
Comparative Study of Particle Swarm Optimization
and Differential Evolution Algorithms

on a Graphics Processing Unit

Gerardo Laguna-Sanchez1, Mauricio Olguín-Carbajal2,*, Juan Carlos Herrera-Lozada2,
O. Cervantes Martinez2

1 Universidad Autónoma de México, Unidad Lerma,
Mexico

2 Instituto Politécnico Nacional,
Centro de Innovación y Desarrollo Tecnológico en Cómputo,

Departamento de posgrado,
Mexico

g.laguna@correo.ler.uam.mx, molguinc@ipn.mx, jcrls.ipn@gmail.com,
ocervantesm2100@alumno.ipn.mx

Abstract. Bio-inspired algorithm such Differential

Evolution (DE) and Particle Swarm Optimization (PSO)
algorithms are well-known alternative options for hard to
optimize problems settled with bio-inspired heuristics.
Both algorithms have low computational complexity,
good performance, and need only a few working

parameters and have a good performance. This paper
shows a comparative study for parallel implementations

of these two well-known heuristics, as long as these are
population-based algorithms their coding an
implementation on a Graphics Processing Unit device

using CUDA as base of parallel programming are now

common topics. Our main objective is to obtain the
algorithm performance of both DE and PSO algorithms
operating on a GPU and compare both algorithms with
their sequential and parallel implementations. The result
of our research shows that executing a parallel algorithm
in a GPU changes the convergence behavior to the
global optimum and it will present a decrease in
computation time and its performance may be very
different, with respect to the same algorithm but
programmed in a sequential programming.

Keywords. GPU, particle swarm optimization,

multithreading, differential evolution,
parallel programming.

1 Introduction

In one hand using computational power that yields
on the Graphics Processing Units (GPU) cards

with the aim to solve problems of general purpose
[1, 2] is a topical issue. On the other hand, many
bio-inspired algorithms, due to its own nature, can
be parallelized as consequence of their population-
based feature, see [3]. Some authors show that it
is possible to achieve acceleration for parallelized
bio-inspired population based algorithms just like
Particle Swarm Optimization (PSO) algorithm
when running inside a multi-threaded GPU [4, 5,
37], the parallel coding style used was the
suggested in the C-CUDA programming tool [6]. In
a previous work [3] we found that the best
achievement could be reached when the complete
set of experiments of the PSO algorithm was
carried out by the GPU inspired by an parallel
strategy called diffusion, which is already used in
the field of parallel programming [7].

In their research, Cantú-Paz called embedded
to the parallel execution they implemented
because in the diffusion implementation there is
only one processing entity per agent, while in the
Cantú-Paz model they use one thread per agent
(individual) instead of one processing entity per
individual. Other bio-inspired algorithms like
Differential Evolution (DE) [8], Evolutionary
Computing [9], Ant Colony Optimization [10], and
PSO [11] were implemented and tested as
alternatives to find good results in hard-to-optimize
problems getting good solutions in a satisfactory

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 337–352
doi: 10.13053/CyS-29-1-3896

ISSN 2007-9737

mailto:jfserranotal@gmail.com

time. As long as these method work with a set of
agents (individuals or particles), they trial several
solutions at once supported on a set of rules and
random procedure. These and another set of
heuristic rules have been applied successfully a in
most fields of human knowledge, generating
acceptable results with good performance, running
on all types of computer systems, including
personal computers, see [12].

In this paper parallel versions of DE and PSO
algorithms coded for GPU with multi-threading
capacity are presented, the results obtained of DE
and PSO these versions coded for parallel running
are analyzed and compared as a new research
activity of an earlier investigation [3]. The DE and
PSO algorithms were selected since both of them
are very popular and their general structure is
practically the same. The computing power
delivered by the GPU provides a processing speed
increase, however, it also shows slightly different
behavior from proposed parallel implementations,
but with significant results compared
to sequential implementations.

All of the above is a consequence of the GPU
requirements to generate the random numbers
needed to maintain diversity for the population-
based heuristics.

The main contributions in this research are:

1) The alternative parallel implementation for
both PSO and DE algorithms used.

2) The comparison of sequential and parallel
implementations for both PSO and DE.

3) The random numbers generation offline
approach used.

This paper is arranged as follows. Section 2
presents a short summary of related research.
Section 3 shows a short description of the DE and
PSO. Section 4 presents technical overviews of
our parallel implementations. Section 5 informs the
setup for the experiments and their results. In
Section 6, we expose our opinions and
conclusions.

2 Related Work

In many cases, parallel codification starts from a
migration of a sequential programming code

previously developed for sequential architectures
and suitable for parallel or distributed architectures.
In the case of population algorithms (such as
Genetic Algorithms, Evolutionary Strategies, DE,
Ant Colony Optimization, PSO, etc.), once their
usefulness in sequential architectures had been
demonstrated, attempts were made to use the
computational power and its natural parallelism, as
in the work of Roberge et al. [13] and
Cantú - Paz [6].

In the previous works carried out in this area,
the proposals based on traditional concurrent
processes, which are executed in a single
processing entity, can be highlighted, see [14].
However, in many other related works they are
designed to work in heterogeneous architectures
of several processors (like a Beowulf-type network
or similar). One of the problems associated with
this type of architecture lies in the communication
overhead between different processing entities, a
element that affects the performance of overall
execution. Despite this, the parallelization of
population-based algorithms is a common topic in
research, as can be seen in recent research works
that use parallel implementations using population-
based bio-inspired heuristics to solve hard to
optimize complex functions (see [15,3]).

Concerning the parallelization of population
based algorithms in GPU, some of the first
proposals were developed with Genetic
Programming (GP), see [16]. More recently some
research have been made by using Genetic
Algorithm C- CUDA parallel programing using a
GPU to crack Hash Function SHA-1, see [17]. In
more recent times many population algorithms
have been implemented in GPUs, see [36].
Regarding the CUDA language C, population
algorithm implementations were carried out and
one of the first was PSO, the authors took
advantage of the advantages provided by an
NVIDIA multi-threaded GPU. To carry out this work
they used the CUDA programming tool in order to
parallelize a PSO algorithm directly, see [3].

More recently Krause et al. [18] presented a DE
algorithm programmed in C-CUDA and was one
DE executed in a GPU, followed by more
implementations, highlighting those by Fabris [19]
and Casella [20]. In literature it is possible find
works on comparing PSO vs. DE, but they are
related to sequential implementations, like in [21,

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 337–352
doi: 10.13053/CyS-29-1-3896

Gerardo Laguna-Sanchez, Mauricio Olguín-Carbajal, et al.338

ISSN 2007-9737

22]. Youseff et al. have done a comparative study
for DE vs PSO vs Scatter Search running on a
GPU. There exists a development that uses both
DE and PSO for model-based object detection,
[23], but the comparison is made for a specific
problem and is hard to compare against test
functions commonly used. So authors
acknowledge, there is no empirical study on
comparing only DE vs. PSO running on a
multithreading GPU for a set of test functions. This
research shows an experimental study comparing
parallel DE and PSO algorithms against their
sequential variants running on a multi-
threading GPU.

3 Overview of the Two Well-known
Population-Based Algorithms

DE and PSO algorithms are both population-based
algorithms that have proven their success in
solving difficult optimization problems and are two
of the most widely used bio-inspired algorithms for
this kind of problems. Although their general
constitution is similar (both have initialization,
fitness evaluation, comparison and updating
blocks), they use different rules for comparison
and updating.

On one hand, the PSO algorithm is a
collaborative strategy that finds a solution as a
result of the movement of individuals that try to
imitate the best individual of a neighborhood (local
or global). On the other hand, when using
Differential Evolution, individuals not only form
teams of individuals to generate their offspring
(using recombination and mutation operators) that
actively try to enhance the better individual in the
current population.

From the No Free Lunch Theorem [24], it is
known that the success or failure of using a small
set of well-performing reference functions does not
ensure that an algorithm exhibits the same
behavior for a different set of functions or for
practical problems. Likewise, bio-inspired
heuristics are also known to be aggressive on a set
of problems. The goal of our research therefore is
to supply a general description of the methodology
that the GPU can use to decrease the convergence
time according to the nature of the problem and its
relationship with respect to the execution time and

its dependence on the number of individuals or
particles, as well as the number of iterations.

3.1. Particle Swarm Optimization Algorithm

From a study about the displacement of groups of
birds that fly in a space of n dimensions and seek
to solve, in a collaborative way, a problem with a
global optimum, arise the Particle Swarm
Optimization (PSO). At first, PSO algorithm was
developed by Heberhart and Kennedy in 1995 [9],
starting from the study of the position in the x-
space and the variation of the v position(called
velocity) for each particle.

In 1998, Shi and Heberhart [25] improved the
algorithm, defined the concept of inertia (w), which
improved the performance of the algorithm and
increased its efficiency. Recent research has
shown that the number of particles and their
neighbors also modify the behavior of the
algorithm, showing that the best value for a
neighborhood is six particles [26].

To describe a PSO algorithm, pbx is defined as
the better fitness found by the bird (particle) in a
local individual search and gbx as the best global
fitness of the entire population found so far, then a

basic PSO algorithm in a global version is
described as follows:

Algorithm 1:

(1) Population initialization. Setting up each
particle of the initial population, by calculating an
initial random number, calculating the values for
the n-dimensional vectors corresponding to each
xy position as well as v velocity.

(2) Fitness assessment. The fitness obtained from
the xy position must be computed for each particle.
If the fitness obtained by the current particle
position has better value than pbx, then pbx
should take the calculated fitness and update.

(3) Comparison. Calculate the position of the
particle having the best fitness and compare with
the best overall fitness gbx.

(4) Update. For every element of the vector x, of
each particle, the velocity must be calculated and
actualized according to the next mathematical
statement:

vi,d (t + 1) = w × vi,d (t),

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 337–352
doi: 10.13053/CyS-29-1-3896

Comparative Study of Particle Swarm Optimization and Differential Evolution Algorithms ... 339

ISSN 2007-9737

+ c1 × r1 × (pbxi, d – xi,d (t)),

+ c2 × r2 × (gbxi, d – xi,d (t)),

where c1 and c2 are constants that weigh the social
influence and individual learning; r1 and r2 are
random variables, with values from 0 to 1, which
represent the non-restricted movement for each
particle, and the system inertia (w) is calculated as:

𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
× 𝑖𝑡𝑒𝑟 ,

where itermax, iter, wmax, and wmin are the
maximum inertia value, minimum inertia value,
maximum iterations, and current
iteration, respectively.

(5) Update. For each particle, the x value using the
following equation:

xi, d (t + 1) = xi, d(t) + vi, d(t + 1).

(6) Loop. The repetition of steps 2 to 5 until reach
the ending condition.

Finally, the velocity of each particle, in the PSO
implementation, is bounded in a range [Vmin, Vmax]
in order to prevent exploding behavior.

3.2. Differential Evolution Algorithm

Differential Evolution (DE) appeared when in 1996
K. Price and R. Storm tried to fit parameters for
Chebyshev polynomials [10]. There are different
variations from original DE algorithm [27, 28, 29].

The DE variant that is most used is called
DE/rand/1/bin, this is a Differential Evolution
algorithm (DE) that generates his breed by using a
random selection (rand), with one pair of difference
vectors used (1), and a binary crossover scheme
(bin). Basic DE/rand/1/bin algorithm works
as follows:

Algorithm 2:

(1) Population initialization. Define initial
population with N random individuals Xi,G for first
generation G = 1.

(2) Evolution and fitness evaluation (Mutation step).
For current generation G, and for each Xi,G vector,
where i = 1, · · · , N , a test vector V is generated
according with:

Vi,G+1 = Xr1,G + F × (Xr2,G − Xr3,G).

where r1, r2, r3∈ [1, N] are assorted integers, and
F must be grater than zero. F is a real constant
factor which controls the difference variation.
Integers values for r1, r2, and r3 must be randomly
selected with an interval [1, N] and must be
different of current index i. So that
N >= 4 individuals.

(3) Crossover step. In order to increase vector
diversity, a trial vector U is defined, element by
element as:

Vi,G+1 if randj < CR or j = jrand,

Ui,j,G+1 = Xi,j,G+1 else.

Fig. 1. General structure of both sequential PSO and

sequential DE algorithms, for host-only execution

Fig. 2. The general structure of both sequential PSO

and sequential DE algorithms, for host-GPU execution

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 337–352
doi: 10.13053/CyS-29-1-3896

Gerardo Laguna-Sanchez, Mauricio Olguín-Carbajal, et al.340

ISSN 2007-9737

where j is the element index, randj is a uniform
stochastic number between 0 and 1, and jrand is a
randomly selected index from 1 to D, with D the
dimensionality of the problem, which ensures that
Ui,G+1 has one parameter, at least, from Vi,G+1. CR
∈ [0, 1] is the crossover probability and constitutes
one control variable, which has shown to be
determinant to find optimal values in functions with
separable variables when CR is small.

(4) Comparison and updating (Selection step). To
select the vector U that must turn a part of G + 1
generation, Ui,G+1 (trial vector) is compared to the
target vector Xi,G. If U vector has a better fitness
value than Xi,G then Xi,G+1 is set to U, otherwise
previous Xi,G is retained.

(5) Repeat steps 2 to 4 until reach the termination
condition (i.e. iterations).

We must highlight that, in order to obtain better
results and with different types of problems,
specific parameters for the problem and fixed
parameters must be set up in the algorithm [30, 31].

4 Parallel Implementation with C-
CUDA

As a starting point for the parallelization of
population heuristics, the parallel categorization
proposed for evolutionary algorithms in [32] was
considered as a reference point, such as diffusion
approach, migratory approach and global
approach. In the work developed in [3], it should be
noted that suitable way of the programming of
parallel algorithms based on the population, in a
GPU, is a so-called diffusion implementation.

In the broadcast scheme, there is a GPU thread
for each individual, so that the calculation and
evaluation of the fitness of a single individual is
performed by a single GPU thread. For other part,
comparisons between particles (individuals for DE)
are accomplish inside the GPU following a thread
synchronization process. This parallel variant is
called Embedded by the authors, this is because
almost all of the functional blocks are calculated
within the GPU, only the initialization is done on the
host. Therefore, the integrated approach was
selected as the methodology coding basis for the
parallel version of the PSO and DE heuristic
algorithms on the Graphic processor card.

The DE and PSO heuristics described in
Algorithms 1 and 2 will be implemented in a parallel
programming using an encoding strategy that uses
only one thread per individual and to execute code
from a specific population algorithm it uses a kernel
call. Therefore, inside the GPU all the particles are
updated simultaneously, in the case of sequential
code, the position update is carried out one particle
after another, that is, particle by particle.

The functional blocks of the metaheuristic can
be seen below:

 Initialization. Sets the initial random values of
the particles that make up the initial population.

 Assessment of fitness function.

 Comparison. Find the fitness for all the

particles and the select the best one in the
population and compares it with the best
registered one.

 Upgrade. Each particle updates its position
according to the rules of the specific algorithm.

To explain the process of code parallelization,
we have rearranged the sequential functional
blocks, highlighting that the loops are in terms of
the number of individuals. On the one hand, it must
be taken into account that all function blocks run
on host processor, for sequential implementation
(see Fig. 1). On the other hand, only the
initialization module is executed on the host
processor for the case of our parallel
implementation, called embedded (see Fig. 2), this
is because the kernel call is associated with the
optimization process, which includes: the
comparison, fitness assessment, and upgrade
modules, all run on the GPU using multiple threads
(remembering it's one for each particle), waiting for
a termination condition to be reached.

As for the initialization module, the timer start
seeds for the random numbers of the particle (one
seed per thread), worked up on the host and
remains as the only task executed outside the
GPU. The precondition ensures diverse random
number generation and good GPU fitness for each
thread. This results in a different comportment o
manner in relation to sequential algorithms, as
shown in the experimental results. It should be
noted that the generation of random numbers was
carried out differently for parallel and sequential
programming, this was due to the fact that the

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 337–352
doi: 10.13053/CyS-29-1-3896

Comparative Study of Particle Swarm Optimization and Differential Evolution Algorithms ... 341

ISSN 2007-9737

generation of random numbers presents a great
difficulty inside the GPU from the same seed in the
environment inside the GPU. The traditional way of
generating random numbers (through the use of a
single seed) was maintained for the case of
sequential codes, while parallel codes used
different seeds, one for each particle in the
population, as will be described later.

The kernel call is made through the
device_xxx_eval_comp_upd << >> () instruction,
where xxx can be DE or PSO, depending on which
algorithm was implemented, see fig. 2. For the
functional implementation in coding a set of parallel
population algorithms in the GPU, there is a set of
practical considerations to take into account:

 Overhead. The GPU will experience the
phenomenon of overload due to the waiting
time (latency) in the memory transfers
between the GPU device and the computer
acting as host. Since transfers are
comparatively slow, (relative to in-GPU
computation) any parallel GPU implementation
should minimize their use.

 Synchronization. Due to the very nature of
population-based heuristic algorithms,
individuals must share status information with
each other, at least the best fitness, in our
proposed parallel implementation the threads
(i.e. individuals) have to communicate among
themselves and a good synchronization is
particularly important.

 Contention. When multiple threads
simultaneously review global variables, a
resource access problem is generated on the
GPU, this is called contention. To face this
problem, adequate precautions must be
incorporated, in particular for the PSO and DE
algorithms. In the case of population-based
algorithms tested, contention occurs when an
attempt is made to access the memory area
corresponding to the index of the best
global individual.

 Random number generation. As in all the

stochastic process, you must be very careful
since a problem can be generated when the
random numbers must be generated within the
GPU environment and the strategy for seed
initialization is neglected. When calling a

random number generation function like rand ()
to run on the GPU, you must ensure that
numbers are generated for each call and for
each thread. In case a set of different numbers
is not guaranteed, it can cause the algorithm to
have poor convergence or to be in fact non-
convergent due to low diversity, since all the
random numbers were generated identical for
each particle.

5 Experiments

The system where the experiments were carried
out is a personal computer using an Intel Core Duo
processor with Fedora Linux OS (this in order to
make the most equitable comparison with previous
work, see [3]), this computing system is what we
call host for this work. The graphics accelerator
card installed in the host is an NVIDIA GeForce
8600GT GPU card with 4 multiprocessors, each of
the multiprocessors consisting of 8 cores,
representing a total of 32 processing cores and
with 256 Mbytes of working memory. Each
processing core was programmed using the
environment that allowed writing parallel code for
the GPU directly, the CUDA environment, since C-
CUDA parallel calls were used, as
described previously.

The purpose of the set of experiments that were
carried out in order to be able to measure the
performance of the DE algorithm in its parallel
version and PSO, with respect to the sequential
versions and between them. The experimentation
consisted of the measurement For the set of
functions with which the tests were performed, the
functions were taken from a well-known reference
set [30]. The calculation of the performance of the
PSO and DE algorithms in their sequential and
parallel versions was carried out by varying the
iterations and the number of individuals while the
optimization phase of the objective functions of
each of the particles is carried out.

The selected test functions were carefully
chosen. It can be seen that in the optimization of
Function F01 PSO in its sequential form, it has a
better convergence than the rest of the algorithms,
followed by parallel DE, while sequential DE and
parallel PSO algorithms they present an
impoverishment in the results as the number of

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 337–352
doi: 10.13053/CyS-29-1-3896

Gerardo Laguna-Sanchez, Mauricio Olguín-Carbajal, et al.342

ISSN 2007-9737

individuals increases. It is important to highlight the
very different behavior of the parallel DE and PSO
algorithms. In figure 10, it can be seen that during
the optimization process of the F02 function, that
the algorithm with the best convergence is the
parallel DE algorithm, followed by the parallel PSO.
n considering that they have a high optimization
complexity for which four multimodal functions
were chosen [33]:

 F01 - Generalized Rosenbrock function:

𝑓1(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)

2
+ (𝑥𝑖 − 1)2] ,

𝑛−1

𝑖=1

−30 < xi < 30,

min(f1) = f1 (1, 1, · · · , 1) = 0,

with n = 30 dimensions.

 F02 - Generalized Rastrigin’s function:

𝑓1(𝑥) = ∑[𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10],

𝑛

𝑖=1

−5.12 < xi < 5.12

min(f2) = f2 (0, 0,· · · , 0) = 0

with n = 30 dimensions.

 F03 - Generalized Griewank’s function.

𝑓3(𝑥) =
1

4000
∑ 𝑥𝑖

2

𝑛

i=1

− ∏ cos

𝑛

i=1

(
𝑥𝑖

√𝑖
) + 1,

−600 < xi < 600

min(f3) = f3 (0, 0, · · · , 0) = 0,

with n = 30 dimensions.

 F04 - Generalized Schwefel’s function:

𝑓4(𝑥) = ∑ [−𝑥𝑖sin (√(𝑥𝑖))] ,

𝑛

i=1

−500 < xi < 500

min(f4) = f4 (420.968, ··· , 420.968) = −n
× 418.982

with n = 30 dimensions.

As mentioned above, the selected objective
functions are multimodal, on the one hand
functions F01 and F03 are separable functions, but
on the other hand functions F02 and F04 are not
separable. It should be remembered that functions
with individual variables arranged in a linear
combination are called separable functions.

A set of experiments was defined to be able to
obtain the performance of the parallel
implementations, a set of two experiments was
carried out:

 Experiment 1. In this experiment the number of
iterations will be changed and the performance
measures for the parallel implementations of
DE and PSO will be obtained. It starts with a
number of iterations of 1000 and the number
of iterations will be increased, in step of 2000,
to 31,000; The number of individuals will be
kept fixed at 128. The purpose of this first
group of experiments is to obtain the time
consumed, and from the data, it can be seen
that in the optimization of Function F01 PSO in
its sequential form it has a better convergence
than the rest of the algorithms, followed by
parallel DE, while sequential DE and parallel
PSO algorithms they present an
impoverishment in the results as the number of
individuals increases. It is important to
highlight the very different behavior of the
parallel DE and PSO algorithms. In figure 10,
it can be seen that during the optimization
process of the F02 function, that the algorithm
with the best convergence is the parallel DE
algorithm, followed by the parallel PSO. a
obtained, to generate the convergence curve
of the parallel algorithms and compare the
performance between the parallel algorithms
and also between them and the sequential
implementation in terms of the
number of iterations.

 Experiment 2. For this set of tests the number
of iterations was set at 15000 and there is a
variable number of individuals. The number of
individuals will vary starting from 64, 128, until
2014, with increments of 64. Tests are
performed for parallel and sequential
implementations of DE and PSO algorithms.

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 337–352
doi: 10.13053/CyS-29-1-3896

Comparative Study of Particle Swarm Optimization and Differential Evolution Algorithms ... 343

ISSN 2007-9737

The objective of this experiment is to compare
the consumed time and the convergence curve of
the parallel algorithms with respect to sequential
version in terms of the number of individuals. It
should be remembered that for this experiment, the
number of individuals increasing, for each
experiment, in multiples of 64 individuals, this has
the consequence that each individual generates
parallel implementations of a thread and this is
convenient since for this GPU architecture, NVIDIA
recommends building blocks of thread with a size
that is a 64 multiple, in order to obtain the best of
the GPU resources [5].

Specifically, concerning Algorithm 1, PSO was
implemented in the local version (i.e. each particle
has a local neighborhood and knows which particle
is global best and which is local best) the following
parameters values were fixed for the
tested functions:

c1 = 1,

c2 = 1,

vmax = 1,

vmin = 1.

And neighborhood with size of 20 was defined
for each particle in a random way. Concerning
Algorithm 2, For the structure of the DE algorithm,
the variant DE / rand / 1 / bin was chosen. The
configuration of the algorithm parameters was as
follows: the F parameter was configured with 0.6
for all the functions to be tested, on the other hand
the CR parameter was configured according to the
characteristics of each function, as recommended
in [30]: For non-separable functions CR = 0.9 (F01
and F03) for separable functions CR = 0.0 (F02
and F04).

The set of functions that were tested included
functions with a constant number of individuals and
a variable number of iterations for each function
(F01, F02, F03 and F04), and the variants with
constant iterations and a variable number of
individuals (F01, F02, F03 and F04). For each
reference function, each experiment was executed
30 times in each variant (Sequential, parallel,
varying iterations and varying number of
individuals). Thus, the fitness value (the average
solution), the average time consumed and its
standard deviation were recorded for all of the
test functions.

5.1 Performance Metrics

To evaluate the performance of parallel
implementations, traditionally a set of metrics is
defined such as:

 Speed up,

 Computational cost.

Computational cost is the processing time in
seconds that a given algorithm consumes and is
denoted by C. The inverse of computational cost is
called computational performance T, so that:

T=
1

𝐶
 .

The execution time improvement achieved is
measured by Speedup S and expresses the
number of times faster that the parallel
implementation is, compared to the
reference implementation:

S=
𝑇targ

𝑇ref
 ,

where Tref is the performance of the sequential
implementation and is our reference, Ttarg the level
of compliance that presented the parallel version of
the algorithm, after all it is the performance of the
algorithm for a particular problem or function.

5.2 Experimental Results

This section reviews the behavior observed for
both DE and PSO implementations, after testing
variants with different iterations and with increasing
numbers of individuals. The experimental results
were recorded or each tested function for both kind
of algorithms (parallel and sequential). After all our
objective is to make a comparison between the
parallel versions of DE and PSO, and show a
comparison of their performance executing on
Graphic Processing Unit card.

Because the quality of convergence, in most
cases, population-based algorithms are very
sensitive to their specific working parameters,
particularly in an optimization process. (for
example vmin, vmax, wmin, wmax, c1, c2 and
neighborhood size for PSO, or they can be CR and
F for DE) and with respect to the nature and class
of the itself (that is, the objective function).

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 337–352
doi: 10.13053/CyS-29-1-3896

Gerardo Laguna-Sanchez, Mauricio Olguín-Carbajal, et al.344

ISSN 2007-9737

Regardless of which algorithm has the best
convergence, it is important to determine the effect
of the parallelization of the code, as well as the
effect of the variation of the number of iterations
and number of individuals, both in the time
consumed (computational cost) and in the general
form of the convergence curve.

With the exception of function F04, the tested
functions have an optimal value of zero. Due to the
above, the process to obtain comparable graphs,
the F04 graph was modified by adding the optimal
value (12569.4866 for a dimension of 30) to display
a convergence curve referred to zero and that all
graphs are comparable to each other.

5.3.1. Results of the First Experiment

The experimental results obtained when the
number of iterations is varied, and the number of
individuals is fixed to 128, are graphed in Figures
3 to 8. Figure 3 shows the sequential
implementation (abbreviated as PSOseq.), during
F01 optimization, for the PSO algorithm that has
the best convergence compared to the other
sequential and parallel (emb. as short
for embedded).

The sequential PSO algorithm has the best
performance converging first to the global optimum
at a value of approximately 3000 iterations,
secondly the parallel DE, sequential DE, and
parallel PSO algorithms. It is important to highlight
the poor performance of the relative parallel PSO
algorithm, see Fig. 3.

In Fig. 4, it can be noted that the best
convergence, in the optimization of F02, is
presented by the parallel implementation of the DE
algorithm followed by parallel PSO. From the
above, it can be noted that both parallel
implementations have a better convergence with
respect to the sequential ones.

During the F03 optimization process, see fig. 5,
the parallel implementations of the DE and PSO
algorithms get stuck in the local optimum closer to
the global better than sequential versions, which
get stuck in a local optimum further, from the best
value (the global optimum), than the

parallel implementations.

In the case of F04 optimization, see fig. 6, when
comparing the best values obtained by the
sequential and parallel algorithms, it was found

that the best values were obtained by the parallel
version DE algorithm, which stuck in a local
optimum closer to the global optimum than the
other algorithms, which are trapped in optimal
locations further from the global optimum. It should
be noted that in particular the F04 function turned
out to be a difficult function to optimize for all the
implemented algorithms.

On the one hand, the acceleration achieved by
varying the number of iterations and the time
consumed, its behavior can be seen in Fig. 5. On
the other hand, the function F03 can be seen in the
convergence process when optimizing with
varying the number of iterations and in 128 the
number of individuals, see Fig. 6.

Additionally, when the number of individuals is
set to 128, it can see the convergence for the
optimization of the function F04 and the iterations
are varied, the experimental results have very
similar behaviors and results in all the tested
functions. For example, as can be seen in Fig. 7
and Fig. 8, the time consumed and the acceleration
for the F03 optimization.

On the one hand, the acceleration achieved by
varying the number of iterations and the time
consumed, its behavior can be seen in Fig. 5. On
the other hand, the function F03 can be seen in the
convergence process when optimizing with
varying the number of iterations and in 128 the
number of individuals, see Fig. 6.

Fig. 3. Convergence for the F01 optimization setting

variable number of iterations and the number of
individuals fixed at 128

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 337–352
doi: 10.13053/CyS-29-1-3896

Comparative Study of Particle Swarm Optimization and Differential Evolution Algorithms ... 345

ISSN 2007-9737

Additionally, when the number of individuals is
set to 128, it can see the convergence for the
optimization of the function F04 and the iterations
are varied, the experimental results have very
similar behavior and results in all the
tested functions.

For example, as it can be seen in Fig. 7 and Fig.
8, the time consumed and the acceleration for the
F03 optimization.

In the experiments, an acceleration produced by
the GPU is appreciated that is practically invariable
to changes when the number of iterations varies.

The acceleration achieved when a fixed number
of individuals (128) is very small (2 for DE and 3.75
for PSO), primarily because the value of the
population was set at 128 and it could be seen that,
in the parallel implementations implemented, the
GPU has an increase in the acceleration as the
individuals are increased than when the iterations
are increased [3] and, secondly, it is known that in
the proposed implementations the arithmetic
operations are not exploited in parallel, nor the
unified memory instructions or shared memory.

5.3.2 Results of the Second Experiment

The experimental results correspond to the
following parameters: variable number of
individuals starting from 64 individuals and the
number of iterations at a fixed value of 15000, after
comparing the convergence curves of the first
experiment and highlighting that 15000 iterations
are capable of reaching a stable solution in the
form of a local or global option, this can be seen in
figures 9 to 14.

It can be seen that in the optimization of Function
F01 PSO in its sequential form it has a better
convergence than the rest of the algorithms,
followed by parallel DE, while sequential DE and
parallel PSO algorithms they present an
impoverishment in the results as the number of
individuals increases. It is important to highlight the
very different behavior of the parallel DE and PSO
algorithms. In figure 10, it can be seen that during
the optimization process of the F02 function, that
the algorithm with the best convergence is the
parallel DE algorithm, followed by the parallel PSO.

Another result to highlight in this set of
experiments is that both sequential
implementations present a lower quality
convergence with respect to the parallel
implementations, however the DE presents a
slower convergence. It can be seen that during the
optimization of the F03 function, see fig. 11, the DE
and PSO algorithms in their parallel
implementation end up trapped in a local optimum
of better quality (that is, closer to the global
optimum) with respect to sequential
implementations, which are stunted in local optimal
far from global optimal.

During the optimization of the F04 function,
presented in Fig. 12, it can be seen that the DE
algorithm in its parallel implementation is stuck in a

Fig. 4. For the function F02 with a variable number of

iterations and with a number of 128 individuals we have
the Convergence to the sequential one

Fig. 5. For the function F03 with a variable number of
iterations and with a number of 128 individuals

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 337–352
doi: 10.13053/CyS-29-1-3896

Gerardo Laguna-Sanchez, Mauricio Olguín-Carbajal, et al.346

ISSN 2007-9737

local optimum closer to the global optimum with
respect to the rest of parallel and sequential
implementations, which end up stuck in optimum
local far from the global optimum.

Regarding the acceleration achieved and the
time consumed when the number of individuals
varies, in general, although the tested functions
present different types of problems and are on the
one hand non-separable functions and on the other
hand separable functions, the experimental results
are similar as well as their variants (in individuals
and in iterations).

It can be seen, in Fig. 13 and Fig. 14, that the
time consumed and the acceleration for the F03
optimization. It has been observed that the GPU
improves the performance, when the individuals
are increased, as well as the acceleration in the
case of the proposed parallel implementations. It
should be noted that the observed acceleration
increased as the number of individuals in the
populations increased. When the function F03 is
graphed, with a variable number of individuals and
with a fixed number of iterations at 15000, the
convergence for optimization can be seen,
see Fig. 11.

For the F04 functions case, with a variable value
of individuals and with a number of iterations fixed
at 1500, the Convergence for optimization F04
is shown.

6 Discussion

After having carried out the experiments and
compiled the resulting data, it could be observed
that in the parallel implementations, the
acceleration achieved increases especially when
the number of individuals increases more than
when the iterations increase and the number of
individuals remains fixed.

The behavior observed in the convergence
curves can be explained by the fact that by
increasing the number of individuals (DE) or
particles (PSO), the threads executed are
increased, and this allows the GPU to do a better
management of the resources [5]. In the case of
the other experiment, by coding parallel algorithms
where only the iterations are increased, the GPU
only repeats practically identical processes.

Fig. 6. For the function F04 with a variable number of

iterations and with a number of 128 individuals

Fig. 7. The Cost metric for function F03 optimization

with the number of individuals fixed to 128 and
varying iterations

Fig. 8. Speedup metric for function F03 optimization

with the number of individuals set to 128 and
varying iterations

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 337–352
doi: 10.13053/CyS-29-1-3896

Comparative Study of Particle Swarm Optimization and Differential Evolution Algorithms ... 347

ISSN 2007-9737

Therefore, it is more convenient to analyze the
time consumed and the convergence curve of
parallel implementation. In the case of the other
experiment, by coding parallel algorithms where
only the iterations are increased, the GPU only
repeats practically identical processes. Therefore,
it is more convenient to analyze the time consumed
and the convergence curve of parallel
implementations in algorithms where the number
of individuals is changed, than when the number of
iterations is varied. Regarding acceleration, it
should be noted that the modest values reported
here are susceptible to being improved using more

efficient programming. It should be remembered
that the algorithms used are originally sequential
algorithms and that to be executed on the GPU
they were migrated to parallel programming, it can
be said that the sequential algorithms and parallel
algorithms are identical in most of their modules,
probably with the sole exception of the random
number generation module. It should be noted that
when sequential heuristics were passed to parallel
programming for a GPU, it was observed that, in
addition to the expected acceleration, a different
behavior was also observed in convergence. In the
case of our development, this change is due, in the

Fig. 9. Convergence for F01 optimization with

iterations fixed to 15000 and varying the number of
individuals

Fig. 10. Convergence for F02 optimization with

iterations fixed to 15000 and varying the number
of individuals

Fig. 11. Convergence for F03 optimization with

iterations fixed to 15000 and varying the number
of individuals

Fig. 12. Convergence for F04 optimization with

iterations fixed to 15000 and varying the number
of individuals

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 337–352
doi: 10.13053/CyS-29-1-3896

Gerardo Laguna-Sanchez, Mauricio Olguín-Carbajal, et al.348

ISSN 2007-9737

first instance, to the way that the random numbers
are calculated for sequential implementations with
respect to the parallel ones.

 Due to the nature of the parallelization process
of the DE and PSO algorithms, random numbers
must be generated differently from how they are
generated in sequential programming.

Inside the GPU, the random number generation
process is carried out starting with the generation
of different seeds in an offline way (outside the
GPU) and these seeds are passed to the graphics
card, from this the GPU is able to generate its
numbers from individual to individual, therefore the
behavior of parallel and sequential implementation
is different between each other.

In most experiments, parallel DE algorithm
obtained the best performance during optimization
of all tested functions except for F01, where the
sequential PSO has a clear advantage over the
other algorithms. It is important to highlight the
change in convergence behavior between parallel
and sequential implementation of the same
heuristic (that is, PSO or DE).

The reduction of the execution time of a parallel
code executed in a GPU is demonstrated by the
experimental results, in addition the convergence
to the global optimum has a significantly behavior
changes with respect to the original
sequential code.

On the one hand, this allows us to highlight that
if a sequential algorithm performs good for a
certain function, this does not imply that this
algorithm, when implemented and coded for a
parallel variant, will behave the same for the same
problem, since it may perform poorly, regular or
good (as it is clear from Fig. 9 for PSO when
optimizing F01).

On the other hand, it implies that having a
sequential algorithm that does not perform well in
a particular function, it does not imply that this
algorithm in an encoding of a parallel variant also
behaves badly for the same function (as can be
seen in Fig. 10 and Fig. 11 for DE when optimizing
F02 and F03).

7 Conclusions

Sequential and parallel versions of the DE and
PSO algorithms were presented, using CUDA as a

parallel programming model in a multi-threaded
GPU using. As a parallel programming
methodology, a so-called integrated approach was
used, where one thread per individual or particle
was assigned. In addition to the self-acceleration
introduced by the GPU parallel architecture,
parallel deployments exhibited a different behavior
with respect to sequential implementations, the
above is a direct consequence of the strategies
that were used for the generation of random
numbers and how they should be generated in
the GPU.

As results of the experiments for this
comparative study, it was observed that the
parallel DE algorithm had the best performance in
the whole set of the tested functions, with the
specified parameters of the algorithm and a
significant dimensionality of 30. It should be noted
that DE, adjusted by its parameters F and CR in an

Fig. 13. Cost for F03 optimization with iterations fixed

at 15000 and a varying number of individuals

Fig. 14. Speedup for F03 optimization with iterations

fixed at 15000 and a varying number of individuals

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 337–352
doi: 10.13053/CyS-29-1-3896

Comparative Study of Particle Swarm Optimization and Differential Evolution Algorithms ... 349

ISSN 2007-9737

adequate and correct way that are dependent on
the problem to be solved, can converge to the
global optimum using as few individuals as 64 and
in a small number of iterations as 3000.

Future research can focus on 5 possible
avenues of work:

1. Carry out a set of experiments with a test bed
with a greater number of functions and test
parallel implementations in real-world
problems and observe their performance in
optimizing those problems.

2. Use heterogeneous architectures with GPUs,
such as Beowulf cluster, where the calculation
jobs are distributed by host and by thread.

3. Apply all the GPU programming strategies
such as the intensive use of shared memory,
the exploitation of the attached memory
instructions and the parallelization of
arithmetic operations, and the use of multiple
threads to obtain a high algorithm parallelism
of PSO or DE.

4. Test the behavior of other population
heuristics such as: Genetic Programming,
Genetic Algorithm, Evolutionary Strategies,
and Ant Colony Optimization.

5. Test more fitness functions with higher
dimensionality.

Acknowledgments

The authors thank Instituto Politécnico Nacional
(IPN) and the National Council of Science and
Technology of Mexico (CONACyT) for the support
provided for the realization of this project.

References

1. Owens, J.D., Luebke, D., Govindaraju, N.,
Harris, M., Krüger, J., Lefohn, A.E., Purcell,
T.J. (2007). A Survey of General-purpose
Computation on Graphics Hardware.
Computer Graphics Forum, Vol. 26, No. 1, pp.
80–113.

2. Scanniello, G., Erra, U., Caggianese, G.
(2015). On the Effect of Exploiting GPUs for a
More Eco-Sustainable Lease of Life.
International Journal of Software Engineering

and Knowledge Engineering, Vol. 25, No. 1,
pp. 169–195.

3. Laguna-Sánchez, G., Olguı́n-Carbajal, M.,
Cruz-Cortés, N., Barrón-Fernández, R.,
Álvarez-Cedillo, J.A. (2009). Comparative
Study of Parallel Variants for a Particle Swarm
Optimization Algorithm Implemented on a
Multithreading GPU. Journal of Applied
Research and Technology (JART), Vol. 7, No.
3, pp. 292–307.

4. Dali, N., Bouamama, S. (2015). GPU-PSO:
Parallel Particle Swarm Optimization
approaches on Graphical Processing Unit for
Constraint Reasoning: Case of Max-CSPs,
Procedia Computer Science, Vol. 60, pp.
1070–1080.

5. Fu, X., Ma, S., Yun, D., Cai, J. (2020). GPU
Local PSO Algorithm at Dimension Level-
Based Medical Image Registration. Cao B.
(eds) Fuzzy Information and Engineering-
2019. Advances in Intelligent Systems and
Computing, Vol. 1094. Springer, Singapore.
DOI: 10.1007/978-981-15-2459-2_10.

6. NVIDIA Corporation (2020). CUDA Compute
Unified Device Architecture Programming
Guide, Version 11.0.3. NVIDIA Corporation,
PG-02829-001_v11.0, pp. 19–84.

7. Cantú-Paz, E. (2000). Efficient and Accurate
Parallel Genetic Algorithms. Springer Science
and Business Media, Vol. 1.

8. Storn, R., Price, K.V. (1997). Differential
Evolution - a simple and efficient heuristic for
global optimization over continuous spaces.
Journal of Global Optimization, Vol. 11, No. 4,
pp. 341–359.

9. Eiben, A.E., Smith, J.E. (2009). Introduction
to Evolutionary Computing. Natural
Computing Series, Vol. 53, No. 2003.

10. Dorigo, M. (1992). Optimization, learning and
natural algorithms. PhD Thesis, Dept. of
Electronics, Politecnico di Milano.

11. Eberhart, R.C., Kennedy, J. (1995). A new
optimizer using particle swarm theory.
Proceedings Of The Sixth International
Symposium On Micro Machine And Human
Science, Vol. 1, pp. 39–43.

12. Gong, Y.J., Chen, W.N., Zhan, Z.H., Zhang,
J., Li, Y., Zhang, Q., Li, J.J. (2015).

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 337–352
doi: 10.13053/CyS-29-1-3896

Gerardo Laguna-Sanchez, Mauricio Olguín-Carbajal, et al.350

ISSN 2007-9737

Distributed evolutionary algorithms and their
models: A survey of the state-of-the-art.
Applied Soft Computing, Vol. 34, pp. 286–300.

13. Roberge, V., Tarbouchi, M., Noureldin, A.
(2019). Integrated Motor Optimization and
Route Planning for Electric Vehicle using
Embedded GPU System. 2019 5th
International Conference on Optimization and
Applications (ICOA), pp. 1–6. DOI: 10.1109/
ICOA.2019.8727682.

14. Baskar, S., Suganthan, P. (2004). A Novel
Concurrent Particle Swarm Optimization.
IEEE Congress on Evolutionary Computation,
Vol. 1, pp. 792–796.

15. Ma, H.M., Ye, C.M., Zhang, S. (2008).
Research on Parallel Particle Swarm
Optimization Algorithm Based on Cultural
Evolution for the Multi-level Capacitated Lot-
sizing Problem. IEEE Chinese Control and
Decision Conference, pp. 965–970.

16. Harding, S., Banzhaf, W. (2007). Fast
Genetic Programming on GPUs, 10th
European Conference on Genetic
Programming. Lecture Notes in Computer
Science, pp. 90–101.

17. Lin, C., Liu, J., Chen, J.I. et al. (2019). On the
Performance of Cracking Hash Function SHA-
1 Using Cloud and GPU Computing. Wireless
Pers Commun, Vol. 109, pp. 491–504. DOI:
10.1007/s 11277-019-06575-9.

18. Krause, A.F., Essig, K. (2019). Boosting
speed and accuracy of gradient based dark
pupil tracking using vectorization and
differential evolution. Proceedings of the 11th
ACM Symposium on Eye Tracking Research
& Applications ETRA'19. Association for
Computing Machinery, Vol. 34, pp. 1–5. DOI:
10.1145/3314111.3319849.

19. Fabris, F., Krohling, R.A. (2012). A co-
evolutionary differential evolution algorithm for
solving minmax optimization problems
implemented on GPU using C-CUDA. Expert
Systems with Applications, Elsevier, Vol. 39,
No. 12, pp. 10324–10333.

20. Casella, A., De Falco, I., Della Cioppa, A.,
Scafuri, U., Tarantino, E. (2019). Exploiting
multi-core and GPU hardware to speed up the
registration of range images by means of

Differential Evolution. Journal of Parallel and
Distributed Computing, Vol. 133, pp. 307–318.
DOI: 10.1016/j.jpdc.2018.07.002.

21. Vesterstrom, J., Thomsen, R. (2004). A
Comparative Study of Differential Evolution
Particle Swarm Optimization and Evolutionary
Algorithms on Numerical Benchmark
Problems. IEEE Congress on Evolutionary
Computation, Vol. 2, pp. 1980–1987.

22. Das, S., Ajith, A., Amit, K. (2008). Particle
Swarm Optimization and Differential Evolution
Algorithms: Technical Analysis. Applications
and Hybridization Perspectives, Advances of
Computational Intelligence in Industrial
Systems, pp. 1–38.

23. Ugolotti, R., Nashed, Y.S., Mesejo, P.,
Ivekovic, S., Mussi, L., Cagnoni, S. (2013).
Particle Swarm Optimization and Differential
Evolution for model-based object detection.
Applied Soft Computing, Vol. 13, No. 6, pp.
3092–3105.

24. Wolpert, D.H., Macready, W.G. (1997). No
Free Lunch Theorems for Optimization. IEEE
Transactions on Evolutionary Computation,
Vol. 1, No. 1, pp. 67–82.

25. Shi, Y., Eberhart, R. (1998). A Modified
Particle Swarm Optimizer. IEEE International
Conference on Evolutionary Computation
Proceedings, pp. 69- 73.

26. Garcia-Nieto, J.M., Torres, E.A. (2013).
Emergent Optimization: Design and
Applications in Telecommunications and
Bioinformatics. PhD Doctoral Thesis.
University of Malaga, Spain.

27. Mukeherjee, R., Debchoudhury, S., Kundu,
R., Das, S., Suganthan, P.N. (2013).
Adaptive Differential Evolution with locality
Based Crossover for Dynamic Optimization.
IEEE Congress on Evolutionary Computation,
pp. 63–70.

28. Peraza-Vazquez, H., Torres-Huerta, A.M.,
Flores-Vela, A. (2016). Self-Adaptive
Differential Evolution Hyper-Heuristic with
Applications in Process Design. Computacion
y Sistemas, Vol. 20, No. 2.

29. Boloufe-Rohler, A., Estevez-Velarde, S.,
Piad-Morffis, A. Chen, S., Montgomery, J.
(2013). Differential Evolution with Thresheld

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 337–352
doi: 10.13053/CyS-29-1-3896

Comparative Study of Particle Swarm Optimization and Differential Evolution Algorithms ... 351

ISSN 2007-9737

Convergence. IEEE Congress on Evolutionary
Computation, pp. 40–47.

30. Mezura-Montes, E., Velázquez-Reyes, J.,
Coello-Coello, C.A. (2004). A Comparative
Study of Differential Evolution Variants for
Global Optimization. Proceedings of the 8th
annual conference on Genetic and
evolutionary computation, pp. 485–492.

31. Das, S., Suganthan, P.N. (2011). Differential
Evolution: A Survey of the State-of-the-Art.
IEEE Transactions on Evolutionary
Computation, Vol. 15, No. 1, pp. 4–31.

32. Belal, M., El-Ghazawi, P. (2004). Parallel
Models for Particle Swarm Optimizers.
International Journal of Intelligent Computing
and Information Sciences.

 33. Jorda, J.A., Mzoughi, A., Lafontaine, O.,
Litaize, D. (1996). Performance of the
Vectorial Processor VECSM2* Using Serial
Multiport Memory. Proceedings of the 10th
international conference on Supercomputing,
pp. 390–397.

34. Cuomo, S., Galletti, A., Giunta, G., et al.

(2015). Toward a multi-level parallel

framework on GPU cluster with PetSC-CUDA

for PDE-based optical flow computation.

Proc. Comput. Sci., Vol. 51, No. 1, pp. 170–

179.

35. Chen, S., Fan, Y., Tan, W., Zhang, J., Bai,

B., Gao, Z. (2017). Service recommendation

based on separated time-aware collaborative

Poisson factorization. J. Web Eng., Vol. 16,

No. 7–8, pp. 595–618.

36. Essaid, M., Idoumghar, L., Lepagnot, J.,
Brévilliers, M. (2019). GPU parallelization
strategies for metaheuristics: A survey.
International Journal of Parallel, Emergent
and Distributed Systems, Vol. 34, No. 5, pp.
497–522. DOI: 10.1080/17445760.
2018.1428969.

Article received on 27/01/2021; accepted on 09/12/2024.
*Corresponding author is Mauricio Olguín Carbajal.

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 337–352
doi: 10.13053/CyS-29-1-3896

Gerardo Laguna-Sanchez, Mauricio Olguín-Carbajal, et al.352

ISSN 2007-9737

https://doi.org/10.1080/17445760.2018.1428969
https://doi.org/10.1080/17445760.2018.1428969

