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Abstract. In this work computability and stability
issues for analog algorithms with discontinuous states
and non-unique evolution operators are studied. The
notions of analog algorithm and dynamical system
are postulated to be equivalent. The stability and
stabilization concepts for analog algorithms are defined.
The stability and stabilization presentation starts
concentrating in continuous and discrete dynamical
systems i.e., analog algorithms, defined by differential
or difference equations, and continues considering
Lyapunov energy functions for analog algorithms with
continuous and discontinuous states. Dynamical
systems with non-unique evolution operators are
also studied.
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1 Introduction

This work presents analog algorithms with discon-
tinuous states and non-unique evolution operators.
Bournez, Dershowitz and Neron [1] have formal-
ized a generic notion of analog algorithm. They
provide postulates defining analog algorithms in
the spirit of those given for discrete algorithms [2],
and continue proving some completeness results.
The notions of analog algorithm and dynamical
system are postulated to be equivalent.

Retchkiman and Dershowitz [3] have studied
the stability and stabilization concepts for analog
algorithms. They first considered the stability and
stabilization issues concentrating in continuous
and discrete dynamical systems i.e., analog
algorithms described by differential or difference

equations. This paper extends these results
considering Lyapunov energy functions for analog
algorithms with continuous and discontinuous
states which applies to many classes of dynamical
systems including hybrid systems and switched
systems. Dynamical systems with non-unique
evolution operators are also presented.

The paper is organized as follows. In section 2,
the paper written by Retchkiman and Dershowiz
related to analog algorithms is first reviewed.
The stability and stabilization concepts for analog
algorithms are defined. Section 3 presents
an application example. Section 4 discusses
the stability concept for analog algorithms with
continuous and discontinuous states in terms of
Lyapunov energy functions, and finally section
5 discusses analog algorithms for dynamical
systems with non-unique evolution operators.

2 Analog Algorithms, the
Church-Turing, Stable Algorithms
and Stabilization of Unstable Analog
Algorithms

In this section, the work presented in [3] and the
references therein is recalled.

Definition 1. A dynamical system is a four-tuple
{T ,X,A,φt}, where T is called the time set, X is
a state space (a metric space with metric d), A is
the set of initial states A ⊂ X and φt : X → X
is a family of evolution operators parameterized by
t ∈ T satisfying the following properties: for x ∈
X,φ0(x) = x, and φt+s = φt ◦ φs.
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Remark 2. Note that in our definition of
dynamical system, it is allowed to have, in general,
more than one evolution operator.

Dynamical systems are classified based on the
properties of T , X and φt. The time set T is it
continuous or discrete?. The state space X is it
finite or infinite?, is it continuous or discrete?. Is it
X finite-dimensional or infinite-dimensional?. The
map φt: Deterministic or stochastic?, autonomous
or time-dependent?, invertible or not?, etc. Some
examples are: Turing machines, finite state
automata, continuous systems, discrete systems,
discrete event systems and hybrid systems (to
mention some).

When T = R = (−∞,∞), we speak of a
continuous-time dynamical system, and when T =
N = {0, 1, 2, · · · } we speak of a discrete-time
dynamical system. We will consider T equipped
with the absolute value as a normed space i.e.,
(T , | · |) .

A dynamical system is generally defined by
one or more differential or difference equations
There are other important classes of dynamical
systems as those defined by continuous differential
equations, functional differential equations, semi-
groups, to mention some.

Remark 3. When dealing with continuous
dynamical systems determined by ordinary differ-
ential equations on Rn, we define the euclidean
metric d as:

d(x, y) =| x− y |=
[ n∑
1=1

(xi − yi)2
] 1

2

,∀x, y ∈ Rn.

For discrete dynamical systems determined by
difference equations, X equipped with the above
euclidean metric defines a metric space.

Definition 4. A dynamical system is said to be
computable if and only if it is family of evolution
operators (also called its trajectories) are obtained
as solutions of its mathematical model.

Postulate A. An analog algorithm is a dynamical
system.

Definition 5. A vocabulary V is a finite
collection of fixed-arity (possibly nullary) function
symbols. We assume that V contains the scalar
(nullary) function true. A first-order structure X
of vocabulary V is a non-empty set S, the base

set (domain) of X, together with interpretations
of the function symbols in V over S, denoted
by ‖f‖X . Similarly, the interpretation of a
term f(t1, · · · , tn) in X is recursively defined by
‖f(t1, · · · , tn)‖X = ‖f‖X(‖t1‖X , · · · , ‖tn‖X). Let
X and Y be structures of the same vocabulary V.
An isomorphism from X onto Y is a one-to-one
function ζ from the base set of X onto the base
set of Y such that f(ζt1, · · · , ζtn)) = ζ(t0) in Y
whenever f(t1, · · · , tn) = t0 in X.

Definition 6. A state transition system, consists
of a set of states S, a subset I of initial states,
transition functions on states, which determines the
next-state relation, (states with no “next” state, will
be terminal states).

Postulate B (Abstract state). States are
first order structures with equality, sharing the
same fixed, finite vocabulary. States and
initial states are closed under isomorphism.
Transitions preserve the domain, and transitions
and isomorphisms commute.

Definition 7. An abstract transition system is
a state transition system, whose function symbols
f are interpreted as functions, and that satisfies
postulate B, where the transition function on states
is equal to φt.

Postulate C. An analog algorithm is an abstract
transition system.

Definition 8. If f is a j-ary function symbol in
vocabulary V, and a is a j-tuple of elements of the
base set of X, then the pair (f , a) (also denoted by
f(a)) is called a location. We denote by ‖f(a)‖X
its interpretation in X. If (f , a) is a location of X
then (f , a, ‖f(a)‖X) is an update of X. When Y
and X are structures over the same domain and
vocabulary, Y \X denotes the set of updates4+ =
{(f , a, ‖f(a)‖Y ) : ‖f(a)‖Y 6= ‖f(a)‖X |}.

Definition 9. An infinitesimal generator is a
function 4 that maps the state space X to a set
4(X) of updates, and preserves isomorphisms
i.e., if ζ is an isomorphism of states X,Y , then for
all updates (f , a, ‖f(a)‖X) ∈ 4(X), we have an
isomorphic update (f , ζa, ζ‖f(a)‖X) ∈ 4(Y ).

Definition 10. A semantics ψ over a class
C of sets S is a partial function mapping initial
evolutions over some S ∈ C to an element of S.

Definition 11. The infinitesimal generator
associated with a semantics ψ maps the state
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space X, such that ψ[X, f , a] = ψ(‖f(a)‖φt(X)) is
defined for all locations (f , a), to the set of updates
4ψ(X) = {(f , a,ψ[X, f , a]) : (f , a) ∈ X}.

Remark 12. When T = R, an example of
semantics over the class of sets S containing T is
the derivative ψder, when it exists. When T = N ,
an example of semantics over the class of all sets
would be the function ψN mapping f to ψN (fn) =
fn+1,n ∈ N .

Remark 13. From now on, we assume that
some semantics ψ is fixed to deal with different
types of dynamical systems, it could be ψder, but it
could also be another one. However,it is assumed
that the class of dynamical systems is restricted
to those that guarantee the existence of the
respective semantics and as a result its associated
set of updates is well defined. Therefore, not all
possible dynamical systems are allowed.

Postulate D. For any analog algorithm, there
exists a finite set T of variable free terms over the
vocabulary V, such that for all states X and Y that
coincide for T , 4ψ(X) = 4ψ(Y ).

Definition 14. An abstract state machine,
or ASM , is a state-transition system in which
algebraic states (no predicate symbols) store
the values of functions of the current state.
Transitions are programmed using a convenient
language based on guarded commands for
updating individual states. ASM captures the
notion that each step of an algorithm performs
a bounded amount of work, whatever domain it
operates over, so are central to the development.

An abstract state machine (ASM ) is given by: a
set S of algebraic states (no predicate symbols),
closed under isomorphism, sharing a vocabulary
V, a set (or proper class) I of initial states, closed
under isomorphism, and a program P , consisting
of finitely many commands, each taking the form of
a guarded assignment:

if q then t := u,

for terms t and u over the vocabulary, and q is a
conjunction of equalities and inequalities between
terms i.e., given a state α which belongs to
S, program P defines and therefore computes
the following sub-set of the set of updates 4+,
{f(‖s‖α := ‖u‖α : (if p then f(s) := u) ∈
P and ‖q‖α = true}.

In addition to the rule of the ASM program (see
definition [14]) we introduce the following rules.

Definition 15. If each R1,R2, · · · ,Rk are rules
of the ASM i.e.,

if q then t := u,

then:
par R1,R2, · · · ,Rk endpar,

is a rule which executes them in parallel, with
4ψ(X) equal to the union of the same sub-set
of updates given in definition [14] for each
R1,R2, · · · ,Rk.

Definition 16. A rule of the form
Dynamic(f(t1, t2, · · · , tj), t0) where f is a
symbol of arity- j and, t0, t1, t2, · · · , tj are
variable free terms, then the rule is defined by
ψ[X, f , (t1, t2, · · · , tj)] = ψ(f(t1, t2, · · · , tj)) := t0,
where {ψ[X, f , (t1, t2, · · · , tj)]} is an element
of the set of updates 4ψ(X). In addition if
R1,R2, · · · ,Rk are rules of the form Dynamic
then:

par R1,R2, · · · ,Rk endpar,

is also a rule, with 4ψ(X) being equal to the
union of {(fi, ai,ψ[X, fi, ai]) : (fi, ai) ∈ X} for
i = 1, · · · , k.

Definition 17. If φ is a boolean term and R1 and
R2 are rules then, if φ then R1 else R2 is a rule.

The following result plays a fundamental
role in the proof of the Church thesis for
analog algorithms.

Theorem 18. For every algorithm of vocabulary
V, there is a program of the ψ−ASM , which for all
states has the identical set of updates.

Example 19. Let us consider a simple pendulum
whose dynamics is described by the following
second order differential equation θ

′′
+ g

l θ = 0.
Its evolution is described by its associated set of
updates (with ψder) of the following program rule:

par Dynamic(θ, θ1),Dynamic(θ1,−g
l
θ) endpar.

Example 20. [5] A discrete event system,
is a dynamical system whose state evolves in
time by the occurrence of events at possibly
irregular time intervals. Place-transitions Petri nets
(commonly called Petri nets) are a graphical and
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mathematical modeling tool applicable to discrete
event systems in order to represent its states
evolution, whose mathematical model is given in
terms of difference equations.

The matrix difference equation describing the
dynamical behavior of a Petri net withm places and
t transitions is represented as [4]:

Mn+1 = Mn +ATun, (1)

n ∈ N ,Mn ∈ Nmand un ∈ {0, 1}t.

This evolution is described by its associated set
of updates (with ψN ) of the following program rule:

par

Dynamic

(
Mn(p1),Mn(p1) +

t∑
j=1

aj1un(j)

)
,

· · · , (2)

Dynamic

(
Mn(pm),Mn(pm) +

t∑
j=1

ajnun(j)

)
endpar.

Notice that if M´can be reached from some other
marking M = Mn for some n ∈ N through a firing
sequence {u0,u1, ...,ud−1}writing equation (1) for
each one of the elements of the firing sequence,
and summing up, we obtain that:

M´= M +ATu, u =

d−1∑
k=0

uk. (3)

Equation (3) would result in an ASM program,
where the program rule (2) appears d times.

The proposed model can also adequately
describe hybrid systems, made of alternating
sequences of continuous evolution and discrete
transitions.

Example 21. Let us consider a simple model
of a bouncing ball, a classic example of a hybrid
dynamical system, whose mathematical model is
given by the equations x

′′
= −gm, where g is the

gravitational constant and v = x
′

is the velocity,
except that upon impact, each time x = 0, the
velocity changes according to v = −k · v; where
k is the coefficient of impact. Every time the
ball bounces, its speed is reduced by a factor k.

Its evolution is described by its associated set of
updates (with ψder) of the following program rule:

if x = 0 then if True then v := −k · v

else par Dynamic(x, v),Dynamic(v,−gm) endpar.

Definition 22. A ψ − ASM comprises the
following: an ASM program, a set S of first-order
structures with equality over some finite vocabulary
V closed under isomorphisms with a subset S0 of
S closed under isomorphisms, and a well defined
update set of computations 4ψ associated with ψ.

Definition 23. An analog algorithm is a ψ−ASM
which satisfies postulates A,B,C and D.

We are assuming for that for each dynamical
system, the trajectories can be computed from
the description of its dynamical system. (As
for example, in the case of nonlinear differential
equation, the Lipschitz conditions are satisfied,
etc). In other words not all dynamical systems are
contemplated just those of them which guarantee
their existence.

Definition 24. A semantics ψ is unambiguous
if for all sets S of first-order structures over some
finite vocabulary V closed under isomorphisms,
and for all subsets S0 ∈ S closed under
isomorphisms, whenever there exists some φ and
a ψ −ASM , then φ is unique.

Theorem 25. Assuming ψ is unambiguous, for
every process (algorithm) satisfying the postulates
A,B,C and D, there is an equivalent ψ −ASM .

Theorem 26. (The Church thesis for analog
algorithms) The dynamical system is computable
if and only if the ψ −ASM computes them.

If the dynamical system is computable (recall
definition 33) there exists a procedure (algorithm)
which computes its trajectories from its mathemat-
ical model description and therefore, the ψ−ASM
program will be able to emulate and compute
these trajectories by a proper definition of its
rules (see 18, 22). For the other side of the
implication, given a ψ − ASM program which first
interprets the fixed dynamical system and then
computes its trajectories, we define a numerical
procedure which mimics it and therefore computes
the dynamical system’s trajectories. In fact, its
trajectories define an exact mathematical model
of themselves.
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Fig. 1. Two server queuing system

2.1 Stability and Stabilization of Analog
Algorithms

In this section, we will focus our attention to
study the class of continuous and discrete-time
dynamical systems defined by differential or
difference equations, leaving other types for future
work. We will begin by recalling some basic
definitions in stability theory for this class [5, 7].

Definition 27. Stability

— Let us consider a dynamical system repre-
sented by the following differential equation:

dx/dt =f(t,x) : x(0) =

x0 ∈ Rn,x ∈ Rn, (4)

f : R+ ×Rn → Rncontinuous.

We say that state x = 0 of system (4) is
stable if and only if, ∀t0 ∈ R+ and ∀ε > 0
∃ δ = δ(t0, ε) > 0 such that if || x0 ||< δ ⇒
|| x(t, t0,x0) ||< ε ∀t ∈ (t0,∞).

— Let us consider a dynamical system repre-
sented by the following difference equation:

x(n+ 1) =f [n,x(n)] : x(no) = x0,

n ∈ Nn0
,x(n) ∈ Rn, (5)

f : Nn0
×Rn → Rncontinuous.

We say that state x = 0 of system (5) is
stable if and only if, ∀n0 ∈ N and ∀ε > 0 ∃
δ = δ(n0, ε) > 0 such that if || x0 ||< δ ⇒
|| x(n,n0,x0) ||< ε ∀n ∈ N+

n0
.

Now, let us divide the set of structures i.e., the
set of states of the dynamical system, in unstable
and stable sets X = {Xun,Xs}.

Definition 28. An analog algorithm is said to be
stable if and only if the dynamical system is stable
if and only if the unstable structures are empty or
they are not attained as the program of the ψ −
ASM executes.

A clear example of an unstable analog algorithm
is the one defined for chaotic dynamical systems.

Let us suppose that it is possible to pass from
unstable structures to stable structures by properly
defining the rules of the ψ − ASM program, then
we will obtain a stable analog algorithm i.e., we
have managed to stabilize the unstable algorithm
i.e., the dynamical system is stabilizable.

Definition 29. An analog algorithm is said to be
stabilizable if and only if it is possible to avoid the
unstable structures by properly defining the rules
of the ψ −ASM program.

3 Discrete Event Dynamical Systems:
A Case Study [5, 6]

A discrete event system, is a dynamical system
whose state evolves in time by the occurrence
of events at possibly irregular time intervals.
Place-transitions Petri nets (commonly called Petri
nets) are a graphical and mathematical modeling
tool applicable to discrete event systems in order
to represent its states evolution.

Timed Petri nets are an extension of Petri nets
that model discrete event systems where now
the timing at which the state changes is taken
into consideration. One of the most important
performance issues to be considered in a discrete
event dynamical system is its stability. By
proving stability one is allowed to preassigned the
bound on the discrete event systems dynamics
performance (the reader not familiar with these
concepts is encouraged to see [4, 5, 6] and the
references quoted therein).
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Fig. 2. Timed Petri net model

Consider a two server queuing system (Fig. 1.)
whose timed Petri net (TPN ) model is depicted in
Fig. 2. Where the events (transitions) that drive the
system are: q: customers arrive to the queue, s1,
s2: service starts, d1,d2: the customer departs.

The places (that represent the states of the
queue) are: A: customers arriving, P: the
customers are waiting for service in the queue,
B1, B2: the customer is being served, I1, I2: the
servers are idle. The holding times associated to
the places A and I1, I2 are Ca and Cd respectively,
with Ca > Cd.

The PN (TPN ) is unbounded since by the
repeated firing of q, the marking in P grows
indefinitely. However, employing Lyapunov and
Max-Plus algebra techniques, it has been shown
that by taking u = [Ca,Ca/2,Ca/2,Ca/2,Ca/2] ,
the PN is stabilizable which implies that the TPN
is stable i.e., the load has to be equally divided
between the two servers [6].

We have already discussed a ψ − ASM whose
program describes the dynamical behavior of a
Petri net (see equation 20, equation (3)), therefore
setting in our program m = 6, t = 5, and
u = [Ca,Ca/2,Ca/2,Ca/2,Ca/2], we are able to
bound the marking in P or equivalently to avoid the
unstable states of the queuing system i.e., the set
Xun of our analog algorithm.

We conclude that by choosing properly the rules
of the program ψ − ASM the analog algorithm for
the two server queuing system is stabilizable.

4 Stability of Analog Algorithms in
Terms of Lyapunov Energy Functions
for Analog Algorithms with
Continuous and Discontinuous
States

In this section, we consider the stability concept
for analog algorithms with continuous and dis-
continuous states in terms of Lyapunov energy
functions. The results presented in this section,
become a generalization of what was discussed in
sub-section 2.1 and section 3, and includes them
as particular cases. It applies to many classes of
discontinuous dynamical systems including hybrid
systems and switched systems. We will deal with
analog algorithms whose states are structures of
vocabulary V, where now the the base set S is a
metric space (S, d), with metric d.

Definition 30. Let us consider an analog
algorithm, we will say that the state X, with a ∈ S
and time-indexed location ft,t0(a), where t and t0
belong to T , is stable if and only if ∀t0 ∈ T and
∀ε > 0 ∃ δ = δ(t0, ε) > 0 such that if given a′ ∈ S,
with d(a′, a) < δ ⇒ d(‖ft,t0(a′)‖X , ‖ft,t0(a)‖X) < ε
∀t ∈ T .
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Definition 31. Let us consider an analog
algorithm, we will say that the state X, with a ∈ S
and time-indexed location ft(a) is continuous at
t ∈ T , if and only if ∀ε > 0 ∃ δ = δ(t) > 0 and a
state Y such that if given t′ ∈ T , with | t− t′ |< δ ⇒
d(‖ft(a)‖X , ‖ft′(a)‖Y ) < ε.

Definition 32. A continuous function α :
[0,∞) → [0,∞) is said to belong to class K if it
is strictly increasing and α(0) = 0.

Postulate E. The Lyapunov energy function
associated to the analog algorithm at its starting
time point t0 ∈ T multiplied by some finite constant
C ≥ 1 bounds the whole Lyapunov energy function,
transferred or transformed of the whole analog
algorithm, as the Lyapunov energy function evolves
in time.

Theorem 33.Let us consider an analog algo-
rithm with the possibility of having discontinuous
states at points {t1, t2, · · · } ⊆ T . Assume there
exists a Lyapunov function V : S × T → R+ and
two functions α1,α2, which belong to K, such that:

α1(d(‖ft,t0(a′)‖X , ‖ft,t0(a)‖X)) ≤ V (‖ft,t0(a′)‖X , t)

≤ α2(d(‖ft,t0(a′)‖X , ‖ft,t0(a)‖X)),

for all a, a′ ∈ S, t, t0 ∈ T . Assume Postulate E
and that ‖ft0,t0(a′)‖X = a′ holds, then the analog
algorithm is stable.

We want to show that there exists a δ =
δ(t0, ε) > 0 such that given a′ with d(a′, a) < δ ⇒
d(‖ft,t0(a′)‖X , ‖ft,t0(a)‖X) < ε ∀t ∈ T . Claim
δ = α−12 (C−1α1(ε)) does the job:

d(‖ft,t0(a′)‖X , ‖ft,t0(a)‖X) ≤ α−11 (V (‖ft,t0(a′)‖X , t))

≤ α−11 (CV (‖ft0,t0(a′)‖X , t0)) = α−11 (CV (a′, t0))

≤ α−11 (Cα2(d(a′, a))) < ε.

Here postulate E has been used in the second
inequality and the equation ‖ft0,t0(a′)‖X = a′ in
the first equality.

It is worth mentioning that the preceding
analysis applies to many classes of discontinuous
dynamical systems, including hybrid systems and
switched systems.

An example of a stable analog algorithm
whose Lyapunov function satisfies the conditions
imposed by theorem 33 is the one provided
in [8], which consists of a ball in a constant

gravitational field bouncing inelastically on a flat
vibrating table. It is interesting to see how
the Lyapunov function, proposed in the cited
paper, monotonically decreases as t increases i.e.,
Postulate E holds with C = 1.

Consider the switched system defined by the
following scalar differential equation:

dx/dt =

{
ln(2)x if t ∈ [t0 + 2k, t0 + 2k + 1],
−ln(4)x if t ∈ [t0 + 2k + 1, t0 + 2(k + 1)],

where k ∈ N , x ∈ R, and t0 ∈ R+. Then, taking
V (X) =| X | as our Lyapunov function, all the
conditions of theorem 33 with C = 2 are satisfied,
therefore concluding stability which implies that we
get a stable analog algorithm.

5 Dynamical Systems with Non-Unique
Trajectories

For continuous dynamical systems defined by
differential ordinary differential equations, it is
well-known that the continuity of the dynamical
system does not guarantee uniqueness of so-
lutions. Likewise, for discontinuous dynamical
systems, uniqueness of solutions is not guaranteed
in general, either no matter what notion of solution
is chosen.

The lack of uniqueness of solutions generally
requires a little bit of extra analysis because, we
need to take into account the possibly multiple
solutions starting from each initial condition.

This multiplicity leads us to consider the stability
concept together with the adjectives total and
partial. Roughly speaking, total is used when
the stability property is satisfied for all solutions
starting from each initial condition.

On the other hand, partial is used when the
stability property is satisfied by at least solutions
starting from each initial condition. Locally
Lipschitz is the most common requirement invoked
to guarantee uniqueness of solution.

Example 36. Consider the dynamical system
defined by the following ordinary differential
equation:

x
′
(t) =

[
| x |

] 1
2

,x ∈ R,
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which is continuous everywhere, and locally
Lipschitz on R\ {0}. This differential equation has
two solutions starting from 0, namely: φ1 : [0,∞)→
R, φt1 = 0, and φ2 : [0,∞)→ R, φt2 = t2

4 .

Definition 37. An analog algorithm for non
unique evolution operators is the Cartesian product
of analog algorithms, where each one of the analog
algorithms that belong to the Cartesian product
satisfy all what was discussed in section 2.

Postulate E. An analog algorithm for non
unique evolution operators is a dynamical system
{T ,X,A, {φti}i∈N }, where T , X, A are defined as
in (2), {φti}i∈N is an indexed family of evolution
operators parametrized by T , and for each i ∈
N fixed, there corresponds one member of the
Cartesian product of analog algorithms.

Remark 38. From definition (37) by taking
Cartesian products, it is immediate to generalize
all the properties of analog algorithms, (given in
section 2), to analog algorithms for non unique
evolution operators, where now we have an ASM
program associated to each one of the evolution
operators and which defines the ASM program
of the analog algorithm for non unique evolution
operators.

Continuing with our previous example, the ASM
program of the analog algorithm for non unique
evolution operators that models it, turns out to be
composed by the following two ASM programs:

— if True then φt1 := 0,

— if True then φt2 :=
t22
4 .

The set of updates is given by4ψ(X) = {(φt1 :=

0), (φt2 :=
t22
4 )}. Even more, the analog algorithm

for non unique evolution operators results to be
partially stable.
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