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Abstract. Bio-inspired algorithm such Differential 

Evolution (DE) and Particle Swarm Optimization (PSO) 
algorithms are well-known alternative options for hard to 
optimize problems settled with bio-inspired heuristics. 
Both algorithms have low computational complexity, 
good performance, and need only a few working 

parameters and have a good performance. This paper 
shows a comparative study for parallel implementations 

of these two well-known heuristics, as long as these are 
population-based algorithms their coding an 
implementation on a Graphics Processing Unit device 

using CUDA as base of parallel programming are now 

common topics. Our main objective is to obtain the 
algorithm performance of both DE and PSO algorithms 
operating on a GPU and compare both algorithms with 
their sequential and parallel implementations. The result 
of our research shows that executing a parallel algorithm 
in a GPU changes the convergence behavior to the 
global optimum and it will present a decrease in 
computation time and its performance may be very 
different, with respect to the same algorithm but 
programmed in a sequential programming. 

Keywords. GPU, particle swarm optimization, 

multithreading, differential evolution, 
parallel programming. 

1   Introduction 

In one hand using computational power that yields 
on the Graphics Processing Units (GPU) cards  

with the aim to solve problems of general purpose 
[1, 2] is a topical issue. On the other hand, many   
bio-inspired algorithms, due to its own nature, can 
be parallelized as consequence of their population-
based feature, see [3]. Some authors show that it 
is possible to achieve acceleration for parallelized 
bio-inspired population based algorithms just like 
Particle Swarm Optimization (PSO) algorithm 
when running inside a multi-threaded GPU [4, 5, 
37], the parallel coding style used was the 
suggested in the C-CUDA programming tool [6]. In 
a previous work [3] we found that the best 
achievement could be reached when the complete 
set of experiments of the PSO algorithm was 
carried out by the GPU inspired by an parallel 
strategy called diffusion, which is already used in 
the field of parallel programming [7]. 

In their research, Cantú-Paz called embedded 
to the parallel execution they implemented 
because in the diffusion implementation there is 
only one processing entity per agent, while in the 
Cantú-Paz model they use one thread per agent 
(individual) instead of one processing entity per 
individual. Other bio-inspired algorithms like 
Differential Evolution (DE) [8], Evolutionary 
Computing [9], Ant Colony Optimization [10], and  
PSO [11] were implemented and tested as 
alternatives to find good results in hard-to-optimize 
problems getting good solutions in a satisfactory 
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time. As long as these method work with a set of 
agents (individuals or particles), they trial several 
solutions at once supported on a set of rules and 
random procedure. These and another set of 
heuristic rules have been applied successfully a in 
most fields of human knowledge, generating 
acceptable results with good performance, running 
on all types of computer systems, including 
personal computers, see [12]. 

In this paper parallel versions of DE and PSO 
algorithms coded for GPU with multi-threading 
capacity are presented, the results obtained of DE 
and PSO these versions coded for parallel running 
are analyzed and compared as a new research 
activity of an earlier investigation [3]. The DE and 
PSO algorithms were selected since both of them 
are very popular and their general structure is 
practically the same. The computing power 
delivered by the GPU provides a processing speed 
increase, however, it also shows slightly different 
behavior from proposed parallel implementations, 
but with significant results compared 
to sequential implementations. 

All of the above is a consequence of the GPU 
requirements to generate the random numbers 
needed to maintain diversity for the population-
based heuristics. 

The main contributions in this research are: 

1) The alternative parallel implementation for 
both PSO and DE algorithms used. 

2) The comparison of sequential and parallel 
implementations for both PSO and DE. 

3) The random numbers generation offline 
approach used. 

This paper is arranged as follows. Section 2 
presents a short summary of related research. 
Section 3 shows a short description of the DE and 
PSO. Section 4 presents technical overviews of 
our parallel implementations. Section 5 informs the 
setup for the experiments and their results. In 
Section 6, we expose our opinions and 
conclusions. 

2   Related Work 

In many cases, parallel codification starts from a 
migration of a sequential programming code 

previously developed for sequential architectures 
and suitable for parallel or distributed architectures. 
In the case of population algorithms (such as 
Genetic Algorithms, Evolutionary Strategies, DE, 
Ant Colony Optimization, PSO, etc.), once their 
usefulness in sequential architectures had been 
demonstrated, attempts were made to use the 
computational power and its natural parallelism, as 
in the work of Roberge et al. [13] and 
Cantú  - Paz [6]. 

In the previous works carried out in this area, 
the proposals based on traditional concurrent 
processes, which are executed in a single 
processing entity, can be highlighted, see [14]. 
However, in many other related works they are 
designed to work in heterogeneous architectures 
of several processors (like a Beowulf-type network 
or similar). One of the problems associated with 
this type of architecture lies in the communication 
overhead between different processing entities, a 
element that affects the performance of overall 
execution. Despite this, the parallelization of 
population-based algorithms is a common topic in 
research, as can be seen in recent research works 
that use parallel implementations using population-
based bio-inspired heuristics to solve hard to 
optimize complex functions (see [15,3]). 

Concerning the parallelization of population 
based algorithms in GPU, some of the first 
proposals were developed with Genetic 
Programming (GP), see [16]. More recently some 
research have been made by using Genetic 
Algorithm C- CUDA parallel programing using a 
GPU to crack Hash Function SHA-1, see [17]. In 
more recent times many population algorithms 
have been implemented in GPUs, see [36]. 
Regarding the CUDA language C, population 
algorithm implementations were carried out and 
one of the first was PSO, the authors took 
advantage of the advantages provided by an 
NVIDIA multi-threaded GPU. To carry out this work 
they used the CUDA programming tool in order to 
parallelize a PSO algorithm directly, see [3]. 

More recently Krause et al. [18] presented a DE 
algorithm programmed in C-CUDA and was one 
DE executed in a GPU, followed by more 
implementations, highlighting those by Fabris [19] 
and Casella [20]. In literature it is possible find 
works on comparing PSO vs. DE, but they are 
related to sequential implementations, like in [21, 
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22]. Youseff et al. have done a comparative study 
for DE vs PSO vs Scatter Search running on a 
GPU. There exists a development that uses both 
DE and PSO for model-based object detection, 
[23], but the comparison is made for a specific 
problem and is hard to compare against test 
functions commonly used. So authors 
acknowledge, there is no empirical study on 
comparing only DE vs. PSO running on a 
multithreading GPU for a set of test functions. This 
research shows an experimental study comparing 
parallel  DE and PSO algorithms against their 
sequential variants running on a multi-
threading GPU. 

3 Overview of the Two Well-known 
Population-Based Algorithms 

DE and PSO algorithms are both population-based 
algorithms that have proven their success in 
solving difficult optimization problems and are two 
of the most widely used bio-inspired algorithms for 
this kind of problems. Although their general 
constitution is similar (both have initialization, 
fitness evaluation, comparison and updating 
blocks), they use different rules for comparison 
and updating. 

On one hand, the PSO algorithm is a 
collaborative strategy that finds a solution as a 
result of the movement of individuals that try to 
imitate the best individual of a neighborhood (local 
or global). On the other hand, when using 
Differential Evolution, individuals not only form 
teams of individuals to generate their offspring 
(using recombination and mutation operators) that 
actively try to enhance the better individual in the 
current population.  

From the No Free Lunch Theorem [24], it is 
known that the success or failure of using a small 
set of well-performing reference functions does not 
ensure that an algorithm exhibits the same 
behavior for a different set of functions or for 
practical problems. Likewise, bio-inspired 
heuristics are also known to be aggressive on a set 
of problems. The goal of our research therefore is 
to supply a general description of the methodology 
that the GPU can use to decrease the convergence 
time according to the nature of the problem and its 
relationship with respect to the execution time and 

its dependence on the number of individuals or 
particles, as well as the number of iterations. 

3.1.   Particle Swarm Optimization Algorithm 

From a study about the displacement of groups of 
birds that fly in a space of n dimensions and seek 
to solve, in a collaborative way, a problem with a 
global optimum, arise the Particle Swarm 
Optimization (PSO). At first, PSO algorithm was 
developed by Heberhart and Kennedy  in 1995 [9], 
starting  from the study of the position in the x-
space and the variation of the v position(called 
velocity) for each particle. 

In 1998, Shi and Heberhart [25] improved the 
algorithm, defined the concept of inertia (w), which 
improved the performance of the algorithm and 
increased its efficiency. Recent research has 
shown that the number of particles and their 
neighbors also modify the behavior of the 
algorithm, showing that the best value for a 
neighborhood is six particles [26]. 

To describe a PSO algorithm, pbx is defined as 
the better fitness found by the bird (particle) in a 
local individual search and gbx as the best global 
fitness of the entire population found so far, then a 

basic PSO algorithm in a global version is 
described as follows: 

Algorithm 1: 

(1) Population initialization. Setting up each 
particle of the initial population, by calculating an 
initial random number, calculating the values for 
the n-dimensional vectors corresponding to each 
xy position as well as v  velocity. 

(2) Fitness assessment. The fitness obtained from 
the xy position must be computed for each particle. 
If the fitness obtained by the current particle 
position has better value than pbx, then pbx 
should take the calculated fitness and update. 

(3) Comparison. Calculate the position of the 
particle having the best fitness and compare with 
the best overall fitness gbx. 

(4) Update. For every element of the vector x, of 
each particle, the velocity must be calculated and 
actualized according to the next mathematical 
statement: 

vi,d (t + 1) = w × vi,d (t), 
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+ c1 × r1 × (pbxi, d – xi,d (t)), 

+ c2 × r2 × (gbxi, d – xi,d (t)), 

where c1 and c2 are constants that weigh the social 
influence and individual learning; r1 and r2 are 
random variables, with values from 0 to 1, which 
represent the non-restricted movement for each 
particle, and the system inertia (w) is calculated as: 

𝑤 = 𝑤𝑚𝑎𝑥 −
𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛

𝑖𝑡𝑒𝑟𝑚𝑎𝑥
× 𝑖𝑡𝑒𝑟 , 

where itermax, iter, wmax, and wmin are the 
maximum inertia value, minimum inertia value, 
maximum iterations, and current 
iteration, respectively. 

(5) Update. For each particle, the x value using the 
following equation: 

xi, d (t + 1) = xi, d(t) + vi, d(t + 1). 

(6) Loop. The repetition of steps 2 to 5 until reach 
the ending condition. 

Finally, the velocity of each particle, in the PSO 
implementation, is bounded in a range [Vmin, Vmax ] 
in order to prevent exploding behavior. 

3.2.   Differential Evolution Algorithm 

Differential Evolution (DE) appeared when in 1996 
K. Price and R. Storm tried to fit parameters for 
Chebyshev polynomials [10]. There are different 
variations from original DE algorithm [27, 28, 29].  

The DE variant that is most used is  called 
DE/rand/1/bin, this is a Differential Evolution 
algorithm (DE) that generates his breed by using a 
random selection (rand), with one pair of difference 
vectors used (1), and a binary crossover scheme 
(bin). Basic DE/rand/1/bin algorithm works 
as follows: 

Algorithm 2: 

(1) Population initialization. Define initial 
population with N random individuals Xi,G for first 
generation G = 1. 

(2) Evolution and fitness evaluation (Mutation step). 
For current generation G, and for each Xi,G vector, 
where i = 1, · · · , N , a test vector V is generated 
according with: 

Vi,G+1 = Xr1,G + F × (Xr2,G − Xr3,G ). 

where r1, r2, r3∈  [1, N ] are assorted integers, and 
F must be grater than zero. F is a real constant 
factor which controls the difference variation. 
Integers values for r1, r2, and r3 must be randomly 
selected with an interval [1, N ] and must be 
different of current index i. So that 
N >= 4 individuals. 

(3) Crossover step. In order to increase vector 
diversity, a trial vector U is defined, element by 
element as: 

Vi,G+1 if randj < CR or j = jrand,  

Ui,j,G+1 =   Xi,j,G+1 else. 

 

Fig. 1. General structure of both sequential PSO and 

sequential DE algorithms, for host-only execution 

 

Fig. 2. The general structure of both sequential PSO 

and sequential DE algorithms, for host-GPU execution 
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where j is the element index, randj is a uniform 
stochastic number between 0 and 1, and jrand is a 
randomly selected index from 1 to D, with D the 
dimensionality of the problem, which ensures that 
Ui,G+1 has one parameter, at least,  from Vi,G+1. CR 
∈  [0, 1] is the crossover probability and constitutes 
one control variable, which has shown to be 
determinant to find optimal values in functions with 
separable variables when CR is small. 

(4) Comparison and updating (Selection step). To 
select the vector U that must turn a part of G + 1 
generation, Ui,G+1 (trial vector) is compared to the 
target vector Xi,G. If U vector has a better fitness 
value than Xi,G then Xi,G+1 is set to U, otherwise 
previous Xi,G is retained. 

(5) Repeat steps 2 to 4 until reach the termination 
condition (i.e. iterations). 

We must highlight that, in order to obtain better 
results and with different types of problems, 
specific parameters for the problem and fixed 
parameters must be set up in the algorithm [30, 31]. 

4 Parallel Implementation with C-
CUDA 

As a starting point for the parallelization of 
population heuristics, the parallel categorization 
proposed for evolutionary algorithms in [32] was 
considered as a reference point, such as diffusion 
approach, migratory approach and global 
approach. In the work developed in [3], it should be 
noted that suitable way of the programming of 
parallel algorithms based on the population, in a 
GPU, is a so-called diffusion implementation. 

In the broadcast scheme, there is a GPU thread 
for each individual, so that the calculation and 
evaluation of the fitness of a single individual is 
performed by a single GPU thread. For other part, 
comparisons between particles (individuals for DE) 
are accomplish inside the GPU following a thread 
synchronization process. This parallel variant is 
called Embedded by the authors, this is because 
almost all of the functional blocks are calculated 
within the GPU, only the initialization is done on the 
host. Therefore, the integrated approach was 
selected as the methodology coding basis for the 
parallel version of the PSO and DE heuristic 
algorithms on the Graphic processor card. 

The DE and PSO heuristics described in 
Algorithms 1 and 2 will be implemented in a parallel 
programming using an encoding strategy that uses 
only one thread per individual and to execute code 
from a specific population algorithm it uses a kernel 
call. Therefore, inside the GPU all the particles are 
updated simultaneously, in the case of sequential 
code, the position update is carried out one particle 
after another, that is, particle by particle. 

The functional blocks of the metaheuristic can 
be seen below: 

 Initialization. Sets the initial random values of 
the particles that make up the initial population. 

 Assessment of fitness function. 

 Comparison. Find the fitness for all the 

particles and the select the best one in the 
population and compares it with the best 
registered one. 

 Upgrade. Each particle updates its position 
according to the rules of the specific algorithm. 

To explain the process of code parallelization, 
we have rearranged the sequential functional 
blocks, highlighting that the loops are in terms of 
the number of individuals. On the one hand, it must 
be taken into account that all function blocks run 
on host processor, for sequential implementation 
(see Fig. 1). On the other hand, only the 
initialization module is executed on the host 
processor for the case of our parallel 
implementation, called embedded (see Fig. 2), this 
is because the kernel call is associated with the 
optimization process, which includes: the 
comparison, fitness assessment, and upgrade 
modules, all run on the GPU using multiple threads 
(remembering it's one for each particle), waiting for 
a termination condition to be reached. 

As for the initialization module, the timer start 
seeds for the random numbers of the particle (one 
seed per thread), worked up on the host and 
remains as the only task executed outside the 
GPU.  The precondition ensures diverse random 
number generation and good GPU fitness for each 
thread. This results in a different comportment o 
manner in relation to sequential algorithms, as 
shown in the experimental results. It should be 
noted that the generation of random numbers was 
carried out differently for parallel and sequential 
programming, this was due to the fact that the 
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generation of random numbers presents a great 
difficulty inside the GPU from the same seed in the 
environment inside the GPU. The traditional way of 
generating random numbers (through the use of a 
single seed) was maintained for the case of 
sequential codes, while parallel codes used 
different seeds, one for each particle in the 
population, as will be described later. 

The kernel call is made through the 
device_xxx_eval_comp_upd << >> () instruction, 
where xxx can be DE or PSO, depending on which 
algorithm was implemented, see fig. 2. For the 
functional implementation in coding a set of parallel 
population algorithms in the GPU, there is a set of 
practical considerations to take into account: 

 Overhead. The GPU will experience the 
phenomenon of overload due to the waiting 
time (latency) in the memory transfers 
between the GPU device and the computer 
acting as host. Since transfers are 
comparatively slow, (relative to in-GPU 
computation) any parallel GPU implementation 
should minimize their use. 

 Synchronization. Due to the very nature of 
population-based heuristic algorithms, 
individuals must share status information with 
each other, at least the best fitness, in our 
proposed parallel implementation the threads 
(i.e. individuals) have to communicate among 
themselves and a good synchronization is 
particularly important. 

 Contention. When multiple threads 
simultaneously review global variables, a 
resource access problem is generated on the 
GPU, this is called contention. To face this 
problem, adequate precautions must be 
incorporated, in particular for the PSO and DE 
algorithms. In the case of  population-based 
algorithms tested, contention occurs when an 
attempt is made to access the memory area 
corresponding to the index of the best 
global individual. 

 Random number generation. As in all the 

stochastic process, you must be very careful 
since a problem can be generated when the 
random numbers must be generated within the 
GPU environment and the strategy for seed 
initialization is neglected. When calling a 

random number generation function like rand () 
to run on the GPU, you must ensure that 
numbers are generated for each call and for 
each thread. In case a set of different numbers 
is not guaranteed, it can cause the algorithm to 
have poor convergence or to be in fact non-
convergent due to low diversity, since all the 
random numbers were generated identical for 
each particle. 

5 Experiments 

The system where the experiments were carried 
out is a personal computer using an Intel Core Duo 
processor with Fedora Linux OS (this in order to 
make the most equitable comparison with previous 
work, see [3]), this computing system is what we 
call host for this work. The graphics accelerator 
card installed in the host is an NVIDIA GeForce 
8600GT GPU card with 4 multiprocessors, each of 
the multiprocessors consisting of 8 cores, 
representing a total of 32 processing cores and 
with 256 Mbytes of working memory. Each 
processing core was programmed using the 
environment that allowed writing parallel code for 
the GPU directly, the CUDA environment, since C-
CUDA parallel calls were used, as 
described previously. 

The purpose of the set of experiments that were 
carried out in order to be able to measure the 
performance of the DE algorithm in its parallel 
version and PSO, with respect to the sequential 
versions and between them. The experimentation 
consisted of the measurement For the set of 
functions with which the tests were performed, the 
functions were taken from a well-known reference 
set [30]. The calculation of the performance of the 
PSO and DE algorithms in their sequential and 
parallel versions was carried out by varying the 
iterations and the number of individuals while the 
optimization phase of the objective functions of 
each of the particles is carried out. 

The selected test functions were carefully 
chosen. It can be seen that in the optimization of 
Function F01 PSO in its sequential form, it has a 
better convergence than the rest of the algorithms, 
followed by parallel DE, while sequential DE and 
parallel PSO algorithms they present an 
impoverishment in the results as the number of 
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individuals increases. It is important to highlight the 
very different behavior of the parallel DE and PSO 
algorithms. In figure 10, it can be seen that during 
the optimization process of the F02 function, that 
the algorithm with the best convergence is the 
parallel DE algorithm, followed by the parallel PSO.  
n considering that they have a high optimization 
complexity for which four multimodal functions 
were chosen [33]: 

 F01 - Generalized Rosenbrock function: 

𝑓1(𝑥) = ∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)

2
+ (𝑥𝑖 − 1)2] ,

𝑛−1

𝑖=1

 

−30 < xi < 30, 

min(f1) = f1 (1, 1, · · · , 1) = 0, 

with n = 30 dimensions. 

 F02 - Generalized Rastrigin’s function: 

𝑓1(𝑥) = ∑[𝑥𝑖
2 − 10𝑐𝑜𝑠(2𝜋𝑥𝑖) + 10],

𝑛

𝑖=1

 

−5.12 < xi < 5.12 

min(f2) = f2 (0, 0,· · · , 0) = 0 

with n = 30 dimensions. 

 F03 - Generalized Griewank’s function. 

𝑓3(𝑥) =
1

4000
∑ 𝑥𝑖

2

𝑛

i=1

− ∏ cos

𝑛

i=1

(
𝑥𝑖

√𝑖
) + 1, 

−600 < xi < 600 

min(f3) = f3 (0, 0, · · · , 0) = 0, 

with n = 30 dimensions. 

 F04 - Generalized Schwefel’s function: 

𝑓4(𝑥) = ∑ [−𝑥𝑖sin (√(𝑥𝑖))] ,

𝑛

i=1

 

−500 < xi < 500 

min(f4) = f4 (420.968, ··· , 420.968) = −n 
× 418.982 

with n = 30 dimensions. 

As mentioned above, the selected objective 
functions are multimodal, on the one hand 
functions F01 and F03 are separable functions, but 
on the other hand functions F02 and F04 are not 
separable. It should be remembered that functions 
with individual variables arranged in a linear 
combination are called separable functions. 

A set of experiments was defined to be able to 
obtain the performance of the parallel 
implementations, a set of two experiments was 
carried out: 

 Experiment 1. In this experiment the number of 
iterations will be changed and the performance 
measures for the parallel implementations of 
DE and PSO will be obtained. It starts with a 
number of iterations of 1000 and the number 
of iterations will be increased, in step of 2000, 
to 31,000; The number of individuals will be 
kept fixed at 128. The purpose of this first 
group of experiments is to obtain the time 
consumed, and from the data, it can be seen 
that in the optimization of Function F01 PSO in 
its sequential form it has a better convergence 
than the rest of the algorithms, followed by 
parallel DE, while sequential DE and parallel 
PSO algorithms they present an 
impoverishment in the results as the number of 
individuals increases. It is important to 
highlight the very different behavior of the 
parallel DE and PSO algorithms. In figure 10, 
it can be seen that during the optimization 
process of the F02 function, that the algorithm 
with the best convergence is the parallel DE 
algorithm, followed by the parallel PSO.  a 
obtained, to generate the convergence curve 
of the parallel algorithms and compare the 
performance between the parallel algorithms 
and also between them and the sequential 
implementation in terms of the 
number of iterations. 

 Experiment 2. For this set of tests the number 
of iterations was set at 15000 and there is a 
variable number of individuals. The number of 
individuals will vary starting from 64, 128, until 
2014, with increments of 64. Tests are 
performed for parallel and sequential 
implementations of DE and PSO algorithms. 
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The objective of this experiment is to compare 
the consumed time and the convergence curve of 
the parallel algorithms with respect to sequential 
version in terms of the number of individuals. It 
should be remembered that for this experiment, the 
number of individuals increasing, for each 
experiment, in multiples of 64 individuals, this has 
the consequence that each individual generates 
parallel implementations of a thread and this is 
convenient since for this GPU architecture, NVIDIA 
recommends building blocks of thread with a size 
that is a 64 multiple, in order to obtain the best of 
the GPU resources [5]. 

Specifically, concerning Algorithm 1, PSO was 
implemented in the local version (i.e. each particle 
has a local neighborhood and knows which particle 
is global best and which is local best) the following 
parameters values were fixed for the 
tested functions: 

c1 = 1, 

c2 = 1, 

vmax = 1, 

vmin = 1. 

And neighborhood with size of 20 was defined 
for each particle in a random way. Concerning 
Algorithm 2, For the structure of the DE algorithm, 
the variant DE / rand / 1 / bin was chosen. The 
configuration of the algorithm parameters was as 
follows: the F parameter was configured with 0.6 
for all the functions to be tested, on the other hand 
the CR parameter was configured according to the 
characteristics of each function, as recommended 
in [30]: For non-separable functions CR = 0.9 (F01 
and F03) for separable functions CR = 0.0 (F02 
and F04). 

The set of functions that were tested included 
functions with a constant number of individuals and 
a variable number of iterations for each function 
(F01, F02, F03 and F04), and the variants with 
constant iterations and a variable number of 
individuals (F01, F02, F03 and F04). For each 
reference function, each experiment was executed 
30 times in each variant (Sequential, parallel, 
varying iterations and varying number of 
individuals). Thus, the fitness value (the average 
solution), the average time consumed and its 
standard deviation were recorded for all of the 
test functions. 

5.1 Performance Metrics 

To evaluate the performance of parallel 
implementations, traditionally a set of metrics is 
defined such as: 

 Speed up, 

 Computational cost. 

Computational cost is the processing time in 
seconds that a given algorithm consumes and is 
denoted by C. The inverse of computational cost is 
called computational performance T, so that: 

T=
1

𝐶
 . 

The execution time improvement achieved is 
measured by Speedup S and expresses the 
number of times faster that the parallel 
implementation is, compared to the 
reference implementation: 

S=
𝑇targ

𝑇ref
 , 

where Tref is the performance of the sequential 
implementation and is our reference, Ttarg the level 
of compliance that presented the parallel version of 
the algorithm, after all it is the performance of the 
algorithm for a particular problem or function. 

5.2 Experimental Results 

This section reviews the behavior observed for 
both DE and PSO implementations, after testing 
variants with different iterations and with increasing 
numbers of individuals. The experimental results 
were recorded or each tested function for both kind 
of algorithms (parallel and sequential). After all our 
objective is to make a comparison between the 
parallel versions of DE and PSO, and show a 
comparison of their performance executing on 
Graphic Processing Unit card. 

Because the quality of convergence, in most 
cases, population-based algorithms are very 
sensitive to their specific working parameters, 
particularly in an optimization process. (for 
example vmin, vmax, wmin, wmax, c1, c2 and 
neighborhood size for PSO, or they can be CR and 
F for DE) and with respect to the nature and class 
of the itself (that is, the objective function). 
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Regardless of which algorithm has the best 
convergence, it is important to determine the effect 
of the parallelization of the code, as well as the 
effect of the variation of the number of iterations 
and number of individuals, both in the time 
consumed (computational cost) and in the general 
form of the convergence curve.  

With the exception of function F04, the tested 
functions have an optimal value of zero. Due to the 
above, the process to obtain comparable graphs, 
the F04 graph was modified by adding the optimal 
value (12569.4866 for a dimension of 30) to display 
a convergence curve referred to zero and that all 
graphs are comparable to each other. 

5.3.1. Results of the First Experiment 

The experimental results obtained when the 
number of iterations is varied, and the number of 
individuals is fixed to 128, are graphed in Figures 
3 to 8. Figure 3 shows the sequential 
implementation (abbreviated as PSOseq.), during 
F01 optimization, for the PSO algorithm that has 
the best convergence compared to the other 
sequential and parallel (emb. as short 
for embedded). 

The sequential PSO algorithm has the best 
performance converging first to the global optimum 
at a value of approximately 3000 iterations, 
secondly the parallel DE, sequential DE, and 
parallel PSO algorithms. It is important to highlight 
the poor performance of the relative parallel PSO 
algorithm, see Fig. 3.  

In Fig. 4, it can be noted that the best 
convergence, in the optimization of F02, is 
presented by the parallel implementation of the DE 
algorithm followed by parallel PSO. From the 
above, it can be noted that both parallel 
implementations have a better convergence with 
respect to the sequential ones.  

During the F03 optimization process, see fig. 5, 
the parallel implementations of the DE and PSO 
algorithms get stuck in the local optimum  closer to 
the global better than sequential versions, which 
get stuck in a local optimum further, from the best 
value (the global optimum), than the 

parallel implementations. 

In the case of F04 optimization, see fig. 6, when 
comparing the best values obtained by the 
sequential and parallel algorithms, it was found 

that the best values were obtained by the parallel 
version DE algorithm, which stuck in a local 
optimum closer to the global optimum than the 
other algorithms, which are trapped in optimal 
locations further from the global optimum. It should 
be noted that in particular the F04 function turned 
out to be a difficult function to optimize for all the 
implemented algorithms. 

On the one hand, the acceleration achieved by 
varying the number of iterations and the time 
consumed, its behavior can be seen in Fig. 5. On 
the other hand, the function F03 can be seen in the 
convergence process when optimizing with  
varying the number of iterations and in 128 the 
number of individuals, see Fig. 6.  

Additionally,  when the number of individuals is 
set to 128, it can see the convergence for the 
optimization of the function F04 and the iterations 
are varied, the experimental results have very 
similar behaviors and results in all the tested 
functions. For example, as can be seen in Fig. 7 
and Fig. 8, the time consumed and the acceleration 
for the F03 optimization. 

On the one hand, the acceleration achieved by 
varying the number of iterations and the time 
consumed, its behavior can be seen in Fig. 5. On 
the other hand, the function F03 can be seen in the 
convergence process when optimizing with  
varying the number of iterations and in 128 the 
number of individuals, see Fig. 6.  

 

Fig. 3. Convergence for the F01 optimization setting 

variable number of iterations and the number of 
individuals fixed at 128 
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Additionally, when the number of individuals is 
set to 128, it can see the convergence for the 
optimization of the function F04 and the iterations 
are varied, the experimental results have very 
similar behavior and results in all the 
tested  functions.  

For example, as it can be seen in Fig. 7 and Fig. 
8, the time consumed and the acceleration for the 
F03 optimization. 

In the experiments, an acceleration produced by 
the GPU is appreciated that is practically invariable 
to changes when the number of iterations varies.  

The acceleration achieved when a fixed number 
of individuals (128) is very small (2 for DE and 3.75 
for PSO), primarily because the value of the 
population was set at 128 and it could be seen that, 
in the parallel implementations implemented, the 
GPU has an increase in the acceleration as the 
individuals are increased than when the iterations 
are increased [3] and, secondly, it is known that in 
the proposed implementations the arithmetic 
operations are not exploited in parallel, nor the 
unified memory instructions or shared memory. 

5.3.2 Results of the Second Experiment 

The experimental results correspond to the 
following parameters: variable number of 
individuals starting from 64 individuals and the 
number of iterations at a fixed value of 15000, after 
comparing the convergence curves of the first 
experiment and highlighting that 15000 iterations 
are capable of reaching a stable solution in the 
form of a local or global option, this can be seen in 
figures 9 to 14. 

It can be seen that in the optimization of Function 
F01 PSO in its sequential form it has a better 
convergence than the rest of the algorithms, 
followed by parallel DE, while sequential DE and 
parallel PSO algorithms they present an 
impoverishment in the results as the number of 
individuals increases. It is important to highlight the 
very different behavior of the parallel DE and PSO 
algorithms. In figure 10, it can be seen that during 
the optimization process of the F02 function, that 
the algorithm with the best convergence is the 
parallel DE algorithm, followed by the parallel PSO. 

Another result to highlight in this set of 
experiments is that both sequential 
implementations present a lower quality 
convergence with respect to the parallel 
implementations, however the DE presents a 
slower convergence. It can be seen that during the 
optimization of the F03 function, see fig. 11, the DE 
and PSO algorithms in their parallel 
implementation end up trapped in a local optimum 
of better quality (that is, closer to the global 
optimum) with respect to sequential 
implementations, which are stunted in local optimal 
far from global optimal.  

During the optimization of the F04 function, 
presented in Fig. 12, it can be seen that the DE 
algorithm in its parallel implementation is stuck in a 

 

Fig. 4. For the function F02 with a variable number of 

iterations and with a number of 128 individuals we have 
the Convergence to the sequential one 

 

Fig. 5. For the function F03 with a variable number of 
iterations and with a number of 128 individuals 

Computación y Sistemas, Vol. 29, No. 1, 2025, pp. 337–352
doi: 10.13053/CyS-29-1-3896

Gerardo Laguna-Sanchez, Mauricio Olguín-Carbajal, et al.346

ISSN 2007-9737



local optimum closer to the global optimum with 
respect to the rest of parallel and sequential 
implementations, which end up stuck in optimum 
local far from the global optimum. 

Regarding the acceleration achieved and the 
time consumed when the number of individuals 
varies, in general, although the tested functions 
present different types of problems and are on the 
one hand non-separable functions and on the other 
hand separable functions, the experimental results 
are similar as well as their variants (in individuals 
and in iterations).  

It can be seen, in Fig. 13 and Fig. 14, that the 
time consumed and the acceleration for the F03 
optimization. It has been observed that the GPU 
improves the performance, when the individuals 
are increased, as well as the acceleration in the 
case of the proposed parallel implementations. It 
should be noted that the observed acceleration 
increased as the number of individuals in the 
populations increased. When the function F03 is 
graphed, with a variable number of individuals and 
with a fixed number of iterations at 15000, the 
convergence for optimization can be seen, 
see Fig. 11.  

For the F04 functions case, with a variable value 
of individuals and with a number of iterations fixed 
at 1500, the Convergence for optimization F04 
is shown. 

6 Discussion 

After having carried out the experiments and 
compiled the resulting data, it could be observed 
that in the parallel implementations, the 
acceleration achieved increases especially when 
the number of individuals increases more than 
when the iterations increase and the number of 
individuals remains fixed.  

The behavior observed in the convergence 
curves can be explained by the fact that by 
increasing the number of individuals (DE) or 
particles (PSO), the threads executed are 
increased, and this allows the GPU to do a better 
management of the resources [5]. In the case of 
the other experiment, by coding parallel algorithms 
where only the iterations are increased, the GPU 
only repeats practically identical processes. 

 

Fig. 6. For the function F04 with a variable number of 

iterations and with a number of 128 individuals 

 

Fig. 7. The Cost metric for function F03 optimization 

with  the number of individuals fixed to 128 and 
varying iterations 

 

Fig. 8. Speedup metric for function F03 optimization 

with the number of individuals set to 128 and 
varying iterations 
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Therefore, it is more convenient to analyze the 
time consumed and the convergence curve of 
parallel implementation. In the case of the other 
experiment, by coding parallel algorithms where 
only the iterations are increased, the GPU only 
repeats practically identical processes. Therefore, 
it is more convenient to analyze the time consumed 
and the convergence curve of parallel 
implementations in algorithms where the number 
of individuals is changed, than when the number of 
iterations is varied. Regarding acceleration, it 
should be noted that the modest values reported 
here are susceptible to being improved using more 

efficient programming. It should be remembered 
that the algorithms used are originally sequential 
algorithms and that to be executed on the GPU 
they were migrated to parallel programming, it can 
be said that the sequential algorithms and parallel 
algorithms are identical in most of their modules, 
probably with the sole exception of the random 
number generation module. It should be noted that 
when sequential heuristics were passed to parallel 
programming for a GPU, it was observed that, in 
addition to the expected acceleration, a different 
behavior was also observed in convergence. In the 
case of our development, this change is due, in the 

 

Fig. 9. Convergence for F01 optimization with 

iterations fixed to 15000 and varying the number of 
individuals 

 

 

Fig. 10. Convergence for F02 optimization with 

iterations fixed to 15000 and varying the number 
of individuals 

 

Fig. 11. Convergence for F03 optimization with 

iterations fixed to 15000 and varying the number 
of individuals 

 

 

Fig. 12. Convergence for F04 optimization with 

iterations fixed to 15000 and varying the number 
of individuals 
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first instance, to the way that the random numbers 
are calculated for sequential implementations with 
respect to the parallel ones. 

 Due to the nature of the parallelization process 
of the DE and PSO algorithms, random numbers 
must be generated differently from how they are 
generated in sequential programming.  

Inside the GPU, the random number generation 
process is carried out starting with the generation 
of different seeds in an offline way (outside the 
GPU) and these seeds are passed to the graphics 
card, from this the GPU is able to generate its 
numbers from individual to individual, therefore the 
behavior of parallel and sequential implementation 
is different between each other. 

In most experiments, parallel DE algorithm 
obtained the best performance during optimization 
of all tested functions except for F01, where the 
sequential PSO has a clear advantage over the 
other algorithms. It is important to highlight the 
change in convergence behavior between parallel 
and sequential implementation of the same 
heuristic (that is, PSO or DE).  

The reduction of the execution time of a parallel 
code executed in a GPU is demonstrated by the 
experimental results, in addition the convergence 
to the global optimum has a significantly behavior 
changes with respect to the original 
sequential  code.  

On the one hand, this allows us to highlight that 
if a sequential algorithm performs good for a 
certain function, this does not imply that this 
algorithm, when implemented and coded for a 
parallel variant, will behave the same for the same 
problem, since it may perform poorly, regular or 
good (as it is clear from Fig. 9 for PSO when 
optimizing F01).  

On the other hand, it implies that having a 
sequential algorithm that does not perform well in 
a particular function, it does not imply that this 
algorithm in an encoding of a parallel variant also 
behaves badly for the same function (as can be 
seen in Fig. 10 and Fig. 11 for DE when optimizing 
F02 and F03). 

7 Conclusions 

Sequential and parallel versions of the DE and 
PSO algorithms were presented, using CUDA as a 

parallel programming model in a multi-threaded 
GPU using. As a parallel programming 
methodology, a so-called integrated approach was 
used, where one thread per individual or particle 
was assigned. In addition to the self-acceleration 
introduced by the GPU parallel architecture, 
parallel deployments exhibited a different behavior 
with respect to sequential implementations, the 
above is a direct consequence of the strategies 
that were used for the generation of random 
numbers and how they should be generated in 
the GPU. 

As results of the experiments for this 
comparative study, it was observed that the 
parallel DE algorithm had the best performance in 
the whole set of the tested functions, with the 
specified parameters of the algorithm and a 
significant dimensionality of 30. It should be noted 
that DE, adjusted by its parameters F and CR in an 

 

Fig. 13. Cost for F03 optimization with iterations fixed 

at 15000 and a varying number of individuals 

  

Fig. 14. Speedup for F03 optimization with iterations 

fixed at 15000 and a varying number of individuals 
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adequate and correct way that are dependent on 
the problem to be solved, can converge to the 
global optimum using as few individuals as 64 and 
in a small number of iterations as 3000. 

Future research can focus on 5 possible 
avenues of work: 

1. Carry out a set of experiments with a test bed 
with a greater number of functions and test 
parallel implementations in real-world 
problems and observe their performance in 
optimizing those problems. 

2. Use heterogeneous architectures with GPUs, 
such as Beowulf cluster, where the calculation 
jobs are distributed by host and by thread. 

3. Apply all the GPU programming strategies 
such as the intensive use of shared memory, 
the exploitation of the attached memory 
instructions and the parallelization of 
arithmetic operations, and the use of multiple 
threads to obtain a high algorithm parallelism 
of PSO or DE. 

4. Test the behavior of other population 
heuristics such as: Genetic Programming, 
Genetic Algorithm, Evolutionary Strategies, 
and Ant Colony Optimization. 

5. Test more fitness functions with higher 
dimensionality. 
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