equation (3) describes the rate of change of the
T cells population. The term δzyz symbolizes the
activation of T cells by mature DCs. The term γzxz
is the reduction or inactivation of T cells by each
interaction with gastric cancer cells. The term µzz
represents the natural death of T cells. The ex-
ternal supply, αz, represents the parameter of ACI
treatment. The designed T cells are injected into
the tumor site in large numbers of approximately
1011 cells for successful treatment [15]. In this
sense, it is understood that αz symbolizes the ad-
dition of T cells designed by ACI treatment, and a
sufficient value for this parameter will be computed
through our mathematical analysis. The reason for
having selected this type of immunotherapy is due
to its effectiveness for the treatment of malignant
tumors [38].

Our model explores the case of an advanced
gastric adenocarcinoma due to the observations
of survival mechanisms in this type of advanced
tumors [3, 5, 24, 25]. In relation to this, we es-
tablished a population of 1011 cancer cells (approx.
100 g) to represent an advanced tumor, before
causing the death of the patient with 1012 cancer
cells (approx. 1 kg) [12]. This depends on the
type of tumor, but it is reasonable to allow this to
be on the order of 1011 cells [9]. Therefore, the
dimension per unit for all cell populations is 1011

cells, and the time scale is considered to be in
months. Figure 1 illustrates an overview of the
development of a gastric adenocarcinoma, as well
as the interactions between cells populations, H.
Pylori, and the treatment.

The description, values, and units of the pa-
rameters are shown in Table 1. To estimate the
parameter values, we used an artificial intelligence
software based on genetic algorithms called Eu-
reqa [32]. For practical purposes and to obtain
qualitative values for the parameters, we take the
nonlinear model proposed by Llanos-Perez et al.
[26] and, subsequently, we enter its time series
data into Eureqa to generate our system of Eqs.

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1485–1501
doi: 10.13053/CyS-29-3-3912

Paul A. Valle1488

ISSN 2007-9737



(1)-(3). In this way, we adapt and parameterize the
ODEs generated by Eureqa based on our biologi-
cal assumptions to obtain our system (1)-(3). Since
our model is qualitative, rather than quantitative,
the values acquired by Eureqa may be used for in
silico experimentation and mathematical analysis
concerning asymptotic stability. Hence, we expect
our model to be helpful in exploring the long-term
evolution of this disease by means of numerical
simulations considering diverse scenarios for hy-
pothetical patients.

3 Equilibrium Points and Local
Stability

The calculation of equilibrium points allows us to
understand the long-term dynamics of the system
of Eqs. (1)-(3) through a subsequent analysis of lo-
cal and global stability. By calculating these points
in tumor-immune systems we can identify those
states of interest, such as the tumor-free and the
tumor persistence equilibrium point. Equilibrium
points are obtained by solving the following system
of equations:

αxx(1− βxx) + ηxx+ δxxz − γxxz = 0,

αyy(1− βyy) + δyxy − γyyz = 0,

δzyz − γzxz − µzz + αz = 0.

By solving for each variable, the following ex-
pressions are obtained:

x = 0 and x =
αx + ηx
αxβx

−
(
γx − δx
αxβx

)
z,

y = 0 and y =
1

βy
+

δyx− γyz

αyβy
,

z =
αz

µz − δzy + γzx
.

From the intersection of the previous expres-
sions, we are able to determine seven equilibrium
points denoted as Pi = (x∗

i , y
∗
i , z

∗
i ) where i =

0, 1, ..., 6. For i = 0, 1, 2 are defined the tumor-free
equilibria (x∗

0 = 0, x∗
1 = 0, x∗

2 = 0). Numerically,
depending on the parameter values presented in
the Table 1, most of the equilibrium points of the
system (1)-(3) are unstable. The local stability is
determined by evaluating each equilibrium point in

the Jacobian matrix of the system (1)-(3) and, later,
analyzing the signs of their associated eigenval-
ues. The general expression of the Jacobian matrix
of the system is:

J(x, y, z) =

 A 0 −x (γx − δx)
δyy B −γyy
−γzz δzz C

 ,

where:

A = αx (1− 2βxx)− z (γx − δx) + ηx,

B = αy (1− 2βyy) + δyx− γyz,

C = δzy − γzx− µz.

We focus our work on the analysis of one tumor-
free equilibrium point. In the absence of ACI treat-
ment (αz = 0), the tumor-free equilibrium is the triv-
ial state P0 = (0, 0, 0) where all the populations are
zero and the system (1)-(3) is always an unstable
saddle-node.

In another scenario, when there is a treatment
supply, that is, αz > 0, the tumor-free equilibrium
point is now:

P0 =

(
0, 0,

αz

µz

)
.

The eigenvalues associated with the equilib-
rium P0:

λ1 = (αx + ηx)−
αz

µz
(γx − δx) ,

λ2 = −µz,

λ3 = αy −
αzγy
µz

.

The equilibrium P0 will be locally asymptotically
stable if λ1 < 0 and λ3 < 0. To establish a sufficient
condition for local asymptotic stability, the following
must be fulfill:

αz > max
{
µz (αx + ηx)

γx − δx
,
αyµz

γy

}
, (5)

by assuming the following condition also holds:

γx > δx. (6)

If γx > δx, it would imply that the death rate of
gastric cancer cells by T cells must be greater than
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T Cell

Gastric Cancer
(Gastric Adenocarcinoma)

: Gastric Cancer Cells : Dendritic Cells (DCs) : Effector Cells (T Cells)

Inhibition of  T Cells
Inflammation of the Gastric Epithelium due to H. Pylori Infectiona)

b)

Epithelial
Damage

Immunotherapy

Fig. 1. Diagram of the gastric adenocarcinoma development and the cellular interactions of our mathematical model.
Section a) Illustrates the inflammation process of the gastric epithelium derived from H. Pylori infection. Due to the
damage caused by H. Pylori, gastric epithelial cells become stressed and release cytokines to generate an immune
response [24, 37]. However, the mechanisms of immune evasion of the bacteria prevent a rigorous immune response,
therefore, gastric adenocarcinoma originates at the infection site. Section b) shows the interactions between gastric
cancer cells [x(t)], DCs [y(t)], effector cells [T cells, z(t)] and the ACI treatment

the rate of cell cannibalism performed by cancer
cells. To get local asymptotic stability of the system
in equilibrium P0, αz must be greater than the
maximum value of the condition (5). Intuitively, this
implies that the administration of ACI treatment is
capable of eliminating the tumor by converging the
trajectory x(t) in x = 0.

With the stability results, it is concluded that the
tumor-free equilibrium P0 is the only steady-state
biologically feasible. Based on the local stability
analysis performed, the following result is con-
cluded.

Result 1. Suppose that conditions (5) and (6) are
satisfied in the intestinal-type gastric adenocarci-
noma system with ACI (1)-(3). Then, the tumor-

free equilibrium point P0 =

(
0, 0,

αz

µz

)
is locally

asymptotically stable.

The latter establishes the clearance for a short
initial tumor burden because the stability analysis
is local, that is, a region around of P0. In sub-
sequent sections, we analyze the global dynamics
of the model with the LCIS method and we find a

sufficient condition to eliminate all gastric adeno-
carcinoma burden.

4 Boundedness of the Solutions

We use the LCIS method and Lyapunov’s stabil-
ity theory to study the short- and long-term be-
havior, and global stability of the system (1)-(3).
The LCIS method was proposed by Krishchenko
in [18] and optimized by Krishchenko and Starkov
in [19]. Through this method, lower and upper
bounds are calculated that define the so-called
localizing domain, which establishes a bounded
region in the state-space where all compact in-
variant sets of the system are located. The LCIS
method has been successfully applied in different
dynamical systems, i.e., the Lorenz chaotic system
[19], a permanent-magnet motor system [6] and re-
cently in biomathematics for models that describe
the tumor-immune dynamics and their treatments
[34, 20, 29, 30, 31], among others. The follow-
ing, we present the mathematical preliminaries and
notations of the LCIS method, and subsequently
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Table 1. Description, values and units of parameters

Parameter Description Value
Dimension and Units
αx Population growth rate of gastric cancer cells 8.0504
unit time−1 βx Inverse carrying capacity of gastric cancer cells 0.1273
cells−1

ηx Rate of gastric cancer cells proliferation by H. Pylori stimulation 2.1979
unit time−1

δx Cellular cannibalization rate of T cells by gastric cancer cells 0.1249
cells−1 per unit time−1

γx Death rate of gastric cancer cells by activated T cells 3.5
cells−1 per unit time−1

αy Proliferation rate of DCs induced by growth factors 3.5976
unit time−1

βy Inverse carrying capacity of DCs 0.1461
cells−1

δy Rate of DCs activation when capturing tumor antigens created by
gastric cancer cells

0.1709

cells−1 per unit time−1

γy Rate of DCs apoptosis when presenting tumor antigens to T cells 1.4818
cells−1 per unit time−1

δz Rate of preparation and activation of T cells due to their interaction
with DCs

1.5255

cells−1 per unit time−1

γz Inactivation rate of T cells by its interaction with gastric cancer cells 0.2498
cells−1 per unit time−1

µz Natural death rate of activated T cells in tumor 0.4171
unit time−1

αz Immunotherapy treatment parameter To be estimated
1011 cells/mg of dose

we show its application for the model proposed in
this work.

4.1 Localization of Compact Invariant Sets
Method

The LCIS method it is useful to study the short- and
long-time dynamics of any ODEs system by com-
puting the localizing domain. Equilibrium points,
periodic, homoclinic and heteroclinic orbits, limit
cycles and chaotic attractors are examples of com-
pact invariant sets.

Let us take an autonomous nonlinear ODEs
system of the form ẋ = f(x), where f(x) is a
C∞-differentiable vector function and x ∈ Rn

is the state vector. Let h(x) : Rn → R be a
C∞-differentiable function, by h

∣∣
S

we denote the
restriction of h(x) on a set S ⊂ Rn. The function

h(x) used in this statement is called localizing and
we assume that h(x) is not the first integral of f(x).
By S(h) we denote the set {x ∈ Rn | Lfh(x) = 0},
where Lfh(x) represents the Lie derivative of
f(x) and is given by: Lfh(x) = (∂h/∂x) f(x).
Now, let us define hinf := inf {h(x) | x ∈ S(h)} and
hsup := sup {h(x) | x ∈ S(h)}. Then, the General
Theorem concerning the localization of all compact
invariant sets of a dynamical system establishes
the following:

General Theorem. [19]. Each compact
invariant set Γ of ẋ = f(x) is contained in the
localizing domain:

K(h) = {hinf ≤ h(x) ≤ hsup} .

Localizing functions are selected by a heuristic
process, this means that one may need to analyze
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several functions in order to find a proper set
that will allow to fulfill the General Theorem. If
we consider the location of all compact invariant
sets inside the domain U ⊂ Rn we have the set
K(h) ∩ U . It is evident that if all compact invariant
sets are located in the sets K(hi) and K(hj), with
K(hi),K(hj) ⊂ Rn, then they are located in the set
K(hi) ∩K(hj) as well. Furthermore, a refinement
of the localizing domain K(h) is realized with help
of the Iterative Theorem stated as follows:

Iterative Theorem. [19]. Let hm(x),m = 0, 1, 2, ...
be a sequence of C∞-differentiable func-
tions. Sets:

K0 = K(h0), Km = Km−1 ∩Km−1,m, m > 0,

with:

Km−1,m = {x : hm,inf ≤ hm(x) ≤ hm,sup} ,
hm,sup = sup

S(hm)∩Km−1

hm(x),

hm,inf = inf
S(hm)∩Km−1

hm(x),

contain any compact invariant set of the system
ẋ = f(x) and:

K0 ⊇ K1 ⊇ · · · ⊇ Km · · · .

4.2 Localizing Domain

The LCIS method is applied to define the solutions
or trajectories of the system (1)-(3) in a domain
delimited by upper and lower limits. The limits are
given as inequalities in terms of the variables and
parameters of the system and are obtained through
four localizing functions.

In order to obtain the maximum value for the
gastric cancer cell population x(t), we propose the
localizing function:

h1 = x.

The Lie derivative of h1 is given by:

Lfh1 = αxx(1− βxx) + ηxx+ δxxz − γxxz,

and from which the set S(h1) = {Lfh1 = 0} is
established, and can be calculated as follows:

S(h1) = {αxx(1− βxx) + ηxx+ δxxz − γxxz = 0} .

It becomes clear that x is a common factor in S(h1).
Therefore, we obtain the union of two sets:

S(h1) = {αx(1− βxx) + ηx + δxz − γxz = 0} ∪ {x = 0} .

Performing the corresponding algebraic opera-
tions, we obtain the following solution:

S(h1) =

{
x =

αx + ηx
αxβx

− γx − δx
αxβx

z

}
∪ {x = 0} ,

where to determine the maximum limit of x in
S(h1), the condition (6) must be fulfilled. Based
on the above, the following result is established:

K1(h1) =

{
x(t) ≤ xmax =

αx + ηx
αxβx

}
. (7)

The maximum densities for the population of
DCs can be determined with the function:

h2 = y,

whose the Lie derivative is given by:

Lfh2 = αyy(1− βyy) + δyxy − γyyz,

and set S(h2) = {Lfh2 = 0} is presented as:

S(h2) = {αyy(1− βyy) + δyxy − γyyz = 0} .

The dependent variable is identified as a common
factor in S(h2), therefore, performing the corre-
sponding algebraic operations the following union
of two sets is obtained:

S(h2) =

{
y =

1

βy
+

δy
αyβy

x− γy
αyβy

z

}
∪ {y = 0} ,

then, negative terms are discarded and the Itera-
tive Theorem is applied with the set K1(h1), that is,
S(h2) ∩K1(h1), getting the next maximum limit for
the DCs population:

K1(h2) =

{
y(t) ≤ ymax =

1

βy
+

δy
αyβy

xmax

}
,

if condition (6) holds.
Following the same path of the results shown

above, we analyze the localizing function:

h3 = z,

Computación y Sistemas, Vol. 29, No. 3, 2025, pp. 1485–1501
doi: 10.13053/CyS-29-3-3912

Paul A. Valle1492

ISSN 2007-9737



to calculate the lower limit of the T cell popula-
tion. Consequently, the Lie derivative of the func-
tion h3 is:

Lfh3 = δzyz − γzxz − µzz + αz,

and from which the set S(h3) = {Lfh3 = 0} is
given by:

S(h3) = {δzyz − γzxz − µzz + αz = 0} .

Through algebraic calculations, we can ob-
tain the set:

S(h3) =

{
z =

αz

µz + γzx
+

δzyz

µz + γzx

}
,

then discarding the second term in the set S(h3)
and applying the Iterative Theorem with the set
K1(h1), that is, S(h3)∩K1(h1), in order to calculate
the next lower bound for T cells population:

K1(h3) =

{
z(t) ≥ zinf =

αz

µz + γzxmax

}
, (8)

if condition (6) is fulfilled.
Now, trying to obtain the upper bound for the

gastric cancer cell population, we take the set
S(h1) and apply the Iterative Theorem with the set
K1(h3), that is, S(h1)∩K1(h3), we get the following
localizing set for all nondivergent solutions to ẋ(t):

Kx =

{
0 ≤ x(t) ≤ xsup =

αx + ηx
αxβx

− (γx − δx)

αxβx
zinf

}
. (9)

The upper bound for the DCs population is
solved in a similar way to the previous case. We
take the set S(h2) and apply the Iterative Theorem
with the set K1(h3), that is, S(h2) ∩ K1(h3), ob-
taining the next localizing set for all nondivergent
solutions to ẏ(t):

Ky =

{
0 ≤ y(t) ≤ ysup =

1

βy
+

δy

αyβy
xmax

−
γy

αyβy
zinf

}
. (10)

Now, we can establish the upper bound for the T
cells population using the following localizing func-
tion:

h4 = Υy + z,

with Υ > 0. The Lie derivative of the function
h4 is given:

Lfh4 = Υ(αyy(1− βyy) + δyxy − γyyz)

+ (δzyz − γzxz − µzz + αz) ,

hence,set S(h4) = {Lfh4 = 0} is defined as:

S(h4) =
{
αyΥy(1− βyy) + δyΥxy − γyΥyz

+ δzyz − γzxz − µzz + αz = 0
}
.

Through algebraic operations, we obtain
the next set:

S(h4) =

{
z =

1

µz

(
αyΥy(1−βyy)+δyΥxy−γyΥyz

+ δzyz − γzxz + αz

)}
.

Now, the localizing function h4 is rewritten and it is
solved for z obtaining as result z = h4 −Υy, which
allows us to formulate the following set:

S(h4) =

{
h4−Υy =

1

µz

(
αyΥy(1−βyy)+ δyΥxy

− γyΥyz + δzyz − γzxz + αz

)}
,

which implies that:

S(h4) =

{
h4 =

αy

µz
Υy −

αyβy

µz
Υy2 +

δy

µz
Υxy −

γy

µz
Υyz

+
δz

µz
yz −

γz

µz
xz +

αz

µz
+Υy

}
.

Then, we group similar terms and apply the alge-
braic technique completing the square. In order to
calculate an upper bound for z, we define a function
Λ(x, y, z) as:

Λ(x, y, z) =
αyβy

µz
Υ

(
y − µz + αy + δyx

2αyβy

)2

+

(
γy
µz

Υ− δz
µz

)
yz +

γz
µz

xz,

and if we impose the next condition for the second
term of the function Λ(x, y, z):

Υ ≥ δz
γy

, (11)
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and we get the following result:

S(h4) =

{
h4 =

αz

µz
+

Υ(µz + αy + δyx)
2

4αyβyµz
− Λ(x, y, z)

}
,

therefore, the function Λ(x, y, z) is discarded for
being negative and we obtain the following subset:

S(h4) ⊂

{
h4 ≤ αz

µz
+

Υ(µz + αy + δyx)
2

4αyβyµz

}
.

Now, by substituting Υy + z in h4 and solving for z,
we get the following subset:

S(h4) ⊂

{
z ≤ αz

µz
+

Υ(µz + αy + δyx)
2

4αyβyµz
−Υy

}
.

Finally, if we discard the negative term of the sub-
set and apply the Iterative Theorem with the set
K1(h1), we can establish the upper bound for T
cells population and the following localizing set for
all nondivergent solutions to ż(t):

Kz =

{
zinf =

αz

µz + γzxmax
≤ z(t) ≤ zsup =

αz

µz

+
Υ(µz + αy + δyxmax)

2

4αyβyµz

}
, (12)

if conditions (6) and (11) are satisfied.
The upper and lower bounds of the system

(1)-(3), define the domain of maximum and
minimum densities of cells populations. It is
important to mention that the condition (6) affects
the sets Kx, Ky and Kz of the system. Based
on the results that have been shown in this
subsection, the following Theorem is established.

Localizing Domain Theorem. If conditions (6)
and (11) are satisfied, then all compact invariant
sets of the intestinal-type gastric adenocarcinoma
system with ACI (1)-(3) are located either inside
or at the boundaries of the following compact
localizing domain:

Kxyz = Kx ∩Ky ∩Kz,

where:

Kx = {0 ≤ x(t) ≤ xsup} ,
Ky = {0 ≤ y(t) ≤ ysup} ,
Kz = {zinf ≤ z(t) ≤ zsup} ,

with:

xsup =
αx + ηx
αxβx

− (γx − δx)

αxβx
zinf, (13)

ysup =
1

βy
+

δy
αyβy

xmax −
γy

αyβy
zinf, (14)

zinf =
αz

µz + γzxmax
, (15)

zsup =
αz

µz
+

Υ(µz + αy + δyxmax)
2

4αyβyµz
. (16)

The bounds (13)-(16) define a compact domain
in R3

+,0 where all compact invariant sets of the
system (1)-(3) are located. In section 5, the bounds
(7) and (15) are applied using the direct Lyapunov
method in order to establish sufficient conditions to
define the appropriate dose of immunotherapy for
tumor clearance.

5 Tumor Clearance and Global Stability

The main objective of this section is to present
sufficient conditions of attraction to the tumor-free
equilibrium point P0 and global stability in R3

+,0.
The conditions are established in the form of an

inequality on the parameter αz. With this, we seek
that all the solutions of Equation (1) will go to the
tumor-free invariant plane given by x = 0. The can-
didate Lyapunov function must be a continuously
differentiable function that satisfies h5(x

∗
0) = 0 and

h5(x) > 0 if x ̸= x∗
0. For simplicity of global stability

analysis, we propose the next candidate Lyapunov
function:

h5 = x,

whose the Lie derivative is given by:

Lfh5 = αxx (1− βxx) + ηxx+ δxxz − γxxz,

and when grouping similar terms we have:

Lfh5 = −αxβxx
2 + x (αx + ηx)− xz (γx − δx) .

Now, we look for a non-positive upper limit with
Lfh5 ≤ 0 that allows us to fulfill the Lyapunov
conditions for global asymptotic stability. We can
find a solution evaluating our results of the Local-
izing Domain Theorem. Notice that condition (6) is
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present in the third term of the previous expression,
thus we may consider the following upper bound for
function Lfh5 as indicated below:

Lfh5 ≤ x [(αx + ηx)− zinf (γx − δx)] ≤ 0. (17)

If we satisfy the inequality (17), the next constraint
must also be fulfilled:

(αx + ηx)− zinf (γx − δx) < 0. (18)

Rewriting the expression (18), we achieve the fol-
lowing inequality:

(αx + ηx)−
(

αxβxαz

αxβxµz + γz (αx + ηx)

)
(γx − δx) < 0.

Solving for the ACI treatment parameter αz, the
next condition is determined:

αz >
µz (αx + ηx)

γx − δx
+

γz (αx + ηx)
2

αxβx (γx − δx)
, (19)

by assuming (6) holds.
Condition (19) implies that ACI treatment is able

to clear the gastric cancer cell population. If the
conditions (19) and (6) are fulfilled, with LaSalle’s
Invariance Principle [16] we can conclude that any
trajectory derived from an initial condition x(0) to
the Eq. (1), will go to the tumor-free invariant plane
x = 0 where:

lim
t−→∞

x(t) = x∗
0 = 0.

Hence, we establish the following theorem.

Theorem 2. If the conditions (19) and (6) are
satisfied, then the plane x∗ = 0 is asymptotically
stable in the domain Kxyz, which implies tumor
elimination by ACI treatment in the intestinal-type
gastric adenocarcinoma system (1)-(3).

Additionally, if condition (19) holds, this inequal-
ity is a condition of non-existence of compact in-
variant sets (see definition in [31]) in the set R3

+,0∩
{x > 0} of the system (1)-(3). Let us remind the
upper bound of the gastric cancer cell population:

xsup =
αx + ηx
αxβx

− (γx − δx)

αxβx
zinf ,

where by substituting the bounds zinf and
xmax, we get:

xsup =
αx + ηx
αxβx

− αz(γx − δx)

(αxβxµz + γz (αx + ηx))
.

Then, if the condition (19) is fulfilled, the result
in the upper bound of the cancer cell population
is xsup ≤ 0. Biologically, this means that the
condition (19) does not allow the existence of
tumor persistence dynamics, for example, tumor
latency (oscillations). Mathematically, this implies
that all types of compact invariant sets (equilibrium
points, limit cycles, and periodic orbits) that the
system can exhibit (1)-(3), they will be tumor-free
dynamics. Based on these results, we conclude
with the following result.

Result 2. If condition (19) is satisfied, then
all compact invariant sets of the intestinal-type
gastric adenocarcinoma system with ACI (1)-(3),
will be located in the domain R3

+,0 ∩ {x = 0}.

6 Discussion and Biological
Interpretations

Immunotherapy is considered a good alternative
for the treatment of various types of cancer, and
currently, it has generated significant interest for
its application in patients with gastric cancer [38].
However, knowledge of the tumor-immune interac-
tions and other factors related to this disease is still
limited. Today mathematical oncology has become
a fundamental area for understanding complex on-
cological phenomena and their interactions with
the immune system.

Using deterministic models, it is possible to pro-
vide valuable information related to tumor growth,
as well as its response to treatments such as ACI
[10, 39]. Therefore, exploring different scenarios
and types of cancer with these tools is only a
first step on understanding tumor evolution, which
will eventually lead to the development and eval-
uation of appropriate treatments with the greatest
decrease in tumor burden.

In this work, we propose a qualitative mathe-
matical model composed of the system of Eqs.
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(1)-(3) that describes the growth of an intestinal-
type gastric adenocarcinoma, covering interesting
aspects such as H. Pylori infection and cellular
cannibalism. Furthermore, we explore the effects
of ACI treatment by incorporating the parameter αz

into the Eq. (3) of the T cell population. When
there is a treatment supply (αz > 0), the tumor-free
equilibrium point P0 is locally asymptotically stable
if the conditions (5) and (6) hold. This result es-
tablishes the clearance of a limited tumor burden
around the equilibrium point P0 because the stabil-
ity analysis is local, that does not necessarily imply
a global elimination for any solution or trajectory of
the system (1)-(3).

One of the main foci of our work was to ap-
ply the LCIS method, due to the utility of this
methodology to understand long-term tumor dy-
namics [34, 30, 31]. With the results obtained, we
define the bounds of the localizing domain Kxyz

where all compact invariant sets of the system (1)-
(3) are located. The importance of these bounds
relies in the fact that cell populations will not grow
beyond their upper bounds, only if the conditions
of the Localizing Domain Theorem hold. Also, by
applying Lyapunov’s stability theory and LaSalle’s
Invariance Principle, a sufficient condition on αz

was determined for gastric adenocarcinoma clear-
ance and global asymptotic stability in the tumor-
free equilibrium point P0. The latter implies that
any trajectory of the system (1)-(3) will go to the
tumor-free invariant plane x = 0.

Both the stability of the equilibrium P0 and the
limits of the localizing domain are subject to the
condition (6). This condition implies that the rate
of cancer cell death from an immune response is
greater than its rate of cannibalism by engulfing T
cells. It is theorized that cannibal activity in cancer
cells could be a way of neutralizing the immune
response to engulf effector cells, assuming a mor-
phological appearance called cell-in-cell [11, 27].
This cannibalistic activity is linked to a poor prog-
nosis in the health of patients [11]. Therefore, if
we seek to eradicate gastric cancer with ACI treat-
ment, the immune response must be stronger than
the cannibalistic activity by cancer cells. Cannibal-
ism has been found at high levels in some cases
of gastric cancer cells that cannibalize infiltrating
neutrophils [3], however, more research is needed

regarding the relationship of cannibalistic activity of
gastric cancer cells to other immune cells.

Focusing directly on the treatment, we obtained
two important conditions for the local and global
stability of the system in the tumor-free equilibrium
P0. With the local stability analysis of P0, we
calculate the following result from condition (5):

αz > max
{
µz (αx + ηx)

γx − δx
,
αyµz

γy

}
.

With the upper and lower bounds of the model,
we achieve the global asymptotic stability condition
for tumor clearance from condition (19):

αz >
µz (αx + ηx)

γx − δx
+

γz (αx + ηx)
2

αxβx (γx − δx)
.

The second term of the global condition offers
the system a faster convergence to the tumor-free
equilibrium, that is, when considering a higher
dose of immunotherapy, it is theoretically possible
to decrease the tumor burden. The next phase is to
verify these results with in silico experiments using
numerical simulations.

Figure 2 shows the temporal dynamics of the
system (1)-(3) without and with ACI treatment. With
αz = 0, the system exhibits periodic oscillations
related to a periodic orbit, see panels a to c of
Figure 2. The tumor gastric mass is cycled in
approximately 9 months. During 2 or 3 months, the
tumor reaches a value close to its maximum carry-
ing capacity and then descends to almost zero in a
state known as tumor latency [9, 10, 22, 36]. These
oscillations of tumor recurrence partially coincide
with the time observed clinically in subjects diag-
nosed with gastric adenocarcinomas and treated
with preoperative chemotherapy and a gastrec-
tomy to decrease their tumor burden [28]. The
tumor recurrence phenomenon has devastating im-
plications in early and advanced gastric cancer.
Patients with untreated early gastric cancer will
survive 5 years without treatment, where 70% will
have already developed advanced gastric cancer
[1]. On the other hand, the survival for patients
diagnosed with advanced gastric cancer does not
exceed 12 months [33].
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Fig. 2. Solutions of the three cell populations. For αz = 0, the solutions of the system (1)-(3) are shown in panels a to
c. For αz = 8.9, the solutions are shown in panels d to f. All solutions with the stability condition (19) are directed to the
tumor-free equilibrium point P0. The time units in the six panels are in months and the assumed dimension for the cell
populations is 1011 cells

Gastric cancer cells and immune cells can coex-
ist for quite a long time and this is shown in the peri-
odic oscillations of panels a to c of Figure 2. Similar
oscillations have been reported in various works in
other tumors [9, 22, 34]. It is worth mentioning
that, as the value of the parameter γx increases,
the magnitude and the period of these oscillations
shorten until the size of the tumor becomes small.

Panels d to f of Figure 2 illustrate the response of
the system (1)-(3) to ACI treatment when condition
(19) is satisfied. The solution of the cancer cell
population converges to zero in short time with ACI
treatment. The active DCs response is reflected
only at the time of the immune response against
the tumor. Instead, activated T cells grow to con-
verge to a homeostatic state, derived from treat-
ment. This value of ACI ensures the global asymp-
totic stability of the x(t) solutions to the plane x =
0, which implies the elimination of the tumor. These

results indicate that ACI treatment could play an
important role in the regression of gastric cancer.
Additionally, in Figure 3 we illustrate the dynamics
of the system (1)-(3) in the phase space for the
cases of αz = 0 and αz > 0. Panels a) to b) of
Figure 3 show that given any nonnegative initial
condition inside the domain Kxyz (polytope), the
trajectories remain inside for all future time.

One important aspect of our model is to include
the saturation effects on the activation of the im-
mune cell populations. As future work, we will
include the Michaelis-Menten saturation function
to describe the growth of these cells, to achieve
a more realistic view of gastric cancer. Another
aspect is related to the parameter values presented
in Table 1. With those values, the model exhibits
a periodic orbit in its solutions, however, as fu-
ture work, it is planned to determine values that
describe a quantitative dynamics on the evolution
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Fig. 3. Trajectories of the system (1)-(3) in the phase space. Panel a) of Figure 3 illustrates the periodic orbit of the
system when αz = 0. Panel b) of Figure 3 presents the system dynamics when condition (19) is satisfied, where the
system trajectory converges in the healthy tumor-free equilibrium point P0. In these numerical simulations, we illustrate
that given any nonnegative initial condition inside the domain Kxyz (polytope) all trajectories will be attracted to the
largest compact set within that domain and remain inside for all future time

of intestinal-type gastric adenocarcinoma. At the
same time, we will redesign the model to approach
the infection of the gastric mucosa by H. Pylori.
Finally, it is necessary to evaluate different treat-
ments and carry out combinations of them to ad-
vise in gastric cancer related clinical trials.

7 Conclusion

Mathematical models are not only practical strate-
gies to achieve a simpler qualitative vision of can-
cer, they are also crucial for understanding the
tumor-immune system and advancing the research
and implementation of treatments for this disease.
Models have been developed from different scales,
approaches, mathematical theories, and computa-
tional tools. In this work, we propose and ana-
lyze a qualitative mathematical model composed
of first-order ODEs that describes the interactions
between a population of gastric cancer cells and
two populations of immune cells in the growth
of intestinal-type gastric adenocarcinoma with ACI
treatment.

The ACI parameter αz was added to the model
in order to establish a sufficient concentration of
treatment to ensure the elimination of a gastric
adenocarcinoma. In the absence of treatment,
the model exhibits periodic oscillations that allow
predicting the tumor latency and recurrence.

We were able to decrease the tumor burden in
the model through a global asymptotic stability con-
dition on the parameter αz, the latter was based on
the limits of the localizing domain Kxyz, Lyapunov’s
stability theory, and LaSalle’s Invariance Principle.
These statements imply that intestinal-type gastric
adenocarcinoma is eliminated in approximately the
first month of treatment, as illustrated in Figure 2,
panels d to f. Although these theoretical results
derived in this paper provide qualitative informa-
tion that helps us understand tumor-immune in-
teractions in gastric cancer, some limitations were
discussed in the previous section. With the latter,
some necessary improvements to the model will be
considered, which will be reflected in future works.

We expect that the approach presented in this
work be an initial guide to understand the effect of
immunotherapy on gastric cancer evolution.
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