
A Structure-Driven Genetic Algorithm for Graph Coloring

Jose Aguilar-Canepa1, Rolando Menchaca-Mendez1, Ricardo Menchaca-Mendez1, Jesus Garcı́a2,3

1 Instituto Politécnico Nacional,
Centro de Investigación en Computación,

Mexico

2 Consejo Nacional de Ciencia y Tecnologı́a,
Mexico

3 Instituto Nacional de Astrofı́sica, Óptica y Electrónica,
Coordinación de Ciencias Computacionales,

Mexico

jc.aguilar1308@gmail.com

Abstract. Genetic algorithms are well-known numerical
optimizers used for a wide array of applications.
However, their performance when applied to combina-
torial optimization problems is often lackluster. This
paper introduces a new Genetic Algorithm (GA) for
the graph coloring problem that is competitive, on
standard benchmarks, with state-of-the-art heuristics.
In particular, we propose a crossover operator that
combines two individuals based on random cuts (A,B)
of the input graph with small cut-sets. The idea is
to combine individuals by merging parts that interact
as little as possible so that one individual’s goodness
does not interfere with the other individual’s goodness.
Also, we use a selection operator that picks individuals
based on the individuals’ fitness restricted to the
nodes in one of the sets in the partition rather than
based on the individuals’ total fitness. Finally, we
embed local search within the genetic operators applied
to both the individuals’ sub-solutions chosen to be
combined and the individual that results after applying
the crossover operator.

Keywords. Genetic algorithms, dynamic programming,
graph coloring.

1 Introduction

The graph coloring problem is one of the most
popular graph problems. In the decision version
of the problem, the input consists of a graph and

an integer k ∈ N, and the goal is to determine if k
colors are enough to make a proper coloring. This
decision problem is NP-Complete.

In the optimization version, the input consists
only of a graph, and the goal is to find the minimum
number of colors a proper coloring can have. This
number is known as the chromatic number and
is usually denoted by the Greek letter χ. Finding
the chromatic number for arbitrary graphs is an
NP-Hard problem.

Some of the graph coloring algorithms from the
literature find the exact solution. However, their
running time on arbitrary instances is exponential.
Thus, they are useful only for small instances of the
problem. For more prominent instances, the most
useful algorithms are heuristics, metaheuristics,
and approximation algorithms.

Most of the algorithms designed for graph
coloring are heuristics, which can produce good
solutions (almost near-optimal) at a reasonable
computational cost [52]. Their main drawback
is that they do not guarantee the solutions
they produce: their quality might range from
near-optimum to be arbitrarily bad. More often than
not, the algorithms need to be executed repeatedly
to have an idea about the given solution’s quality.

Genetic algorithms (GA) are one of these heuris-
tics. Initially proposed by Holland in the mid-’60s,

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 465–481
doi: 10.13053/CyS-25-3-3901

ISSN 2007-9737

they are widely used for numerical optimization,
such as prediction, scheduling, networking, speech
recognition, and more [13]. However, they
are regarded as poor combinatorial optimizers
since they only rely on the objective function
to guide the optimization process and the fact
that they explore the search space by modifying
bit strings. As said by Greffenstette: ”genetic
operators, notably crossover, must incorporate
specific domain knowledge”[28], so in order to
make GA competitive when compared to other
heuristics, a popular trend is to embed a local
search (LS) procedure as an additional step
during the execution of a standard GA. While
this often produces good results, it is unclear
whether the solution’s quality is due to the GA
or the LS. Also, the extra computational burden
of the LS procedure hinders the algorithm’s
overall performance.

Another approach is to include the LS not as
an additional step but within the same engine of
the GA: genetic operators (selection, crossover,
and mutation). This requires a careful design that
considers the meaningful properties of the problem
and poses an interesting tradeoff: increased
performance, but at a loss of generality; since the
algorithm has been designed with information on a
specific problem, it will not be suitable to solve a
different one.

In this paper, we aim to design a GA following the
latter approach. Specifically, a genetic algorithm
that uses the properties of the graph coloring
problem to design genetic operators through a
novel methodology called structure-driven dynamic
programming. We want to use the basic principles
of a powerful algorithm design technique: dynamic
programming to develop a genetic algorithm for
graph coloring.

After designing the algorithm, we codified and
tested it on a set of benchmark graph instances.
Experimental results show that our algorithm is
competitive with state-of-art heuristic algorithms for
graph coloring. The rest of the paper is organized
as follows: Section 2 presents a review of genetic
algorithms used for graph coloring. Section 3
presents the proposed algorithm, with a description
of the methodology used to design the genetic
operators. Section 4 describe the experiments

performed and show preliminary results. Finally,
Section 5 presents an analysis of the experimental
results, the conclusions, and possible future
work directions.

2 Basic Background

2.1 The Graph Coloring Problem

Let G = (V ,E) be an undirected graph. A
k-coloring of the graph is a function C : V →
S that assigns each vertex of the graph a label
1, 2, . . . , k ∈ S. The elements of S are called colors.
A proper coloring is a k-coloring with the property
that no two adjacent vertices have the same color.
The chromatic number χ(G) of a graph G is the
minimum k for which G has a proper k-coloring.

Most exact algorithms for the graph coloring
problem are based on Dynamic Programming,
Branch-and-Bound, or Integer Linear Program-
ming. Among the dynamic programming algo-
rithms are the O(2.4423n) algorithm of [37], the
O(2.4150n) of [21], the O(2.4023n) of [10], and
the O(5.283n) algorithm of [6]. These algorithms
require exponential space, except for the last,
which requires polynomial space. Among the
Branch-and-Bound algorithms are algorithms by
[8], which is based on his DSATUR algorithm,
the algorithm of [9], the algorithm of [55], the
algorithm of [54], and the algorithm of [23]. Among
the Integer Lineal Programming algorithms are the
algorithm of [45, 42, 29].

Among the heuristics for the graph coloring
problem, we have the randomly ordered sequential
algorithm RND [44], the maximum independent
set algorithm MAXIS [7], the degree saturation
algorithm DSATUR [8], and the recursive largest
first algorithm RLF [38]. These algorithms
run in polynomial time and do not necessarily
find optimal solutions. Because of this, these
algorithms are used to get an upper bound of the
chromatic number.

Among the metaheuristic algorithms are pro-
posals based on Simulated Annealing [33], Tabu
Search [18, 31, 5, 11], Genetic Algorithms [22, 15,
25], Multiagent Fusion Search [60], Evolutionary
Hybrid Algorithms [41], Local Search [32], and Ant
Colony Optimization [14, 53].

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 465–481
doi: 10.13053/CyS-25-3-3901

Jose Aguilar-Canepa, Rolando Menchaca-Mendez, Ricardo Menchaca-Mendez, Jesus García466

ISSN 2007-9737

2.2 Genetic Algorithms for Graph Coloring

Due to the sheer size of the search space,
techniques that explore it systematically are
beneficial. Specifically, genetic algorithms seem to
be extremely attractive due to their (hypothetical)
ability to evaluate multiple solutions at the same
time, a hypothesis known as implicit paralelism.
However, in practice, genetic algorithms are
regarded as a poor choice for combinatorial
optimization problems due mainly to the complexity
of the solution to the problems themselves, which
is usually not fully translated to the individuals that
make up the population of the GA. For example,
[16] proposed a pure GA in which solutions were
codified as permutations of the vertices, which
are then colored by a greedy sequential algorithm;
however, the obtained results were not satisfactory
since they are not able to capture the specificity
of the problem [43]. As early as 1987, it has
been widely accepted that, in order to solve
these problems, genetic operators (notably the
crossover) must incorporate in some way specific
domain knowledge [28].

Most state-of-the-art proposals use local search
techniques to improve the solutions generated by
the genetic algorithm (either at the initialization
of the population [41], at the generation of new
individuals [22], or a combination of both [25]).
These proposals, which combine an evolutionary
base with a local search procedure, are often
called hybrid algorithms. One of the first hybrid
algorithms is due to [25] called HEA, which
uses a greedy procedure based on the DSATUR
algorithm of [8] during the initialization phase and
after crossover.

More recently, [39] proposed an iterated local
search algorithm based on a random walk in the
search space: candidate solutions by perturbing
local optimal solutions applying local search to
them, and accepting them if they are within a
particular acceptance criterion. They use local
search as a black box that can depend on the
problem to solve. [11] use a priority-based local
search algorithm that introduces the concept of
checkpoints, which forces the procedure to stop at
specific steps and start the local search to avoid
unnecessary searches.

[26] used a hybrid algorithm using a central
memory that is used to produce the offspring,
which in turn is further improved by a tabu search
procedure and then updates back the central
memory. [46] proposed a memetic algorithm
combined with cellular learning automata. They
further extend their proposal in [47] into a
distributed Michigan GA, in which the whole
population codifies a single solution, and each
individual represents a single vertex that locally
evolves. [3] use a repair strategy applied to
children generated by a crossover to find university
timetables. [61] solve a similar scheduling problem
of assigning tasks to teams of agents by using
modified genetic operators with shuffled lists and
chaotic sequences.

2.3 Genetic Operators Designed for
Combinatorial Optimization

Genetic algorithms have also been applied
to different combinatorial optimization problems,
other than graph coloring, with varying degrees
of success. For example, [56] propose a genetic
algorithm for the traveling salesman problem
(TSP), which is another well known NP-Hard
problem [35]. In TSP, a list of n cities is given, with
different costs of moving from one city to another,
and the goal is to find a route that visits all cities
exactly once while minimizing the total cost (some
variants also require that the tour finishes on the
starting point).

In their proposal, Thanh et al. use three different
types of crossover: MSCX (Modified Sequence
Constructive Crossover), which construct new
individuals by sequentially selecting the next
’legitimate’ gene for either parent, that is, the next
city that appears on tour in one of the parents that
is not yet visited, and that posses the minimum
cost. This crossover operator is further expanded
to the MSCX radius variant, in which the next r
’legitimate’ genes are selected instead of just 1 (r
being a parameter of the procedure). The main
idea behind these operators is to select edges with
small values that are preserved within tours, thus
maintaining the parents’ sequence of cities. A third
crossover, called RX, is used when the population’s
diversity falls below a given threshold, randomly

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 465–481
doi: 10.13053/CyS-25-3-3901

A Structure-Driven Genetic Algorithm for Graph Coloring 467

ISSN 2007-9737

selecting genes from one parent and filling the
remaining positions with genes from the other

Multiple TSP is a variant of the original TSP
in which there are m > 1 salesmen that must
visit n cities, with m < n. [12] proposed a
two-part chromosome representation, in which
each individual is composed of two different parts:
the first n genes being a permutation of the n
cities to visit, and the second part being a vector
of m integers (x1, ...,xm) satisfying x1 + ... +
xm = n where xi > 0, i = 1, ...,m. This vector
indicates how many cities are visited by each of
the m salesmen. New individuals are generated
via a variation of classic ordered crossover [27]
used on the chromosome’s first section: a random
sequence of genes is copied from one of the
parents, the remaining positions are filled with the
genes of the other in the order in which they
appear. The second part of the chromosome only
is permuted from the first parent to maintain a valid
vector with the properties specified before.

[62] improved the two-part chromosome
crossover by using the second part’s information
to better select genes on the first. ’Sub-routes’
are randomly selected from one parent for
each salesman, with the remaining cities are
also randomly assigned, following their order
on the second parent. This way, the building
blocks that make up good routes are preserved
while also maintaining a greater diversity of the
population since it is possible for children to have
routes of different sizes that were not present on
their parents.

3 Structure-Driven Dynamic
Programming for Graph Coloring

In this paper, we present a new type of genetic
algorithm designed explicitly for combinatorial
optimization, called Structure-driven Dynamic
Programming for Graph Coloring (SDP-GC). The
proposed algorithm was designed to incorporate
the dynamic programming methodology’s main
principles into the genetic algorithms paradigm.
The proposed algorithm explores the solution
space following using a relaxed version of the
structured way in which dynamic programming
exploits structural properties of the problem to

build solutions to larger subproblems by combining
solutions of smaller subproblems. These ideas
are implemented by incorporating the dynamic
programming principles into the genetic operators
to take advantage of the graph coloring problem’s
particular structural properties.

Algorithm 1: SDP-GC
Input: Graph G = (V ,E), integer k
Output: A coloring c

1 population← InitPopulation()

2 while not StopCondition() do
3 cut← Karger(G)

4 dad, mom← Select(population, cut)

5 children← Crossover(dad, mom, cut)

6 children← Harmonize(children, cut,

k)

7 children← Mutate(children)

8 population← Replace(population,

children)

9 end
10 elite← FindElite(population)

11 return elite

3.1 Overview

Unlike many previous proposals [63, 19, 26]
that rely on having an excellent first generation,
SDP-GC creates its initial population by assigning
a color uniformly at random to every node in the
input graph G = (V ,E).

Then, for each generation, SDP-GC partitions
G = (V ,E) into two subgraphs to define two
sub-problems that can be colored with more ease.
When selecting these partitions, SDP-GC balances
the dynamic programming principle of having
weakly interacting sub-problems with the genetic
algorithms’ strategy that uses population diversity
as a way to explore the solution space. More
specifically, SDP-GC uses Karger’s algorithm
[34] (also known as the randomized min-cut
algorithm) to look for partitions with small cut-sets
in a randomized fashion.

Please note that SDP-GC can be extended to work
with partitions of more than two components.

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 465–481
doi: 10.13053/CyS-25-3-3901

Jose Aguilar-Canepa, Rolando Menchaca-Mendez, Ricardo Menchaca-Mendez, Jesus García468

ISSN 2007-9737

The first step to designing a dynamic program-
ming algorithm is to define what is considered a
”subproblem.” One option, naturally, is to partition
the given graph G = (V ,E) into subgraphs, which
due to being smaller than the original graph they
can be colored with more ease. There are virtually
endless ways to partition a graph into subgraphs:
however, for our purposes, we must take into
account an important detail: one could think that,
once these subgraphs are properly colored, then a
coloring for the original graph can be created just
by joining them back, but this is not necessarily
true. We must consider the set of all edges
that have one endpoint in a subset and the other
endpoint in a different subset (called a cut-set):
these edges can (and often will) result in conflicts
due to their endpoints being assigned the same
color in their respective subgraphs.

In the next step, SDP-GC selects individuals
based on the fitness of their partitions. This
way, individuals with a global bad fitness but with
reasonable solutions in either partition will have a
better chance of passing that sub-solution to the
next generation. The rationale behind selecting
individuals is to mimic how dynamic programming
algorithms build their solutions from solutions to
smaller sub-problems.

The crossover operation creates new individuals
(colorings) as the union of the colorings of
selected partitions. Then, SDP-GC uses procedure
Harmonize to look for the permutation of colors
assigned to nodes of one of the partitions that
minimize the number of monochromatic edges in
the cut-set. This procedure is essential because
the two partitions’ colorings were independently
computed (See Figure 1).

Lastly, SDP-GC uses traditional mutation and
replacement procedures to complete the construc-
tion of the next generation of individuals.

The following subsections present detailed
information about each step of the algorithm,
explaining the ideas used to implement the intuition
presented in this subsection, but before we will
introduce some notation. Let G = (V ,E) be an
undirected graph.

Then for any subset of vertices X ⊆ V , the sub-
graph induced by X is denoted by H = (X, se(X)),

(a) (b) (c)

Fig. 1. An example of harmonization between colorings
of two subgraphs. Figure (a) shows the original
sub-solutions, as computed independently on each
subgraph by the algorithm; this coloring has two conflicts
on the cut-set. Figure (b) shows the colors of the right
subset permuted, which reduces in 1 the number of
conflicts. Figure (c) shows a different permuting, which
effectively eliminates all conflicts that arose when the
sub-solutions were joined. Note that, even when the
colors of the right subset were changed, the solution
remains essentially the same

with se(X) being the subset of E that contains only
the edges whose both endpoints belong to X:

Definition 1. For a graph G = (V ,E) and a subset
of nodes X ⊆ V :

se(X)
.
= {e = (u, v) ⊂ E | u, v ∈ X}.

Similarly, for any subset of vertices X ⊂ V ,
we represent by ct(X) as the cut-set, that is, the
subset of E that has one endpoint in X and the
other endpoint in a different subset of vertices.

Definition 2. For a graph G = (V ,E) and a subset
of nodes X ⊂ V :

ct(E)
.
= {e = (u, v) ⊂ E | u ∈ X, v /∈ X}.

Given a vertex v ∈ V , we denote by N(v) the
neighborhood of v, that is, all other vertices u ∈ V
that share an edge with v.

Definition 3.

N(v)
.
= {u ∈ V |(u, v) ∈ E}.

Lastly, we will say that an individual is
represented by a coloring c, which is defined as
a function c : V → {1, 2, ..., k} where k is the
maximum number of available colors.

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 465–481
doi: 10.13053/CyS-25-3-3901

A Structure-Driven Genetic Algorithm for Graph Coloring 469

ISSN 2007-9737

3.2 Initialization

As stated in the previous section, the algorithm’s
initialization is done via an efficient random
initialization. This procedure takes two integers:
the population size p and the maximum number of
colors admitted k and creates the initial population
as a matrix of p × |V | by merely assigning a color
uniformly at random from [0, k) to each gene. It is
important to note that given the random nature of
this approach, invalid colorings may be produced.

3.3 Partitioning the Graph

At each generation the graph is partitioned
into different subgraphs to maintain diversity in
the population and explore new solutions using
Karger’s algorithm, which is entirely based on
a simple operation called edge contraction. To
contract an edge e = (u, v), we merge the
two vertices u and v into one ’super-vertex’ uv,
eliminate all edges connecting u and v while
retaining all other edges in the graph.

This new graph may contain parallel edges but
no self-loops. The algorithm consists of |V | − 2
iterations; at each of them, an edge is picked
uniformly at random to be contracted. Since each
iteration reduces the number of vertices in the
graph by one, after |V | − 2 iterations, the graph
consists only of two vertices. The general outline
of this procedure is presented on Algorithm 2.

In the Karger’s algorithm, procedure Pick(E)

choses a random edge e = (u, v) ∈ E, and
procedure se(X) returns the subset of edges
whose both endpoints are elements of the given
set X, just as stated on Definition 1.

The original algorithm has a probability of
2/n(n−1) of actually founding a minimum cut[48]. To
increase this probability, Procedure Karger should
be called a repeated amount of times (namely,
n(n − 1) lnn times) to guarantee with confidence
that the found cut-set is minimum; however, as
our experiments show later on this paper, this is
not entirely necessary. Hence, at each iteration
Karger procedure is called only once to generate
a random cut x = (A,B), which is then used by the
genetic operators to guide their search.

Algorithm 2: Procedure Karger
Input: Graph G = (V ,E)
Output: Subgraphs GA = (VA,EA) and

GB = (VB ,EB)
1 while |V | > 2 do
2 u, v← Pick(E)

3 V← V
⋃
{uv}

4 N(uv)← N(u)
⋃

N(v) - {u} - {v}
5 foreach neighbor in N(uv) do
6 N(neighbor)← N(neighbor)

⋃
{uv} -

{u} - {v}
7 end
8 V← V - {u} - {v}
9 end

10 A← V[1]
11 B← V[2]
12 return (A, se(A)), (B, se(B))

3.4 Selection

In order to maintain simplicity, the selection
technique used is the classical roulette wheel
selection proposed by DeJong[17], which is slightly
inefficient (its original complexity is O(n2)), but it is
simple and easy to implement.

Being a fitness-proportional selection technique,
it is necessary to define the fitness function before
proceeding any further. The fitness function we use
is simply the percentage of a subgraph induced by
A ⊆ V that is colored appropriately, ignoring all
edges in the other subgraph and on the cut-set.
Using this approach, individuals have more than
one fitness value.

Definition 4. For an individual i and a subset of
vertices A ⊆ V , their fitness is:

fAi =

∑
e=(u,v)∈se(A) 1ci(u)6=ci(v)

|se(A)|
. (1)

In Equation (1), 1predicate denotes the random
variable that takes the value 1 if predicate is true,
and 0 otherwise. Note that using this fitness
function, values are restricted to the interval [0, 1].

The selection method Select is essentially the
classical roulette wheel, with the difference that
the first parent is selected based on their fitness

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 465–481
doi: 10.13053/CyS-25-3-3901

Jose Aguilar-Canepa, Rolando Menchaca-Mendez, Ricardo Menchaca-Mendez, Jesus García470

ISSN 2007-9737

Algorithm 3: Procedure Select
Input: Population of the algorithm pop,

cut = (A,B)
Output: Integers mom and dad, the selected

individuals
1 winners← ∅
2 for i = 0 to 2 do
3 subset← A if i = 0 else B
4 fitness← ComputeFitness(pop,

subset)

5 mean← Average(fitness)

6 selected← −1
7 goal← Random(0, |pop|)
8 while goal > 0 do
9 selected← selected + 1

10 goal← goal - (fitness[selected] /
mean)

11 end
12 winners← winners ∪ selected
13 end
14 return winners

Algorithm 4: Procedure Crossover
Input: Individuals mom and dad, cut (A,B)
Output: Individuals child1 and child2

1 child1← array()
2 child2← array()
3 foreach node in A

⋃
B do

4 child1[node]← mom[node] if node ∈ A,
else dad[node]

5 child2[node]← dad[node] if node ∈ A,
else mom[node]

6 end
7 return child1, child2

in subgraph GA = (A, se(A)). The second parent
is selected based on their fitness in subgraph
GB = (B, se(B)). This procedure is outlined in
Algorithm 3.

In the Select, procedure ComputeFitness

applies Equation 1 to each individual of the
population using the given subset and returns a
vector of |pop| elements, which are the fitness
values of the population on the subgraph induced
by the subset. Procedure Average takes this

1

2

3

4

5

6

1

1

1

0

0

0

1

0

0

Fig. 2. An example of the harmonization procedure.
Sub-solutions of the graph use three colors: white, gray,
and black. The complete bipartite weighted graph of
the right represents all the possible interactions between
these colors. Weights on the (white, white), (grey, grey),
(grey, black), and (black, grey) edges were increased to
indicate potential conflicts. The continuous lines are the
minimum-weight perfect matching between both sides
that eliminates all the conflicts

vector and computes the arithmetic mean. Finally,
procedure Random(A, B) returns a real number
taken uniformly at random from the interval [A, B].
As a return value, Select returns a 2-value vector,
which are the indexes of the selected individuals.

3.5 Crossover

With the two individuals that best color the
subgraphs selected, we need to combine them to
produce the new individuals. This is very simple
and can be seen as a variant of the uniform
crossover, initially proposed by [2].

Given a cut x = (A,B) and two parents mom
and dad, each crossover operation produces two
new individuals: the first contains the colors of the
nodes in subset A from mom and the colors of the
nodes in subset B from dad. The second individual
is generated in the same way, but with the parents
reversed. This procedure is outlined in Algorithm 4.

As stated at the start of this section, the main
issue with this approach is that good coloring of
the subgraphs might not result in a good coloring
of the whole graph when combined since edges
on the cut-set might create conflicts when the
sub-solutions are put back together. To reduce
the likelihood of conflicts, we designed a special

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 465–481
doi: 10.13053/CyS-25-3-3901

A Structure-Driven Genetic Algorithm for Graph Coloring 471

ISSN 2007-9737

procedure to define a mapping coloring function
that can reduce the number of conflicts when
re-joining sub-solutions.

This can be done in the following way: given a
graphG = (V ,E), a coloring c and a cut x = (A,B)
we create a complete 2k bipartite weighted graph
Hk,k = (W ,F), representing ’bags’ (or clusters)
of nodes. The first k bags represent the colors
used on the sub-solution induced by subset A,
and the other k bags represent the colors used on
the sub-solution induced by subset B. Initially, all
edges f ∈ F weight zero, and then, the cut-set of
the original graph is used to modify these weights:
for each e = (u, v) ∈ ct(A) we proceed to increase
the weight of the edge f = (c(u), c(v)) ∈ F by one:
this represents that if the labels assigned to u and
v were the same on their respective sub-colorings,
one conflict would arise in the complete solution
when they are put back together. If c(u)! = c(v),
then the weight of the edge f ′ = (c(v), c(u)) is
increased by 1 as well.

With edges on the cut-set analyzed, the next
step consists of creating a perfect matching
between A and B: each of the k bags of A must be
joined with exactly one bag of B. To achieve this,
we proceed to prune the graph H by repeatedly
deleting the edges with the largest weight, until
the perfect matching is done. Given the case that
all edges of the resulting perfect matching weight
zero, we have found a mapping coloring function
that, virtually, eliminates all conflicts on the cut-set.

Algorithm 5: Procedure Harmonize
Input: Individual children, cut x = (A,B),

integer k
Output: The same individual children

1 H← array(k, k)
2 foreach e = (u, v) in ct(A) do
3 H[u][v] += 1
4 end
5 m← Munkres(H)

6 subset← A if flip() < 0.5 else B
7 foreach node in subset do
8 oldcolor← children[node]
9 children[node] = m[oldcolor]

10 end
11 return children

A few polynomial-time algorithms are designed
to find minimum-weight perfect matchings (a
fundamental combinatorial optimization problem
known as the assignment problem).

We decided to use the Hungarian algorithm
due to its simplicity. The details of this algorithm
are beyond the scope of the present work.
However, since assignment is a common problem,
it has been implemented as a library and is
available in many programming languages. The
complete procedure is outlined in Algorithm 5.

In procedure Harmonize, Munkres is an imple-
mentation of the Hungarian algorithm that takes a
k × k weight matrix and returns a function m that
takes a color oldcolor and returns a newcolor. It
is named so due to one of the people who helped
develop the algorithm, James Munkres [50].

3.6 Mutation

In our original proposal, we use a simple Gaussian
or ’flip’ mutation: each gene of the individual is
considered independently: for each of them, a
biased coin is flipped, with probability PM = 1/|L|
of landing heads: if so, the gene is replaced with
another color in [0, k) taken uniformly at random;
otherwise, the gene is left unchanged.

3.7 Replacement

The last step of an iteration of the algorithm is
the replacement, which follows a simple rule: the
best of the two children generated by crossover
replaces the worst of the two parents, even if it
has a lesser fitness itself.

This is done to maintain the population’s genetic
diversity since new, exploratory solutions that might
not be as good at the moment are allowed to
survive on the population. If the two parents
have the same fitness, then either is selected at
random to be replaced. Given that the best of the
two parents is never replaced, our proposed GA
has elitism.

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 465–481
doi: 10.13053/CyS-25-3-3901

Jose Aguilar-Canepa, Rolando Menchaca-Mendez, Ricardo Menchaca-Mendez, Jesus García472

ISSN 2007-9737

3.8 Analysis

3.8.1 Properties

Now let us discuss some of the properties of
our proposal. First, we will argue that the
harmonization procedure effectively reduces con-
flicts when re-joining sub-solutions back together.
Once the Hungarian algorithm has found a perfect
matching, the next step is to apply the mapping
coloring function defined by it to one of the two
subsets. Which one of the subsets is decided
randomly based on subset’ size: smaller subsets
have an increased chance of being modified than
larger ones.

As we stated before, by mapping colors,
solutions remain, in essence, the same since the
labels (colors) of the clusters are modified, but
the nodes that make up the clusters remain the
same. However, this change reduces conflicts on
the cut-set. Though it may seem obvious, it is
worthwhile to take a closer look at this observation.
First, it is useful to define a function to compute
the number of conflicts that a coloring produces on
a graph.

Definition 5. Let G = (V ,E) a graph, and c a
coloring of G. Then, for any subset A ⊆ V , the
number of conflicts that c induces on A is:

CNF (c)
.
=

∑
e=(u,v)∈se(A)

1c(u)=ci(v). (2)

Lemma 3.1. Let G = (V ,E) a graph, x = (A,B) a
cut of G, c(X) a coloring of a subset X ⊆ V and c′

a mapping coloring function of c obtained through
the Hungarian method described above. Then:

CNF (c(A)
⋃
c′(B)) <= CNF (c(V)). (3)

Proof. The proof is by contradiction. First, note
that mapping coloring functions never creates
more conflicts on their subsets since the labels
of colors are only ’rotated,’ and thus, the number
of conflicts within the subset remains the same.
Next, note that mapping coloring functions neither
increases the number of conflicts with vertices of
other subsets that do not belong to the cut-set
since they do not interact with each other. Based
on these two observations, we only need to prove

that the number of conflicts on the cut-set never
increases with mapping coloring functions.

Recall that the graph Hk,k used to find the
mapping coloring function is created using the
number of possible conflicts between all the k
labels used on the coloring. By applying the
Hungarian algorithm on H, we effectively found
a perfect matching of minimum cost, or, in our
context, a mapping coloring function of minimum
conflicts. Proof for the Hungarian algorithm is
beyond the scope of this work but can be checked
in [36], among other sources.

Now we would like to emphasize the Karger
algorithm. Through our experimental results, we
discovered that more times than not, if the Karger
algorithm was executed a proper amount of times
to guarantee a minimum size cut to be found, the
GA made little to no progress, and the reason is
straightforward. Most times, the cut found was
essentially the same.

If the algorithm is let to run with the same cut
every generation, it is not exploring the search
space thoroughly, and it gets stuck on local optima
with ease. Not only that but the extra computational
burden of repeating Karger’s algorithm a large
number of times at each generation also hinders
the proposal’s overall performance. With these
two facts in mind, executing Karger’s algorithm
to obtain a genuinely random cut results in
increased performance and helps to balance
the exploration-exploitation tradeoff, which is a
common issue for most evolutionary algorithms.

3.8.2 Complexity

To establish our algorithm’s computational com-
plexity, let us examine the complexity of each of the
steps that make up a single generation step. Let
G = (V ,E) be an arbitrary graph, and let n = |V |
and m = |E|. Then:

— Procedure Karger: The algorithm is executed
by contracting the edges of E until only two
nodes remain. The best implementations are
known to have a O(m) running time. [34]

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 465–481
doi: 10.13053/CyS-25-3-3901

A Structure-Driven Genetic Algorithm for Graph Coloring 473

ISSN 2007-9737

— Procedure Select: The complexity of the
procedure depends on the selection method
used. Since classical roulette wheel is used,
in this case, its complexity is O(n2). [13]

— Procedure Crossover: The crossover is
executed by copying the colors from parents
to offspring, which is made in linear time O(n).

— Procedure Harmonize: The Hungarian
algorithm is executed over a (k × k) matrix,
being k the current maximum allowed number
of colors to use. It can be implemented to run
in O(k3), and, given the fact that k < n (since
a n-coloring is trivial), then its complexity is
O(n3). The remaining part of the algorithm is
to map the colors made once for each node,
and thus linear in time O(n).

— Procedure Mutate: Mutation is made over
each node, so it is linear in time O(n)

— Procedure Replace: Replacement is just the
copying of one individual into another, and so
is linear in time O(n)

So with these information, the complexity of a
single step generation of the proposal is O(n3).

4 Experimental Results

This section presents the results obtained through
a series of experiments that show that the SDP-GC
algorithm is a feasible alternative to state-of-the-art
algorithms, producing competitive results for the
quality of the solutions and running times. The
algorithms and data structures described in the
previous chapter were coded in Python 3.7.2, using
NumPy 1.16.2.

The graphs used as input are a subset of the
DIMACS benchmark graphs for the graph coloring
problem, which is available to consult in the
following link: http://mat.gsia.cmu.edu/COLOR/

instances.html.
The present section is organized as follows:

section 4.1 presents the experiments that were
conducted during the initial phase of the SDP-GC
algorithm and is intended to explain some of the
design decisions. Next, Section 4.2 compares

the performance of SDP-GC in a broader set
of benchmark instances against the result of
some of the best state-of-art algorithms found in
the literature.

4.1 Design Decisions

This phase’s main objective is to explain some
of the decisions that were made during the
development of the SDP-GC algorithm. As
presented in the previous section, the critical
operation that guides the algorithm is the Karger

procedure that generates random cuts. Although
it might seem at first glance that working with
minimum cuts is better, the initial results of the
algorithm were discouraging. After analyzing
the algorithm’s output, we made an interesting
observation: in most graphs, the minimum cut is
an isolated vertex.

This provokes that the algorithm behaves in an
undesired way since colorings on isolated vertices
cannot be further improved or modified. This
observation led to the hypothesis that it might be
better for the algorithm to work with trully random
cuts, even if they are not minimum. Hence, the
first set of experiments were designed in order to
compare the variant of the algorithm that generates
its cuts with only one Karger iteration (named
1Karger) and the version of the algorithm that
works with the recommended number of Karger
iterations described in [48] (named FullKarger).

The next observation done was made during the
curse of the previous experiments: sometimes, the
algorithm failed to declare a valid coloring, even
when tremendous progress had been made. It is
worth to mention that, at this moment in the history
of the algorithm, a different fitness function was
being used: the fitness of an individual was simply
the number of edges that were conflict-free. While
this fitness function fulfilled its purpose (better
solutions had higher values), it was not giving a
clear idea of how much work was left to do. It is
for this reason that we introduced the new fitness
function given in Definition 4. With this new fitness
function, experiments showed that elite individuals
were close to a correct solution when a run was
declared unsuccessful.

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 465–481
doi: 10.13053/CyS-25-3-3901

Jose Aguilar-Canepa, Rolando Menchaca-Mendez, Ricardo Menchaca-Mendez, Jesus García474

ISSN 2007-9737

http://mat.gsia.cmu.edu/COLOR/instances.html
http://mat.gsia.cmu.edu/COLOR/instances.html

R
un

ni
ng

	ti
m

e	
(in

	se
co

nd
s)

20

40

60

80

100

120

Graph	instance	(1Karger)
myciel6 4-FullIns3 DSJC125.1 queen88 mug10025

R
un

ni
ng

	ti
m

e	
(in

	se
co

nd
s)

2000

4000

6000

8000

104

Graph	instance	(FullKarger)
myciel6 4-FullIns3 DSJC125.1 queen88 mug10025

Fig. 3. Performance comparison of 1Karger to FullKarger. The top row shows on the x-axis the name of the graph
instances and on the y-axis time needed to complete. It is clear that the increase in the number of iterations of the
Karger procedure also dramatically increases the running time. The bottom row shows on the x-axis the names of the
same graph instances of the top row, and on the Y-axis the number of iterations needed to find the χ(G): on most
graphs, 1Karger cuts almost by half the number of iterations. Boxes represent the values between the 9th and 91st
percentile

Ite
ra
tio

ns

0

200

400

600

800

1000

Graph	instance	(epsilon	=	0.01)
5-FullIns3 myciel7 DSJC125.5 zeroin.i.1 1-Insertions6

0

200

400

600

800

1000

Graph	instance	(epsilon	=	0.005)
5-FullIns3 myciel7 DSJC125.5 zeroin.i.1 1-Insertions6

200

400

600

800

1000

Graph	instance	(epsilon	=	0)
5-FullIns3 myciel7 DSJC125.5 zeroin.i.1 1-Insertions6

Fig. 4. Performance comparison of 1Karger version of the algorithm with varying values of ε. On the y-axis is the name
of the graph instances used, and on the x-axis, the required number of iterations to find a correct solution. As expected,
the greater the value of ε, the algorithm requires fewer iterations to complete

For this reason, we introduced the notion of
ε-coloring: a run is considered successful when
the fitness value of its elite individual is within a
(small) value ε of a valid coloring. The second

set of experiments was then designed to check the
impact of the ε-coloring on the rate of successful
runs with three different epsilon values (0.01, 0.005
and 0).

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 465–481
doi: 10.13053/CyS-25-3-3901

A Structure-Driven Genetic Algorithm for Graph Coloring 475

ISSN 2007-9737

The notion of the ε-coloring is widely used in
heuristics and approximation algorithms. It is
useful when the solution can tolerate imperfections
to a certain degree, and as Figure 4 shows, even
not too large values of ε lead to a dramatic increase
in the performance, nearly halving the number
of iterations needed to find a ”valid” coloring.
These solutions should not be considered ”bad”
for example, a 99% coloring of the DIMACS graph
mug100 25 (which has 166 edges) has only two
edges with conflicts. These edges could easily
be assigned a color by an external agent (either a
greedy algorithm or a human), and a valid coloring
would be obtained in half the time.

The third and final observation that determined
the algorithm’s design was made during the
previous two experiments. When monitoring
the algorithm’s execution state, we noticed that
progress towards a valid coloring is made much
more rapidly in the early stages of the execution
than in the final stages. It would not be uncommon
that, once a specific fitness is reached, the
algorithm would go for a relatively large number
of ”dead” iterations, in which no progress is made.
After analyzing the outputs of some executions,
we discovered the reason behind this behavior:
most of the progress the algorithm makes is made
during the harmonization procedure: is in this
stage where the number of conflicts presents the
most significant decrease.

Thus, once the graph has few conflicting edges,
it is hard to reduce its numbers if those edges are
not in the cutset.

To avoid this problem, we slightly modified the
Karger procedure with the notion of strict cut.
Typically, cuts are created entirely at random,
allowing the algorithm to explore the search space
freely. However, once the elite individual fitness
value surpasses a defined threshold, cuts start to
be created strictly : this means that, instead of
selecting the first edge to start the cut uniformly at
random, in a strict cut, we deterministically select
a conflicting edge to begin the creation of the
cut. This simple rule assures that at least one
conflicting edge will be inside the cut-set, and thus,
the algorithm will be able to eliminate said conflict.

Table 1. Instances in which SDP-GC found the optimal
coloring reported in the literature

Instance SDP Instance SDP
myciel3 4 myciel4 5
myciel5 6 myciel6 7
1-Insertions 4 5 1-Insertions 5 6
2-Insertions 3 4 2-Insertions 4 5
3-Insertions 3 4 3-Insertions 4 5
4-Insertions 3 4 1-FullIns 3 4
1-FullIns 4 5 2-FullIns 3 5
3-FullIns 3 6 3-FullIns 4 7
4-FullIns 3 7 5-FullIns 3 8
queen5 5 5 queen6 6 7
queen7 7 7 queen10 10 12
queen13 13 15

Optimal coloring

1 color behind

2 or more colors behind

Fig. 5. Overall performance of SDP-GC against the
reviewed algorithms. On half of the instances (23)
SDP-GC was able to find the optimal coloring, whilst in
almost a quart (11) the best coloring found is only 1 color
behind the best colorings reported. In the remaining
graphs, the coloring founds use 2 or more colors than
the best colorings reported

4.2 Performance Comparison

For this section, a subset of 46 benchmark graphs
commonly used on the literature was selected
to conduct the experiments. The algorithm was
executed a set amount of times for each one,
and the best result obtained is reported. These
results are compared against those collected from
a survey made on heuristic algorithms for graph

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 465–481
doi: 10.13053/CyS-25-3-3901

Jose Aguilar-Canepa, Rolando Menchaca-Mendez, Ricardo Menchaca-Mendez, Jesus García476

ISSN 2007-9737

Table 2. Instances in which SDP-GC failed to find optimal colorings by 1 color. Empty cells means that the corresponding
instance was not reported by the algorithm’s authors

Instance Best k SDP-GC PASS IPM Evo-Div SDGC
myciel7 8 9 8 8
2-FullIns 4 6 7 6 6
2-FullIns 5 7 8 7
3-FullIns 5 8 9 8
4-FullIns 4 8 9 8
queen8 8 9 10 9
queen8 12 12 13 12 12
queen9 9 10 11 10 10 11
queen11 11 13 14 13 13 13
queen12 12 14 15 14 14 14
queen14 14 16 17 16 16

Table 3. Instances in which SDP-GC failed to find optimal colorings by 2 or more colors. Empty cells means that the
corresponding instance was not reported by the algorithm’s authors

Instance Best K SDP-GC IPM PASS EXSCOL MMT

1-Insertions 6 7 9 7 7

2-Insertions 5 6 8 6

3-Insertions 5 6 9 6

4-Insertions 4 5 7 5 5

1-FullIns 5 6 8 6 6

DSJC125.1 5 7 6 5 7 5

DSJC125.5 17 20 19 19 20 17

DSJC125.9 44 49 46 44 44

DSJC250.1 8 11 10 9 10 8

DSJC250.5 28 33 34 31 28

DSJC500.1 12 15 14 14 12

DSJC500.5 47 52 62 51 48

coloring. The algorithms reviewed are listed
as follows:

— HEA (Galinier and Hao, 1999) [25],

— CRI (Herrmann and Hertz, 2000) [30],

— CHECKCOL (Caramia et. al., 2006) [11],

— MMT (Malaguti, Monaci and Toth, 2008) [41],

— IPM (Dukanovic and Rendl, 2008) [20],

— AMACOL (Galinier, Hertz and Zufferey, 2008)
[26],

— FOO-PARTIALCOL (Blochliger and Zufferey,
2008) [5],

— MACOL (Lu and Hao, 2010) [40],

— Evo-Div (Porumbel and Kuntz, 2010) [51],

— QA-col (Titiloye and Crispin, 2011) [57],

— EXTRACOL (Wu and Hao, 2012) [58],

— EXSCOL (Wu and Hao, 2012) [59],

— PASS (San Segundo, 2012) [54],

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 465–481
doi: 10.13053/CyS-25-3-3901

A Structure-Driven Genetic Algorithm for Graph Coloring 477

ISSN 2007-9737

m
yc

ie
l7

1-
in

se
rti

on
s_

6

2-
in

se
rti

on
s_

5

3-
in

se
rti

on
s_

5

4-
in

se
rti

on
s_

4

1-
Fu

llI
ns

_5

2-
Fu

llI
ns

_4

2-
Fu

llI
ns

_5

3-
Fu

llI
ns

_5

4-
Fu

llI
ns

_4

qu
ee

n8
_8

qu
ee

n8
_1

2

qu
ee

n9
_9

qu
ee

n1
1_

11

qu
ee

n1
2_

12

qu
ee

n1
4_

14

DS
JC

12
5.

1

DS
JC

12
5.

5

DS
JC

12
5.

9

DS
JC

25
0.

1

DS
JC

25
0.

5

DS
JC

50
0.

1

DS
JC

50
0.

5

10
20

30
40

50

gendp
mean results

Fig. 6. Performance comparison of SDP-GC against the mean results found in the literature in unfavorable instances.
When compared with a broad amount of proposals, the performance of SDP-GC is quite close to the mean performance

— HPGA (Abbasian and Mouhoub, 2013) [1],

— B&C (Bahiense and Ribeiro, 2014) [4],

— RLS (Zhou, Hao and Duval, 2016) [64],

— SDGC (Galan, 2017) [24],

— HEAD (Moalic and Gondran, 2018) [49].

Figure 5 shows the overall algorithm’s perfor-
mance. On the universe of graphs selected, in
half of them (23 instances) our proposal was able
to find colorings using the same amount of colors
reported on the literature as being the optimal.
On the other half, in 11 instances (23%) the
colorings found by our algorithm fall behind the
results reported in the literature by 1 color. These
instances (as well as some results from other
authors) are reported in Table 2.

Table 3 shows the results on instances in which
the colorings found by SDP fall behind the best
ones reported in the literature by 2 or more colors.
It is important to note that, even when SDP-GC
wasn’t able to replicate the best results, it produced

colorings using the same amount of colors (or even
less) than others authors.

When compared with those reported, exper-
imental results show that SDP-GC produces
competitive results in most instances, while in
others, the colorings found are close enough to
be acceptable.

5 Conclusions and Future Work

The proposed algorithm was built using a standard,
feature-less genetic algorithm, which is often
regarded as a poor choice to solve combinatorial
optimization problems. Through a careful design
of genetic operators that incorporate information
inherent to the graph coloring problem’s structure,
and using principles inspired by dynamic program-
ming, a fast and straightforward genetic algorithm
was designed.

The proposed algorithm was codified, and a
series of experiments were carried out over a set of
benchmark instances to analyze its performance.
Although the results were initially not as good

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 465–481
doi: 10.13053/CyS-25-3-3901

Jose Aguilar-Canepa, Rolando Menchaca-Mendez, Ricardo Menchaca-Mendez, Jesus García478

ISSN 2007-9737

as expected, these results helped to make some
decisions during the initial stages of development.
In the end, they lead to the final design of
the genetic operators that allowed the proposed
algorithm to improve its performance, which makes
it a competitive and interesting alternative for
graph coloring.

Although dynamic programming principles were
successfully applied to a genetic algorithm for the
graph coloring problem, a generalization of it to be
applied to a broader amount of problems would
also be of interest. This is the main topic of
research in which the authors are interested at
this moment.

Bibliography

1. Abbasian, R., Mouhoub, M. (2013). A hierarchical
parallel genetic approach for the graph coloring
problem. Applied Intelligence, Vol. 39.

2. Ackley, D. (1987). A Connectionist Machine for
Genetic Hillclimbing. Kluwer Academic Publishers.

3. Assi, M., Halawi, B., Haraty, R. (2018).
Genetic algorithm analysis using the graph coloring
method for solving the university timetable problem.
Procedia Computer Science, Vol. 126, pp. 899–906.

4. Bahiense, L., Ribeiro, C. (2014). A branch-and-cut
algorithm for the equitable coloring problem using
a formulation by representatives. Discrete Applied
Mathematics, Vol. 164, pp. 34–46.

5. Blöchliger, I., Zufferey, N. (2008). A graph coloring
heuristic using partial solutions and a reactive
tabu scheme. Computers and Operations Research,
Vol. 35, No. 3, pp. 960–975.

6. Bodlaender, H., Kratsch, D. (2006). An exact
algorithm for graph coloring with polynomial
memory. UU-CS, Vol. 2006.

7. Bollobás, B., Thomason, A. (1985). Random
graphs of small order. In North-Holland Mathematics
Studies, volume 118. Elsevier, pp. 47–97.

8. Brélaz, D. (1979). New methods to color the vertices
of a graph. Communications of the ACM, Vol. 22,
No. 4, pp. 251–256.

9. Brown, J. (1972). Chromatic scheduling and the
chromatic number problem. Management Science,
Vol. 19, No. 4-part-1, pp. 456–463.

10. Byskov, J. M. (2002). Chromatic number in
time O(2.4023n) using maximal independent sets.
BRICS Report Series, Vol. 9, No. 45.

11. Caramia, M., Dell’Olmo, P., Italiano, G. (2006).
CHECKCOL: Improved local search for graph
coloring. Journal of Discrete Algorithms, Vol. 4,
No. 2, pp. 277–298.

12. Carter, A., Ragsdale, C. (2006). A new approach to
solving the multiple traveling salesperson problem
using genetic algorithms. European Journal of
Operational Research, Vol. 175, pp. 245–257.

13. Coello, C. (2018). Introducción a la Computación
Evolutiva (Notas de Curso). Departamento de
Computación CINVESTAV-IPN.

14. Costa, D., Hertz, A. (1997). Ants can colour graphs.
Journal of the Operational Research Society,
Vol. 48, No. 3, pp. 295–305.

15. Costa, D., Hertz, A., Dubuis, C. (1995). Embedding
a sequential procedure within an evolutionary
algorithm for coloring problems in graphs. Journal
of Heuristics, Vol. 1, No. 1, pp. 105–128.

16. Davis, L. (1991). Order-based genetic algorithms
and the graph coloring problem. In Handbook of
Genetic Algorithms. pp. 72–90.

17. De Jong, A. (1975). An Analysis of the Behavior of
a Class of Genetic Adaptive Systems. Ph.D. thesis,
University of Michigan.

18. Dorne, R., Hao, J.-K. (1999). Tabu search for graph
coloring, T-colorings and set T-colorings. In Meta-
heuristics. Springer, pp. 77–92.

19. Douiri, S., Bernoussi, S. (2011). A new heuristic
for the sum coloring problem. Applied Mathematical
Sciences, Vol. 63, No. 5, pp. 3121–3129.

20. Dukanovic, I., Rendl, F. (2008). A semidefinite
programming-based heuristic for graph coloring.
Discrete Applied Mathematics, Vol. 156, pp. 180–
189.

21. Eppstein, D. (2001). Small maximal independent
sets and faster exact graph coloring. Workshop
on Algorithms and Data Structures, Springer,
pp. 462–470.

22. Fleurent, C., Ferland, J. (1996). Genetic and hybrid
algorithms for graph coloring. Annals of Operations
Research, Vol. 63, No. 3, pp. 437–461.

23. Furini, F., Virginie, G., Ternier, I. (2017).
An improved DSATUR-based branch-and-bound
algorithm for the vertex coloring problem. Networks,
Vol. 69, No. 1, pp. 124–141.

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 465–481
doi: 10.13053/CyS-25-3-3901

A Structure-Driven Genetic Algorithm for Graph Coloring 479

ISSN 2007-9737

24. Galan, S. (2017). Simple decentralized graph col-
oring. Computational Optimization and Applications,
Vol. 66.

25. Galinier, P., Hao, J.-K. (1999). Hybrid evolutionary
algorithms for graph coloring. Journal of Combinato-
rial Optimization, Vol. 3, No. 4, pp. 379–397.

26. Galinier, P., Hertz, A., Zufferey, N. (2008).
An adaptive memory algorithm for the k-coloring
problem. Discrete Applied Mathematical, Vol. 156,
pp. 267–279.

27. Goldberg, D. (1989). Genetic algorithms in search,
optimization, and machine learning. Addison Wes-
ley Longman.

28. Greffenstate, J. (1987). Incorporating problem
specific knowledge into a genetic algorithm. In
Genetic Algorithms and Simulated Annealing.
pp. 42–60.

29. Gualandi, S., Malucelli, F. (2012). Exact solution of
graph coloring problems via constraint programming
and column generation. Informs Journal on Comput-
ing, Vol. 24, No. 1, pp. 81–100.

30. Herrmann, F., Hertz, A. (2000). Finding the
chromatic number by means of critical graphs.
Electronic Notes in Discrete Mathematics, Vol. 5,
pp. 174–176.

31. Hertz, A., de Werra, D. (1987). Using tabu search
techniques for graph coloring. Computing, Vol. 39,
No. 4, pp. 345–351.

32. Hertz, A., Plumettaz, M., Zufferey, N. (2008).
Variable space search for graph coloring. Discrete
Applied Mathematics, Vol. 156, No. 13, pp. 2551–
2560.

33. Johnson, D., Aragon, C., McGeoch, L., Schevon,
C. (1991). Optimization by simulated annealing: an
experimental evaluation; part II, graph coloring and
number partitioning. Operations Research, Vol. 39,
No. 3, pp. 378–406.

34. Karger, D. (1993). Global min-cuts in RNC and
other ramifications of a simple mincut algorithm.
Proc. 4th Anual ACM-SIAM Symposium on Discrete
Algorithms.

35. Karp, R. (1972). Reducibility among combinatorial
problems. In Complexity of computer computations.
Springer, pp. 85–103.

36. Kuhn, H. (1955). The hungarian method for the
assignment problem. Naval Research Logistics
Quarterly, Vol. 2, pp. 83–97.

37. Lawler, E. (1976). A note on the complexity of the
chromatic number problem. Inform. Process. Lett.,
Vol. 5, No. 3, pp. 66–67.

38. Leighton, F. (1979). A graph coloring algorithm for
large scheduling problems. Journal of research of
the national bureau of standards, Vol. 84, No. 6,
pp. 489–506.

39. Lourenço, H., others (2002). Iterated local search.
In Handbook of Metaheuristics. pp. 321–352.

40. Lu, Z., Hao, J. (2010). A memetic algorithm for
graph coloring. European Journal of Operational
Research, Vol. 203, pp. 241–250.

41. Malaguti, E., Monaci, M., Toth, P. (2008). A
metaheuristic approach for the vertex coloring
problem. Informs Journal on Computing, Vol. 20,
No. 2, pp. 302–316.

42. Malaguti, E., Monaci, M., Toth, P. (2011). An exact
approach for the vertex coloring problem. Discrete
Optimization, Vol. 8, No. 2, pp. 174–190.

43. Malaguti, E., Toth, P. (2010). A survey on vertex
coloring problems. International Transactions in
Operational Research, Vol. 17, pp. 1–34.

44. Matula, D., Beck, L. L. (1983). Smallest-last
ordering and clustering and graph coloring algo-
rithms. Journal of the ACM (JACM), Vol. 30, No. 3,
pp. 417–427.

45. Mehrotra, A., Trick, M. (1996). A column generation
approach for graph coloring. Informs Journal on
Computing, Vol. 8, No. 4, pp. 344–354.

46. Mirsaleh, M., Meybodi, M. (2016). A new memetic
algorithm based on cellular learning automata
for solving the vertex coloring problem. Memetic
Comp., Vol. 8, pp. 211–222.

47. Mirsaleh, M., Meybodi, M. (2017). A michigan
memetic algorithm for solving the vertex coloring
problem. Journal of Computer Science.

48. Mitzenmacher, M., Upfal, E. (2005). Probability and
Computing. Randomized Algorithms and Probabilis-
tic Analysis. Cambridge University Press.

49. Moalic, L., Gondran, A. (2018). Variations on
memetic algorithms for graph coloring problems.
Journal of Heuristics, Vol. 24.

50. Munkres, J. (1957). Algorithms for the assignment
and transportation problems. Journal of the Society
for Industrial and Applied Mathemathics, Vol. 5,
No. 1, pp. 32–38.

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 465–481
doi: 10.13053/CyS-25-3-3901

Jose Aguilar-Canepa, Rolando Menchaca-Mendez, Ricardo Menchaca-Mendez, Jesus García480

ISSN 2007-9737

51. Porumbel, D., Kuntz, P. (2010). An evolu-
tionary approach with diversity guarantee and
well-informed grouping recombination for graph
coloring. Computers and Operations Research,
Vol. 37, pp. 1822–1832.

52. Reeves, C. (1993). Modern Heuristic Techniques for
Combinatorial Problems. John Wiley & Sons.

53. Salari, E., Eshghi, K. (2005). An ACO algorithm
for graph coloring problem. 2005 ICSC Congress
on Computational Intelligence Methods and Appli-
cations, IEEE, pp. 5.

54. San Segundo, P. (2012). A new DSATUR-based
algorithm for exact vertex coloring. Computers
and Operations Research, Vol. 39, No. 7,
pp. 1724–1733.

55. Sewell, E. (1998). A branch and bound algorithm
for the stability number of a sparse graph. Informs
Journal on Computing, Vol. 10, No. 4, pp. 438–447.

56. Thanh, P., Binh, H., Lam, B. (2015). New
mechanism of combination crossover operators in
genetic algorithm for solving the traveling salesman
problem. Advances in Intelligent Systems and
Computing, Vol. 326, pp. 367–329.

57. Titiloye, O., Crispin, A. (2011). Graph coloring with
a distributed hybrid quantum annealing algorithm.
Agent and Multi-Agent Systems: Technologies and
Applications, volume 6682.

58. Wu, Q., Hao, J. (2012). Coloring large graphs
based on independent set extraction. Computers
and Operations Research, Vol. 39, pp. 283–290.

59. Wu, Q., Hao, J. (2012). An effective heuristic
algorithm for sum coloring of graphs. Computers
and Operations Research, Vol. 39, pp. 1593, 1600.

60. Xie, X.-F., Liu, J. (2009). Graph coloring by
multiagent fusion search. Journal of Combinatorial
Optimization, Vol. 18, No. 2, pp. 99–123.

61. Younas, I., Kamrani, F., Bashir, M., Schubert,
J. (2018). Efficient genetic algorithms for optimal
assignment of tasks to teams of agents. Neurocom-
puting, Vol. 314, pp. 409–428.

62. Yuan, S., Skinner, B., Huang, S., Liu, D.
(2013). A new crossover approach for solving
the multiple travelling salesmen problem using
genetic algorithms. European Journal of Operational
Research, Vol. 228, pp. 72–82.

63. Zhang, H., others (2019). A hybrid adaptely
genetic algorithm for task scheduling problem in
the phased array radar. European Journal of
Operational Research, Vol. 272, pp. 868–878.

64. Zhou, Y., Hao, J., Duval, B. (2016). Reinforcement
learning based local search for grouping (2016)
problems: a case study on graph coloring. Expert
Systems with Applications, Vol. 64.

Article received on 15/02/2021; accepted on 02/04/2021.
Corresponding author is Rolando Menchaca-Mendez.

Computación y Sistemas, Vol. 25, No. 3, 2021, pp. 465–481
doi: 10.13053/CyS-25-3-3901

A Structure-Driven Genetic Algorithm for Graph Coloring 481

ISSN 2007-9737

