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Abstract. Segmentation of clusters of erythrocytes
into their constituent single cells is a procedure
needed in various biomedical applications related to
microscopy images. This task is part of the general
problem of splitting clumps of objects in images
which continues being an open research topic in
the Image Processing field. This work presents a
unified morphological method to detect and segment
clusters of erythrocytes in microscopy images, and
proposes two main contributions. The first one is to
formulate and evaluate a method to detect clusters
as connected components in binary images, obtained
from a previous coarse segmentation, which is not
capable of further dividing a cluster into its constituent
cells. Secondly, to propose the best alternative to split
the clusters into their constituent individual cells after
evaluating three algorithms based in the combination of
the transforms: H-maxima, weighted external distance
and marker-controlled watershed. Evaluation of the
proposed cluster detection methods was made in terms
of standard measures of effectiveness. Segmentation
accuracy was evaluated comparing the segmented
objects obtained to a manually segmented ground
truth, by means of the Jaccard index. Then the

Friedman test allowed validating the advantages of the
proposed method in comparison to the other alternatives
studied here.

Keywords. Image segmentation, clusters splitting,
watersheds, distance transform.

1 Introduction

1.1 General Background

Segmentation of clusters of overlapping or
touching objects in binary images into their single
components has been addressed in a variety of
practical situations and continues being an open
research topic in Image Processing.

Examples can be found for the case of
two-dimensional gel electrophoresis overlapping
spots [36], segmentation of rocks in images with
application to mining industry [4] and rock particles
in general for their recognition [39].
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Other examples are applications related to
nanotechnology [43] and to agriculture and food
[3], general automated size analysis in multi-flash
imaging [21] as well as numerous applications in
the biomedical field, among which segmentation of
overlapped or touching erythrocytes in microscopy
images, to which this work is devoted, is an
important example.

A classification of the segmentation methods
used in a specific biomedical application is
presented in [19] where various approaches like
methods based in concave point detection, blob
detection, clustering and morphological processing
are recognized and discussed.

Other examples are splitting of clumped or
overlapped cells based on template matching
strategy [7] and a method called Recursive Water
Flow (RWF) [8] for cell splitting in histological
images. The problem of segmenting touching cells
in a 3D framework is addressed in [23].

Segmentation of histopathological images
including overlapped or touching cells was
addressed in [13] using deep learning algorithms
and spatial relationships. Splitting of 3D cell
clusters for the case of volumetric confocal images
is presented in [15].

A combined method for overlapped cell detection
and segmentation based in features obtained from
the skeleton and the contour of the cells is
showed in [16]. A semi-automatic approach for
detection and segmentation of cell nuclei based
on graph-cuts and Laplacian of Gaussian (LoG)
filtering is proposed in [1].

A method based on concave points extraction
through polygonal approximation and ellipse fitting
bubbles with average distance deviation criterion
and two constraint conditions was addressed in
[45]. Reference [44] employed a modified version
of curvature scale space method to extract corner
points and then recognize the concave points by
evaluating angular changes.

These concave points and the centroid points
are then used to characterize the structure of
the cell clump and to construct the split line
by using the corresponding splitting strategy.
Other approach proposed recently to split
overlapped cells based on elliptical shape models
appers in [29].

Various approaches to segment clusters in
images from the Papanicolaou test are presented
in [31, 32, 33, 38] and other diverse microscopy
image applications using methods not based in
mathematical morphology were reported in [28, 27,
34, 41].

The method proposed in this work uses
an approach to segment clusters based in
morphological image processing techniques and
under such view, we will comment about methods
of this kind in more detail. A method to split cell
clumps based in the use of different morphological
scales after iterative erosion to find cell-specific
markers is developed in [37].

In spite of the good results they obtained, the
authors point out that at the time of their publication
a comprehensive benchmark using a database of
cell clumps or clumped objects was not available.
It is worth to notice, however, that to our knowledge
such benchmark does not exist yet.

A morphological method is presented in [17]
based in the use of an adaptive H-minima
transform together with an external distance and
marker-controlled watershed transform to segment
cell clusters, with good results in terms of
percentages of correctly segmented clusters.

Reference [18] followed this line of work and it
was introduced there a parameterization using an
ellipsoidal modeling of contours to perform a more
appropriate analysis. The authors expressed their
results there in terms of percentages of correctly
split clumps.

Various alternatives of the use of markers
considering minima imposition were studied in [6]
where a relative equivalence was found between
different approaches, to represent the markers
used to control the watershed transform in order
to split the clumps.

Other morphological approach using the
watershed transform complemented with a corner
detection algorithm appears in [26]. The classical
watershed and distance transforms are used
in [40], specifically to segment chromosomes
showing overlapping.

An improved ultimate erosion process (UECS)
together with an edge-to-marker association is
proposed in [30] to separate the overlapping
convex objects in electron micrographs.
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Fig. 1. Microscopy image and coarse segmentation (a)
original image, (b) coarse segmentation from image (a)

In this work, the authors used a noise-robust
measure of convexity (or concavity) based on the
sensitivity to the coarseness of digital grids as
the stopping criterion for erosion. The missing
contours of the occluded particles are inferred
using a Gaussian mixture model on B-splines.

In reference [42] the gradient-barrier watershed
algorithm is proposed, in which the gradient in
the overlapping region is used directly as the
barrier to the water flow. A cluster segmentation
method based in the use of structural features
and morphological image processing is showed
in [20], again obtaining high accuracy in terms of
performance measures (sensitivity, specificity) of
the cluster detection process as well as accuracy
of segmentation.

A review of the use of mathematical morphology
techniques in malaria studies, which includes the
segmentation of overlapped cells is presented in
[25]. Reference [22] presents a method based
in a watershed algorithm that iteratively identifies
markers, considering a set of different h values in
the H-minima transform.

This method showed good results, but it
is oriented to the specific case of wide-field
fluorescence microscopy images and requires
calculating a fair gradient map from the
original image as well as defining heuristically
some parameters.

Recently, deep learning algorithms, in particular
convolutional neural networks (CNN) have been
also applied in medical image analysis [24].
The fully convolutional neural network U-Net
[35] has significantly influenced the field of
cell segmentation.

This network model was designed to work
with few training images and to obtain accurate
segmentation. In [2] deep learning was applied to
predict cell nuclei and combined with thresholding
and watershed transform to segment different
types of cells.

Their approach was developed only for
fluorescent images with stained cytoplasm. A
modified version of U-Net called MultiResUnet is
proposed in [14] and obtained better results than
using the classical U-Net.

In reference [12] is proposed a method called
BubCNN which employs a Faster region-based
CNN (RCNN) detector module to locate bubbles
and a shape regression CNN to predict bubble
shape parameters.

A great future can be foreseen for deep learning
based models in this kind of applications, however
training deep networks tends to be computationally
expensive and might require large numbers
of annotated data, which is a time-consuming
process. This implies that other conventional
image processing techniques like those presented
here can be still a valuable choice for the task
addressed in this work.

1.2 Unified Framework for Detection and
Segmentation of Clusters

We introduce in this work a unified method oriented
to segment with high effectiveness clusters having
up to medium complexity, which means roughly
less than 30% overlapping which could be
considered to allow a useful individual cell analysis
after splitting. We mention also that erythrocytes
consist usually in round-like objects of moderately
variable sizes.

The algorithm used to segment the clusters
operates by means of a combination of the
conventional distance transform, the H-maxima
transform, morphological operations and a
weighted external distance transform combined
with marker-controlled watershed segmentation,
as will be described in detail later. This
allowed using the information obtained during
the clusters detection to facilitate their subsequent
segmentation (split).
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Fig. 2. Connected regions forming clusters

The method presented here showed a high
effectiveness in detecting the clusters in terms of
performance measures like sensitivity, specificity,
accuracy, precision and F-measure, as well as
a high segmentation accuracy. The latter was
measured in terms of the Jaccard index obtained
when comparing the computer-segmented objects
to a manually segmented ground truth.

2 Materials and Methods

2.1 Images Dataset

The whole detection and segmentation process
begins with a coarse segmentation, which
produces a binary image in which the touching
or overlapping erythrocytes remain as connected
components. The binary images used in our
experiments contain clusters of various sizes and
were obtained through coarse segmentation of
microscopy images, which correspond to mice
peripheral blood smears stained with Giemsa.

Other components of the blood smears as
leukocytes and platelets were eliminated from
the image using image processing techniques,
not described here as our interest resides
in the segmentation of the remaining clusters
of erythrocytes.

A Zuzi microscope model 148 was used
to acquire the images, equipped with a
plan-achromatic lens having 1.25 numerical
aperture and a 0.5 magnification of the camera
adaptor, with a 319CU digital camera of 3.2

megapixel and 8-bit RGB uncompressed output,
obtaining a resolution of 2048 × 1536 pixels. The
objective power used was 100× with immersion
oil, obtaining a total magnification of 50×,
which results roughly in around 140 pixels per
cell diameter for the images employed in the
experimental work.

The images were saved in .tiff (tagged image
file) format. Then, the images were segmented
by thresholding to obtain the set of binary image
containing independent, single objects as well as
clusters of various sizes and complexity.

Other steps in this process included conversion
to grayscale prior to thresholding and then,
morphological area-opening filters are used to
remove items smaller than a red blood cell and to
fill the holes left after thresholding. We stress the
fact that this primary ”coarse” segmentation is not
of concern to this research and its role was only
to obtain images containing appropriate clusters to
perform the experimental work.

The dataset created consists of 43 images
containing in total 4265 binary objects, 1081 of
which can be considered as clusters and 3184 as
individual cells. Fig. 1 shows an original image
and its corresponding binary image after coarse
segmentation and Fig. 2 exhibits four examples of
connected regions forming clusters.

2.2 Detection of the Clusters Contained in
the Binary Images

To detect the clusters contained in the binary
images that were obtained as described in the
previous section, we followed a method that uses
both the conventional (inner) distance transform,
the external distance transform (EDT ) and a
weighted version of it (WEDT ) as well as the
H-maxima transform and some morphological
processing operations, in a process described in
detail in what follows.

This approach was used because it produces
the inner markers needed afterward in the splitting
process. The distance transform DT (A) described
in [9] is defined in the following manner: for any
point x in A, DT (A)(x) is the distance from x to
the complement of A:

DT (A)(x) = min{d(x, y), y ∈ AC}. (1)
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Fig. 3. (a) Binary image from overlapping cells. (b)
Complemented binary image. (c) Distance transform

To calculate DT (A)(x), firstly the binary
image from the coarse segmentation, which has
one-valued foreground pixels, is complemented.
Then DT (A)(x) is calculated as the distance
from each zero-valued pixel to the nearest
one-value pixel.

As the inner distance transform is applied here
to the complement of a connected component, its
result is a grayscale image exhibiting its highest
intensity in a point or patch, which is in general
a regional maximum, located farthest from the
background. This process is depicted in Fig. 3.

The eventual appearance of spurious maxima
will be addressed later. To define the external
distance transform, consider the set B of pixels in
the background (binary level 0) of the binary image
under analysis.

Then for any point x ∈ B, EDT (B)(x) is the
distance from x to the nearest pixel pertaining
to a marker point (binary level 1), usually taken
as a regional maximum as described in the
previous paragraph:

EDT (B)(x) = min{d(x, y), y ∈ BC}. (2)

The proposed methodology followed a sequence
of steps to determine whether a connected
component in the binary image (obtained from the
previous coarse segmentation) corresponds to a
cluster or to a single object and then, split those
that are considered as clusters. These steps were:

1. Labelling the connected components and
calculating the inner distance transform map for
each one.

2. Obtaining the valid regional maxima of the
distance transform (DT ) for each binary object
present in the image).

3. Classify as clusters all the objects having more
than one of these maxima.

4. Build the skeleton by influence zones (SKIZ )
[9] which correspond to the regional maxima for
each cluster, using the weighted EDT (WEDT ),
which is the EDT with its values divided
(weighted) by a factor obtained during the
selection of the valid regional maxima described
in the next section.

5. Segment the clusters into their constituent
components by means of the marker controlled
watershed transform [9], using the SKIZ lines
as external markers and the regional maxima
as inner markers.

When building the EDT map in setp 4 to obtain
the SKIZ, the distances from a background pixel
to each regional maximum were weighted by
a coefficient, which depends on the magnitude
(height) of the regional maximum, previously
normalized to the interval [0, 1]. Segmentation
by means of the watershed transform followed the
previous steps.

We point out, however, that obtaining valid
regional maxima corresponding to the clustered
binary objects is not a trivial task. The clusters
may have a moderately irregular contour, and
therefore several spurious maxima can appear
after calculating the distance transform.

These spurious maxima are usually deemed
as noise and can lead to over segmentation
when used as markers for segmenting using the
marker-controlled watershed transform.

2.3 Determining the Valid Regional Maxima
in DT(A)(x)

In this work, three methods were applied and
compared in order to determine the valid regional
maxima present in the binarized clusters.
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— Method 1: Iterative H-maxima transform.
This method apply iteratively the H-maxima
transform to the distance transform map
of each complemented binary objects and
afterwards counting the number of remaining
regional maxima.

— Method 2: Morphological filtering. This method
has the purpose of transforming the set of
spurious regional maxima formed around the
center of a single (and perhaps part of a cluster)
object into one valid, unique maximum.

In this case, an alternating open-close
sequential filter [9] with two stages and
a disk structuring element is applied to
the distance transform map. Then, the
algorithm extracts the regional maxima and the
magnitude (height) of these resulting maxima
is considered representative of that of the
individual merged maxima.

— Method 3: Radon transform. This method is
described in [11] where the Radon transform
and morphological operations are used to find
the markers for the erythrocytes.

A detailed description of these methods is
presented in the next section.

2.4 Detailed Description of the Methods
Used to Detect Clusters

The H-minima and H-maxima transforms are
powerful tools to suppress undesired minima or
maxima in a grayscale image.

In this case, we applied the H-maxima transform
to the distance transform map corresponding to
the complemented binary image, obtained from
the coarse segmentation step. The H-maxima
transform HMAX is defined in [9] as:

HMAXh,D(f) = f4D(f − h), (3)

where 4D is the morphological operation of
geodesic reconstruction, f is the intensity image,
h is a height parameter and D is the structuring
element. The HMAX transform removes any
intensity dome in the image having height less than
h and decreases the height of the other domes

by h. Calculation of HMAX tends to eliminate
successively the spurious maxima of different
heights as the parameter h increases by iterative
steps. Once the spurious maxima are eliminated or
merged, if the parameter h continues increasing, at
some moment the regional maxima pertaining two
adjacent clustered objects will also merge.

This fact is used in as stop criterion in [17],
where the dual H-minima transform is used
in an analogous way. The algorithm in this
reference goes back one step to keep isolated
the regional minima pertaining to different adjacent
merged objects.

However, increasing h in small steps until
merging the maxima from adjacent objects implies
in our case an unnecessary computing burden,
because actually there is only the need to suppress
the spurious maxima, which will occur after only
some few steps.

In order to find a practical solution to this
problem, experimental work with a large number of
diverse clusters was performed, testing the results
of iterations increasing the parameter h.

It was found experimentally that the number of
maxima stabilizes in the desired value after at
least five successive iterations in practically all
cases, without further decrements in the number of
maxima until the merging phenomenon previously
mentioned occurs.

This determined the use as stop criterion for the
iterative H-maxima transform the constancy of the
number of detected regional maxima during five
successive iterations. If after this convergence
more than one maximum remain present in
a connected component being analyzed, it is
possible to say that we are in presence of a cluster,
given that a single erythrocyte would show only
one maximum.

Then, the maxima obtained for the different
components in the image are saved. These
maxima will be used later as internal markers to
be used in the watershed segmentation, together
with the last height value obtained from the HMAX
transform, which will be also used for separating
the clusters into individual objects. On the basis of
the previous discussion, three methods to detect
clusters were implemented and compared, whose
algorithms are summarized as follows:
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Fig. 4. (a) Regional maxima superimposed to the
distance transform map in Fig.2, notice the presence of
multiple spurious maxima. (b) Final regional maxima
after the iterative search, where the spurious maxima
have been merged into two single ones, as expected

2.4.1 Method 1: Iterative H-maxima
Transform for Detecting Clusters:

1. Perform the coarse segmentation of the image
using a standard method and label the resulting
binary connected components, which can be
either single objects or clusters.

2. For each labeled object i do:

a) Compute the distance transform (Euclidean)
on the complement of the i th connected
component and normalize the obtained
grayscale image Dmap to the range [0,1].

b) Count the number of regional maxima
in Dmap for each labeled connected
component; let this number be N.

c) Guess an initial parameter value h = 0.01.

d) While N > 1, successive calculations of
the HMAX transform incrementing h in small
steps (experimentally set to 0.05) begins
until the calculated number N of regional
maxima repeats its value a number of times,
reaching a count heuristically set to five, or
N reaches the value 1.
This was the criterion of convergence for
the calculation of the number of maxima
and the suppression of spurious extrema.
Here in each iteration the new value of N is
saved and compared with the previous one,
to allow counting the number of repeats of it.
Every time N changes, the counter is reset
to one and counting re-starts.

Input: Ibw : binary image obtained from
initial coarse segmentation

Output: Iseg: binary image with split
cell clusters

1 dh← 0.005 ; /* initialize dh */

2 Iseg← create a matrix of zeros of size of
Ibw;

3 L← set of all connected components of Ibw;
4 foreach c ∈ L do
5 cont← 1 ; /* initialize cont */

6 h← 0.01 ; /* initialize h */

7 cc← complement(c) ;
8 DMap← DT(cc) ; /* distance transform */

9 DMapn← Normalize(Dmap) ;
/* normalize Dmap to the range [0, 1] */

10 RegMax← RegionalMaxima(DMapn) ;
11 N ← # connected components of

RegMax;
12 Nprev← N ;
13 while N > 1 and cont ≤ 5 do
14 Hmap← H-Maxima(DMapn,h);
15 RegMax← RegionalMaxima(Hmap);
16 N ← # connected components of

RegMax;
17 h← h+ dh ;
18 if N = Nprev then
19 cont← cont +1;

20 else
21 cont← 1 ;
22 Nprev← N ;

23 if N > 1 then /* c is a nucleus cluster */

24 S ←
SplitClusterWEDT(c, Hmap, RegMax);

25 Iseg← Iseg∨ S;

26 else /* c is an isolated cell */

27 Iseg← Iseg∨ c;

28 return Iseg;

e) If N > 1 after convergence, the labeled
binary object is classified as a cluster and
the algorithm, as will be seen, calls the
method SplitClusterWEDT in order to split
it. This function would receive two additional
parameters, these are the final calculation
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of the H-maxima transform, which contains
the information about the heights of its
regional maxima, as well as the regional
maxima map, stored respectively in Hmap
and RegMax, that were obtained in step (d).

The pseudo code illustrates this algorithm for
the Iterative H-maxima transform method. Fig. 4
shows a binary object corresponding to a cluster of
2 erythrocytes and the regional maxima obtained
for it during its processing. Notice that in this case
N = 9 initially and at the end of the algorithm run
N = 2 as it should be.

2.4.2 Method 2: Morphological Filtering

This method applies a morphological approach to
detect clusters and extracting markers for both
the clusters and the single cells. The steps are
as follows:

1. Perform the coarse segmentation of the original
image in the same way as in Method 1.

2. Determine the distance transform (Euclidean) of
the complement of this binary image and then
normalize it. Let be Idt the resulting image.

3. Compute a two-stages open-close alternating
sequential filtering (ASF), using a disk
structuring element g with radius 1 and 2 in the
first and second filtering stages respectively, in
order to eliminate the spurious maxima. We call
the resulting image Ioc. The general expression
for this filtering process is:

ASF2
CO,g(f) = ((((f ◦ g) • g) ◦ 2g) • 2g). (4)

For which in this case f is the Idt image. Here ◦
and •mean respectively morphological opening
and closing.

4. Determine the regional maxima on Ioc and call
the resulting image Irm.

5. For each labeled connected component present
in the binary image:

a) Compute a logical AND operation between
the binary image of the connected
component and Irm. We call the resulting
image Imark.

b) Count the numbers of regional maxima on
Imark with the aid of labeling the connected
components contained in it.

c) If the number calculated in (b) is greater
than one the object is classified as a cluster
and its division is carried out using the
SplitClusterWEDT method, which receive
as arguments the binary image of the
cluster, the regional maxima map of the
cluster (Imark ) and the distance transform
image after the open close filtering (Ioc).
In other cases, the object pertaining this
connected component is classified as a
single erythrocyte.

2.4.3 Method 3: Radon Transform (RT )

This method uses the Radon transform to find the
markers for the cells as described in [11]. The
search for markers is performed based on the
ability of the RT to detect shape parameters and
their behavior with circular structures.

The circular structure edge was determined
previously in order to apply the direct RT and after
that the sinogram projections were filtered using a
matched filter having a horseshoe-shaped impulse
response. This filter was used to enhance the
projections of all circular structures with radius r,
which is computed from the median cell area in
each image.

Then, an image with peaks close to the circular
structures centers is obtained by means of the
inverse RT. After this, a threshold is applied which
is calculated by means of histogram analysis of the
reconstructed grayscale image.

Finally, a morphological closing was performed
in order to identify the final markers of each
cell. Once the image containing the markers
is obtained, we proceed to determine which
connected components within the coarse
segmentation image can be considered as
clusters for their subsequent division by means of
the SplitClusterWEDT method.

Similarly, to the previous method, for each
connected component of the binary image
obtained by means of the coarse segmentation, a
logical AND operation of it with the whole markers
image is performed to obtain the final markers that
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correspond to the specific connected component
that is being analyzed. The resulting markers are
labeled and if their number is greater than one the
corresponding object is considered as a cluster.

The SplitClusterWEDT algorithm needs three
arguments, which in this case are the binary image
of the cluster, the markers corresponding to this
cluster and the normalized distance transform of
the logical complement of the cluster binary image.

As a final comment concerning the last step
in the previous descriptions, e.g. calling the
method to split the clusters, we emphasize the
fact that aside from the cited SplitClusterWEDT
method, splitting by means of the classical marker
controlled watershed transform as well as using the
EDT were also tested and compared, as described
in the following section.

2.5 Segmentation of Clusters Into Their
Constituent Objects

The algorithm devoted to segment the connected
components identified as clusters into their
constituent parts takes three inputs. The first
one C is the binary image of the cluster. The
second parameter RegMax is the binary image
of the valid regional maxima identified during
cluster C detection.

The third one Hmap depends upon the clusters
detection method employed. The output of this
algorithm is the binary image Cseg of the cluster,
divided into its constituent components.

The algorithm begins by labeling and counting
the connected components of the regional maxima
contained in RegMax and setting their values in
the variables LRM and Num respectively. Then
follows a loop having as many iterations as regional
maxima are present in C.

This loop starts initializing a binary matrix S to
zero and then setting to one the elements of S
whose positions match with the elements labeled
i in the LRM matrix. The described loop can be
implemented instead through vector operations for
the sake of computational efficiency.

Then the algorithm computes an element-wise
multiplication (Hadamard product) between
matrices S and Hmap to obtain a new matrix
called HeightRM, whose values correspond, for

Input: Cm×n: binary mask of the cluster;
RegMaxm×n: inner markers;
HMapm×n: height of the maxima and
depend of the cluster detection
method selected

Output: Csegm×n: split cluster
1 LRM← label matrix for connected

components of RegMax;
2 num← # of connected components of

RegMax;
3 dtarray← array of m × n × num

dimensions;
4 for i← 1 to num do
5 S ← matrix of size m× n initially set to

zero;
6 Sj,k ← 1 for all j ← 1 : m, k ← 1 : n,

such that LRMj ,k = i ;
7 HeightRM← S ◦Hmap ; /* Hadamard

product */

8 index← find(HeightRM, 1) ; /* index of

the first non-zero element in HeightRM */

9 divfact← HeightRM(index);
10 dtarrayi ← DT (S)

divfact ; /* obtain the WEDT for

the ith regional maximum */

11 for j ← 1 : m, k ← 1 : n do
// minimum of all matrices

12 im4wsj,k ← min{dtarrayi
j,k, i← 1 :

num};
13 SKIZ← watershed(im4ws) ;
14 Cseg← C ;
15 Csegj,k ← 0 for all j ← 1 : m, k ← 1 : n,

such that SKIZj ,k = 0 ;
16 return Cseg;

Method 1, to those of the h-maxima transform in
the region occupied by each regional maximum
and are zero in the rest of the matrix. In this case,
for methods 2 and 3 the values of the distance
transform are used instead of the h-maxima
transform values.

Then for each regional maximum its height value
called divfact, is used to weight (divide) the EDT
value associated to this maximum.

A three-dimensional array called dtarray is built
in which its i th level is a matrix that contains the
weighted EDT (WEDT ), which is the EDT with its
values divided (weighted) by divfact.
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begin

Input C, RegMax, Hmap

LRM ← label
matrix of connected

components of RegMax

num ← # of connected
components of RegMax

Create dtarray with a
m × n × num dimension

i ← 1

i ≤ num

S ← matrix with 1 in the
positions that match with
the label elements equal

to i in the LRM matrix and
0 in the other elements

HeightRM ← S ◦ Hmap

divfact ← Find the first
non-zero element in
a HeightRM matrix

dtarrayi ← DT (S)

divfact

obtain the WEDT for
the i th regional maximum

i ← i + 1

Compute the global
WEDT map taking in
each coordinate point

of the image plane, the
minimum value of the

WEDT, calculated for all
i saved in dtarray. Save
the result in im4ws matrix

Compute the watershed
transform on im4ws to

obtain the SKIZ lines and
segment the cluster C.

end

True

False

Fig. 5. Block diagram of the algorithm to segment the clusters using the Weighted External Distance Transform

The reasoning behind this procedure is that the
WEDT value calculated in some specific point
tends to be lower for a larger height of the
maximum and viceversa.

This fact determines that the SKIZ lines tend to
separate from higher maxima and come closer to
lower maxima, and this leads to a better location
of the SKIZ lines (equal distance) to segment
clustered objects having different size.

The remaining i values give rise to matrices
corresponding to each regional maximum, each
one of them with its respective weight. The
algorithm saves in dtarray the WEDT for each
regional maximum in a cluster.

Then it computes the global WEDT map taking
in each coordinate point of the image plane, the
minimum value of the WEDT, calculated for all i
saved in dtarray and saving it in im4ws matrix.

Then the marker controlled watershed transform
is applied to this matrix to obtain the SKIZ lines
which will be used to segment the binary cluster C.

Fig. 5 shows a block diagram illustrating the
described algorithm, the pseudo code for it is
shown above. Two alternative methods were
compared with the proposed algorithm in other to
explore their accuracy.

These methods were the marker controlled
watershed transform using the inner distance
transform (CW ) and the marker controlled
watershed transform using the external distance
transform (EDT ).

The combination of the three methods
implemented for the detection of clusters (Iterative
H-maxima transform, Morphological filtering and
Radon transform) with the three methods to split
them into their constituent objects form nine
combined methods.
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Fig. 6. Watershed lines in the segmentation result after
detecting the clusters by means of iterative H-maxima
algorithm. (a) Ground truth. (b) Using inner distance
transform. (c) Using external distance transform. (d)
Using the weighted external distance transform

Fig. 6 shows the result of the segmentation
using the Iterative H-maxima method to detect
markers and the three ways to split the cluster:
the inner distance transform, the external distance
transform and the proposed weighted external
distance transform.

In this figure, we can notice the difference in
terms of the watershed lines. In (a) the ground truth
lines (b) broken lines can be observed, in (c) the
line is somewhat displaced from the right position
and in (d) the splitting line appears in a right place.

2.6 Evaluating the Effectiveness of
Clusters Detection

A comparison between the three methods to
detect clusters allowed determining the most
appropriate alternative.

This comparison considered the detection of
clusters in terms of true positives (TP) or clusters
classified as such, false positives (FP) single
objects classified as clusters, true negatives
(TN) single objects correctly classified, and false
negatives (FN) as clusters classified as single
objects. From these data, the indexes of
effectiveness: sensitivity, specificity, accuracy,
F-measure and precision were calculated.

These measures are defined as follows:

Sensitivity =
TP

TP + FN
, (5)

Specificity =
TN

TN + FP
, (6)

Accuracy =
TP + TN

TP + TN + FP + FN
, (7)

F-measure =
2TP

2TP + FP + FN
, (8)

Precision =
TP

TP + FP
. (9)

2.7 Evaluating the Segmentation Accuracy

The segmentation accuracy was tested using a
ground truth composed by 500 binary clusters
obtained from a first coarse segmentation, from
which a careful, manually segmented version was
built by digitally drawing an appropriate straight line
between the vertices of the concavities that appear
just at the points where the overlapping region
of the roundish erythrocytes begin, as shown
in Fig. 6a.

These clusters comprised two to eight single
touching or overlapping objects with low to
moderately different shapes, sizes and spatial
orientations, up to 1220 single objects. The
metric used to evaluate the accuracy of the
segmentation was the Jaccard similarity index
[10], which measures the coincidence between the
segmentation result and the ground truth and is
defined as:

J(A,B) =
|A ∩B|
|A ∪B|

, 0 ≤ J ≤ 1, (10)

where A and B are the binary sets to be compared
and | ∗ | means the cardinality of sets. A result
J = 1 means perfect coincidence between the
binary images while J = 0 indicates total lack of
coincidence. In our case, A would be the manually
segmented object and B the object obtained from
the automated segmentation method.

Computación y Sistemas, Vol. 26, No. 4, 2022, pp. 1569–1586
doi: 10.13053/CyS-26-4-3893

Combined Detection and Segmentation of Overlapping Erythrocytes in Microscopy Images ... 1579

ISSN 2007-9737



Table 1. Indexes of effectiveness in the detection
of clusters

Indexes
Iterative
Hmax

Morph
Filtering

Radon
Transform

TP 1057 1068 945
TN 3182 3181 3187
FP 2 3 0
FN 24 13 133
Sensitivity 97.78% 98.8% 87%
Specificity 99.94% 99.91% 100%
F-measure 98.79% 99.26% 93.43%
Accuracy 99.39% 99.62% 96.88%
Precision 99.81% 98.72% 100%

Fig. 7. (a) Binary image with two clusters,
(b) Segmentation result using the HmaxWEDT method

The analysis and interpretation of the results
when evaluating the Jaccard coefficients was
performed applying statistical tests.

We compared the nine methods using the
Friedman’s non-parametric rank test with a
Bergmann and Hommel’s correction for the
post-hoc analysis. These tests were computed
using the public R scmamp package [5].

3 Results and Discussion

Fig.7 shows two segmentation results using the
HmaxWEDT method. Here the Iterative H-maxima
transform is used to detect clusters and extract the

inner markers and the weighted external distance
transform (WEDT ) to split the clusters into their
constituent objects.

We stress the fact that this combination
of methods obtained the best results. The
effectiveness in the detection of clusters was
measured in terms of sensitivity and specificity.
We analyzed 43 images containing 4265 binary
objects. Table 1 shows the indexes of effectiveness
in the detection of clusters, for the three
methods analyzed: Iterative H-maxima transform,
Morphological filtering and Radon transform.

The numbers in the tables were rounded to two
decimal places. Table 2 shows the descriptive
statistics of the Jaccard coefficients calculated for
the nine methods analyzed, for which 1220 objects
were used.

Here Hmax, Morph and Radon stand for the
Iterative H-maxima transform, Morphological
filtering and Radon transform respectively, and
CW, EDT and WEDT for the classical watershed
transform, external distance transform and
weighted external distance transform.

This table shows that the method HmaxWEDT
exhibited better results than the others, in terms
of mean, median and standard deviation. Similar
results were obtained with the other methods when
using the WEDT.

The Friedman test found statistically significant
differences in results among the compared
algorithms with a p-value of 2.2e-16 (test statistic
= 6234.5). Then, the Bergmann and Hommel
post-hoc procedure was carried out in order to
find which combination of methods showed a
statistically significant difference.

As a further description in order to have a
better understanding of the possible similarities
and differences among the tested algorithms, we
plotted and show in Fig. 8 a critical difference plot
with the corrected p-value and α = 0.05.

In this plot, each algorithm is placed on an axis
according to its average ranking. Then, those
algorithms that do not show significant differences
are grouped together using a horizontal line. The
rankings in the plot assume that larger values have
a poorer rank.

In our case, the plot shows that, in general,
the HmaxWEDT combination method ranked
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Fig. 8. Cross-comparison for the nine algorithms tested using the Friedman test and the Bergmann and Hommel post
hoc correction. Groups of methods that are not significantly different appear connected by a horizontal line

Fig. 9. Friedman test with the Bergmann and Hommel post hoc correction for the nine algorithms tested. Groups of
methods that are not significantly different appear as connected nodes

significantly better than the other combined
algorithms, showing as well statistically significant
differences in comparison with the others.

Another representation of the results of this test
is shown in Fig. 9, where in this graph each node
represents an algorithm and shows its name and
the computed Friedman’s test statistic.

A node with a filled background in green
indicates the best ranked algorithm after this
comparison. Lines between nodes indicate that the
differences between connected algorithms are not
found to be significant for α = 0.05, according to
the Bergmann-Hommel post-hoc procedure.

There are no significant differences between the
algorithms HmaxCW, MorphCW and RadonCW
for which their mean ranks are very similar.

These three algorithms in spite of the way
they use to detect the markers for the objects
-using the methods Iterative H-maxima transform,
morphological approach and Radon transform
respectively- have in common the way used

to split the clusters, e.g. using the classical
watershed transform.

The same occurs with pairs MorphEDT and
RadonEDT which use the external distance
transform; and MorphWEDT and RadonWEDT
which use the proposed weighted external
distance transform.

3.1 Comparative Study

In order to make a comparative assessment of
our proposed method, experimental results were
compared to other state-of-art methods cited in the
present article.

In spite that these works do not use the same
database or even the same type of cells, the global
results may provide an idea about how the figures
obtained in the experiments reported in this article
compare with those obtained in other works in
this field.

In reference [18] the results are expressed
in terms of percentages of correctly segmented
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Table 2. Descriptive statistics of the Jaccard coefficient
for the nine methods

Method Mean Median St.Dev. Max Min
HmaxCW 0.946 0.948 0.01 0.965 0.853
HmaxEDT 0.985 0.991 0.021 1 0.749
HmaxWEDT 0.993 0.996 0.01 1 0.892
MorphCW 0.94 0.948 0.057 0.965 0.332
MorphEDT 0.977 0.991 0.055 1 0.157
MorphWEDT 0.987 0.994 0.042 1 0.393
RadonCW 0.946 0.948 0.017 0.965 0.561
RadonEDT 0.98 0.99 0.04 1 0.258
RadonWEDT 0.987 0.994 0.034 1 0.408

Table 3. Detection of cell clusters for one image

Method CC TP TN FP FN
Iterative H-maxima 117 27 89 0 1
Morph filtering 117 27 89 0 1
Radon transform 117 23 89 23 5

Table 4. Mean runtime for each method (in seconds)

Method Radon
Morph

Filtering
Iterative

H-maxima
Classical Watershed
transform (CW)

8.66 1.82 46.41

External distance
transform (EDT)

8.59 2.11 46.86

Weighted external distance
transform (WEDT)

23.11 18.87 62.73

clusters obtaining a 96.43% accuracy on cervical
and breast cancer images.

The accuracy results obtained in our works
are higher compared with this reference in spite
that the image are from different types of cells.
Reference [20] showed their results in terms
of performance measures of overlapped cells
detection as well as accuracy of splitting.

They achieved 97.4% accuracy in the
overlapped cells detection on the test set. In
our work, we obtain better results in the cluster
detection process achieving 99.39% and 99.69%
accuracy with the Iterative H-maxima transform
and Morphological filtering methods respectively.

Reference [44] obtained high results in terms
of sensitivity, precision and F-measure where
true positive (TP) is the number of correctly split
objects. Three datasets were used to evaluate the
performance of the method and average values

of sensitivity = 98.29%, precision = 99.02% and
F-measure = 98.65% were obtained.

In our work, the TP is the number of objects
classified correctly as clusters, and in this
sense, we obtained 99.81% precision and 98.79%
F-measure by the Iterative H-maxima transform
method as well as 99.72% precision and 99.26%
F-measure by the Morphological filtering method
which are slightly better.

3.2 Runtime Analysis

This study was carried out using MATLAB (2016a
version) on a computer with an Intel Core
i3-2310M processor clocked at 2.10 GHz and
with 4 GB of RAM and 64 bits Windows 10 Pro
operating system. To reduce the computational
load, the binary image obtained from the coarse
segmentation was resized to resolutions of
1024 × 768 pixels.

Table 3 shows for one resized binary image
the total of connected components (CC) and the
indexes of TP, TN, FP and FN detected by the three
methods. For this image, the Iterative H-maxima
transform and Morphological filtering obtained the
same results.

These two methods exhibited the best results
obtaining the TP and consequently the best results
in terms of sensitivity, F-measure and accuracy
showed earlier in Table 1.

Table 4 shows a comparison of the mean running
times for the three clusters detection algorithms
combined with the three methods used to split the
clusters in their constituent parts.

The morphological filtering method combined
with the three cluster-splitting methods showed
the best performance in terms of speed, which
is a very important factor when analyzing large
numbers of images.

The Iterative H-maxima method was the most
time consuming. This result is a consequence
of the need to perform a number of iterations
calculating the H-maxima transform, which has
a relatively high computational cost, in order to
obtain the appropriate h values.

The same occurs with the WEDT method
used to split the clusters. In this case, each
detected cluster is to be analyzed to compute the
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weighted distance transform, which has a higher
computational cost.

4 Conclusion

This research explored various alternatives
to detect and split connected components in
binary images, which appear in segmentation
processes of microscopy images having touching
or overlapping erythrocytes. The scope of
this approach was constrained to blood smear
images containing erythrocytes having moderate
differences in size as well as a moderate degree
of overlapping.

Three methods to detect connected components
associated to clusters, named Iterative H-maxima
transform, Morphological filtering and Radon
transform were used, as well as three methods
to split these connected components in their
constituent parts, named in this case external
distance transform (EDT ), the classical
watershed transform (CW ) and the weighted
distance transform (WEDT ) which result in nine
possible combinations.
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