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Abstract. In supervised pattern classification, it often 

happens that a single individual classifier is not able to 
meet the requirements of the problem. This is the main 
reason that leads to the successful use of systems 
composed of several classifiers (classifier ensembles) 
looking to obtain better results than a single classifier. 
The selection of the classifiers to be used is difficult due 
to its great variety and to the presence of necessary 
conditions such as the diversity between them to obtain 
the best possible results. Specifically, the diversity 
among the classifiers continues being a crucial factor in 
these systems and the way of measuring it in an effective 
way is still an open field. There are different measures in 
literature that help to decide if a group of classifiers is 
diverse. Some methods explicitly use these measures to 
obtain more effective classifier ensembles. The obtained 
results show it is possible to find combinations of 
classifiers that assure a superior accuracy compare to 
the best individual accuracy. In this paper, we propose 
two new diversity measures based on the coverage and 
similarity of the classification. Our objective is to 
measure the diversity in a different way in search of 
better results. We show several experiments where the 
behavior of the proposed diversity measures is 
analyzed. Also, we present the correlation that exists 
among the propose measures and other measures, 
including the classifier ensemble accuracy. 

Keywords. Diversity measures, classifier ensemble, 

classifiers.  

1 Introduction 

There are many multidisciplinary fields, in which 
the classification problems are important. 
Currently, there are several classifiers reported in 
literature. These classifiers are based on different 
concepts as neuronal networks, Bayesian 
networks, classification trees, logistical regression 
or discriminant analysis.  

In fields like Bioinformatics, it is not possible to 
solve complex problems in a satisfactory way with 
the use of a single classifier. Frequently, in these 
fields the metric (precision, accuracy or error) of 
one only classifier does not satisfy the problem 
requirements. This is the main reason that has lead 
the use of systems of several classifiers to try to 
reach superior results regard an only classifier. 

 Many authors use the term "classifier 
ensemble", as a "classifier" that combines the 
outputs of a set of individual classifiers, using some 
approach (e.g.: average, majority vote, minimum, 
etc.). These classifier ensembles are able to satisfy 
many times the necessity to develop exact, precise 
and reliable classifiers for many practical 
applications. There are many reported articles that 
use classifier ensembles with success in the 
solution of real problems [1-3]. The idea to 
combine individual classifiers begins of the fact of 
combining complementary answers. 
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The classifiers that should combine are not the 
most precise or the most exact, are the most 
diverse. If the classifiers are diverse then an 
example (instance) incorrectly classified by one or 
several classifiers can be correctly classified by 
others [4]. 

The combination of identical classifiers not 
produce better results. The main idea is combine a 
set of diverse classifiers to each other, to 
guarantee that at least one of them offers the 
correct answer when the rest is mistaken. For this 
reason, it is extremely important study the diversity 
among the individual classifiers to combine. 

The diversity should be considered as a guide 
during the process of design of a classifier 
ensemble. In this process an main objective is the 
inclusion of individual classifiers with a high 
diversity and a high accuracy [5]. Although a 
functional relationship has been demonstrated 
between the diversity and the accuracy in 
individual classifiers of regression [6], for 
classification problems these theoretical results 
have not still been proven totally [7, 8]. 

Kuncheva shows in [9] that diversity can be 
ensured by manipulating the inputs of  individual 
classifiers, their outputs or the own classification 
algorithm. The diversity in the input data assumes 
that the classifiers are trained in different 
subspaces. This can be generated by means of 
partitions in the training set or partitions in the 
features set. The classic classifier ensembles as 
Bagging [10] and Boosting are examples that use 
partitions in the training set. Random Forest [13] is 
an example that use partitions in the features set. 

Also, the diversity is generated manipulating 
the outputs of the individual classifiers, where a 
classifier is designed to classify only some of the 
classes inside the problem. An example is the 
Error Correcting Output Codes (ECOC) [14]. This 
assumes that a set of classifiers produces a bit 
sequence in correspondence to the group, which 
includes the class that is predicted. On the other 
hand, the diversity according to the classification 
algorithm is related to the combination of individual 
classifiers built from different learning algorithms. 
In this case, the different biases during the 
classification are taken into account. 

In general, the individual classifiers that are 
used to build the classifier ensemble should be 
complementary (diverse) to each other. 

If a classifier fails the other ones can assure that 
the set classifies correctly It is important to know 
that bigger diversity is not always related with a 
better accuracy [15]. In fact, this is because the 
diversity among the individual classifiers to be 
combined is a necessary condition to improve the 
accuracy but it is not a enough condition [8, 16]. 

There are several diversity measures in the 
literature to quantify the diversity among the 
individual classifiers [9]. The presence of diversity 
is usually assumed in the building of the classifier 
ensemble and the results of these measures are 
not used directly. These are the cases of the 
classic classifier ensembles where the diversity is 
generated modifying the training set, using 
different learning algorithms or introducing meta-
learners to learn from the outputs given by the 
individual classifiers.  

Nevertheless, there are methods in literature 
[17-19] that use the result of these measures 
explicitly to build classifier ensembles. In these 
cases, the results show the possibility to find 
classifiers combinations that assure a superior 
accuracy to the best individual accuracy. Also, 
aggregation operators on the measures are 
proposed, which offer more effective results 
compared to the individual results of each 
measure. Despite these results, the specialists in 
this field still continue looking for new ways of 
measuring the diversity in the more efficient 
possible way.  This is a still open field. 

In this paper, we propose two new diversity 
measures: the first one is based on the coverage 
of the classification and the second one is based 
on the similarity of the classification. There are 
papers where measures of (dis) similarity with 
other purposes are proposed. For example, [52] 
proposes a new class of fuzzy set similarity 
measures. The construction method of such 
measures using bipolar contrast transformation of 
membership values is proposed. Also, in [53] the 
author presents a new, non-statistical approach to 
the analysis and construction of similarity, 
dissimilarity and correlation measures.  

Different functional structures, relationships 
between them and methods of their construction 
are discussed. In this case, the general methods 
constructing new correlation functions from 
similarity and dissimilarity functions 
are considered. 
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In this paper, we present several experiments 
to analyze the results of the two proposed 
measures. We focus on the analysis mainly in 
describing the diversity behavior of the classifier 
ensembles formed. We analyze the relationship 
that exists among the values obtained with the 
proposed diversity measures and the classifier 
ensembles accuracy. Besides, we study the 
influence between the quantity of combined 
classifiers and the accuracy and the measured 
diversity. In these experiments we apply several 
techniques of descriptive analysis, correlation 
tests, analysis of main components, hypothesis 
contrast for determination of significant differences 
and the method of hierarchical conglomerates to 
contain the diversity measures that more related 
are with the classifier ensembles accuracy formed. 

The rest of the paper is organized as follows: 
Section 2 presents the main elements associated 
to the classifiers ensembles. Section 3 show main 
definitions about the diversity measures used. 
Section 4 describe the new proposed diversity 
measures. Section 5 explain the experimental 
design. Section 6 present the results and 
discussion of them. Finally, the conclusions are 
given in Section 7. 

2 Classifier Ensembles 

A classifier ensemble is built in several ways. 
Generally, in these ensembles the individual 
classifiers should be precise and diverse among 
them [20]. 

We can ensure diversity in different ways. 
Generally, the diversity is implicit in the built of the 
ensemble. There are classifier ensembles that 
modify the training set. These modifications are 
based on the selection of different examples 
(instances) subsets to train each classifier or select 
different features subsets to train each classifier. 
Bagging [10] is the classic example in this case, 
their operation is simple. The ensemble is built 
from classifiers with the same learning algorithm 
but trained with different examples subsets taken 
from the training set. The classification given by the 
ensemble depends of the votes granted to each 
one of the classes by the formed classifiers. 
Boosting [11, 12] is another example considered in 
this case. 

In each iteration the algorithm modifies the data 
set weighing the examples incorrectly classified in 
the previous iteration. The objective is to try to 
classify them correctly in the following iteration. 

On the other hand, the methods that use 
different learning algorithms to build the ensemble 
do not modify the training set. The simplest is Vote 
[21], in this case different learning algorithms are 
trained with the same set. It uses different forms to 
combine the classifiers outputs, e.g. majority vote, 
average, product, maximum. Generally, the 
variants in this type of methods consist on making 
a weight vote for each classifier [9]. Another 
method is Stacking [22], in this case instead to use 
the previous different ways to combine the 
classifiers outputs it uses another learning 
algorithm to learn from the individual outputs. 

On the other hand, the hybrid methods are very 
common. They try to take every advantages from 
the previous methods. In [23] each learning 
algorithm use a different features subset of the 
training set to train. Also, they use a modification 
of the majority vote to combine the classifiers 
outputs. In [24] they use three levels of diversity 
generation to analyze their influence in the 
classifier ensemble built. They take into account 
features selection, resampling of the training set 
and different learning algorithms.  

Another very common technique is the use of 
metaheuristics for the classifier ensemble 
optimization. For example, in [24] they use a 
Genetic Algorithm to make the features selection 
of each classifier. In [25, 26] they explore other 
variants to select the classifiers and to apply them 
to the digits recognition application. Also, the works 
presented in [17-19] use metaheuristics with 
diversity measures to select a classifier ensemble 
with better behavior respect the best 
individual classifier. 

3 Diversity Measures 

It is intuitive to think that a classifier ensemble with 
identical classifiers will not be better than a single 
one of its members. It is more convenient if we 
combine a set of different classifiers to each other. 
At least one of them should give the correct answer 
when the rest fails. This difference is mainly 
knowing as diversity [4]. 
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In addition, it is known as independence, 
negative dependence or complementary. 

Although a formal definition of what is intuitively 
perceived as diversity does not exist (at least not 
in the vocabulary of Computer Science), it is 
broadly accepted by the scientific community the 
fact that the diversity in an individual classifiers set 
is a necessary condition for better behavior of the 
classifier set. A set of diversified classifiers leads 
to not correlated errors and this improves the 
classification precision. To understand and to 
quantify the diversity that exists in a classifiers 
ensemble is an important aspect. In literature, 
there are different measures that help to quantify 
the diversity among classifiers [8]. 

There is not a diversity measure involved in an 
explicit way in the classic methods of classifiers 
ensembles generation [8], although diversity is the 

key point in any of the methods. The diversity 
measures can be classified in two types: pairwise 
measures and non-pairwise measures [6, 9]. 

3.1 Pairwise Measures 

Pairwise measures involve a pair of classifiers and 
their outputs are binary (indicating whether the 
instance was correctly classified or not). Table 1 
shows the results of two classifiers (Ci, Cj) for a 
given instance, depending on whether it was 
correctly classified or not. 

Table 2 shows the results when considering N 
instances between the pair of classifiers (Ci, Cj). A 
is equal to the total sum of the values of a for all 
the instances (the same for values of B, C and D). 
N is the total number of instances. It should be 
observed that a set of L classifiers has associated 
L (L − 1) /2 pairs. The final values are obtained 
after performing an aggregation operation. 

Table 3 presents some general characteristics 
of these measures. The first column shows the 
measure name. The second column shows the 
symbol used in literature to represent the measure. 
The third column shows the growth (↑) or not (↓) of 
the measure value to obtain the biggest diversity, 
for example: 

‒ ↑: the classifiers ensemble has high diversity if 
the measure value is bigger. 

‒ ↓: the classifiers ensemble has high diversity if 
the measure value is little. 

‒ The last column shows the values interval for 
the outputs of each measure. 

3.1.1 Correlation Coefficient (ρ) 

The correlation coefficient [9], between two 
classifiers Ci and Cj is calculated as: 

𝜌𝑐𝑖,𝑐𝑗 =
A × D − B × C

√(A + B) × (C + D) × (A + C) × (B + D)
 . (1) 

3.1.2 Q Statistics 

The Q statistics is calculated as: 

Qci, cj =
A × D − B × C

A × D + B × C
 . (2) 

Table 1. Binary Matrix for an instance 

  Cj correct (1) Cj incorrect (0) 

Ci correct (1) A B 

Ci incorrect (0) C D 

a + b + c + d = 1 

Table 2. Binary matrix for N instances 

  Cj correct (1) Cj incorrect (0) 

Ci correct (1) A B 

Ci incorrect (0) C D 

A +B + C + D = N 

Table 3. General characteristics of pairwise 
measures 

Measure 
Name 

Symbol  (↑/↓) Intervals 

Correlation 
Coefficient 

ρ  ↓ -1 ≤ ρ ≤ 1 

Q Statistics Q  ↓ -1 ≤ Q ≤ 1 

Differences 
Measure 

D  ↑ 0 ≤ D ≤ 1 

Double Fault 
Measure 

DF  ↓ 
0 ≤ DF ≤ 

1 

Combination of 
D and DF 

R  ↑ 0 ≤ R ≤ 1 
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The classifiers that recognize the same objects 
correctly will have a positive value of Q. The 
classifiers that make errors in different objects will 
have a negative value of Q [9]. The values of ρ and 
Q will have the same sign |ρ| ≤ |Q| and it can be 
verified in [8]. 

3.1.3 Differences Measure 

The Differences Measure was introduced by  
Skalak [27]. This measure captures the proportion 
of examples where the two classifiers disagree: 

𝐷𝑐𝑖,𝑐𝑗 =
B + C

N
 . (3) 

3.1.4 Double Fault Measure 

The Double Fault Measure was introduced by  
Giacinto and Roli [28]. It considers the failure of 
two classifiers simultaneously. This measure is 
based on the concept that it is more important to 
know when simultaneous errors are committed 
than when both have a correct classification [29]: 

 𝐷𝐹𝑐𝑖,𝑐𝑗 =
D

N
 . (4) 

3.1.5 Combination of D and DF 

This measure is a combination between the 
Differences Measure and the Double Fault 
Measure [23]: 

𝑅𝐶𝑖,𝐶𝑗 =
𝐷𝐶𝑖,𝐶𝑗

𝐷𝐹𝐶𝑖,𝐶𝑗
 . (5) 

3.2 Non-pairwise Measures 

The non-pairwise measures take into account the 
outputs of all classifiers at the same time and 
calculate a unique value of diversity for the whole 
ensemble. They are known as group measures 
too. Table 4 present some general characteristics 
of these measures. 

3.2.1 Entropy 

The Entropy Measure was introduced by 
Cunningham and Carney [30]. It is based on the 
intuitive idea that in a group of N instances and L 
classifiers the biggest diversity will be obtained if 
L/2 of the classifiers classifies an instance correctly 
and the other L - L/2 classifies it incorrectly: 

𝐸

=
1

𝑁
×

2

𝐿 − 1
× ∑ 𝑚𝑖𝑛 {(∑ 𝑌𝑗, 𝑖

𝐿

𝑖=1

) , (𝐿 ∑ 𝑌𝑗, 𝑖

𝐿

𝑖=1

)}

𝑁

𝑗=1

. 
(6) 

 where , 𝑌𝑗, 𝑖 𝜖 {0,1}, 𝑌𝑗, 𝑖 takes 1 if the classifier i 
was correct in the case j and 0 otherwise. 

3.2.2 Kohavi-Wolpert Variance 

The Kohavi-Wolpert Variance was initially 
proposed by Kohavi and Wolpert [31]. This 
measure is originated from the decomposition of 
the variance of the bias of the error of a classifier. 
Kuncheva and Whitaker presented in [8] a 
modification to measure the diversity of a 
compound set for binary classifiers, being the 
measure of diversity: 

𝐾𝑊 =
1

𝑁 ∗ 𝐿2
∗ ∑ 𝑌(𝑧𝑗) ∗ (𝐿 − 𝑌(𝑧𝑗)) .  

𝑁

𝑗=1

 (7) 

where 𝑌(𝑍𝑗) = ∑ 𝑌𝑖, 𝑗

𝐿

𝑖=1

 

3.2.3 Measurement Interrater Agreement 

The Measurement Interrater Agreement was 
presented in  [32], it is used to measure the 
agreement level inside the classifiers set. The 
value of k is calculated as shown on Equation 8, 
this equation is formed by the subtraction between 
the unit and the measure of Kendall concordance. 

Table 4. General characteristics of non-pairwise 
measures 

Measure Name Symbol (↑/↓) Intervals 

Entropy E ↑ 0 ≤ E ≤ 1 

Kohavi-Wolpert 
Variance  

KW ↓ 0≤ KW< 1 

Measurement 
Interrater 
Agreement 

K ↓ -1 ≤ K ≤ 1 

Difficulty Measure Ө (DIF) ↓ 0 ≤ DIF ≤ 1 

Generalized 
Diversity 

GD ↑ 0 ≤ GD ≤ 1 
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In this last term, p is the mean of the accuracy in 
the individual classification, this term is calculated 
according to Equation 9:  

𝐾 = 1 −
1

𝐿
×∑ 𝑌(𝑍𝑗)×(𝐿−𝑌(𝑍𝑗))𝑁

𝑗=1

𝑁×(𝐿−1)×𝑝×(1−𝑝)
   , (8) 

𝑝 =
1

𝑁×𝐿
× ∑ ∑ 𝑌𝑗, 𝑖𝐿

𝑖=1
𝑁
𝑗=1 }. (9) 

3.2.4 Difficulty Measure 

The difficulty Measure was introduced by Hansen 
and Salamon [33]. It is calculated from the variance 
of a discrete random variable X that takes values 
from the set (0/L, 1/L, 2/L, …, 1). This variable 
denotes the probability that exactly i classifiers 
have correctly classified all the instances. For 
convenience, this measure is usually climbed 
lineally in the interval [0; 1] taking p (1 − p) as the 
largest possible value, where p is the individual 
precision of each classifier. The intuition of this 
measure can be explained as follows. A diverse 
classifier set has a small difficulty value since each 
instance is correctly classified by a subset of base 
classifiers, which is more probable with a low 
variance of X. This measure can be formalized 
as follows: 

Ө=Var(x). (10) 

3.2.5 Generalized Diversity 

The Generalized Diversity was enunciated by 

Partridge and Krzanowski [34]. In this measure, 
the authors considered a random variable Y 
representing the proportion of classifiers that are 
incorrect on a randomly sample x ϵ 𝑅𝑛.  

Let 𝑝𝑖 be the probability that i randomly chosen 
classifiers are incorrect from a random sample x, 

i.e., 𝑝 (𝑌 =
𝑖

𝐿
). 

Let us suppose that two classifiers are taken in 
a random way from the set.  

The maximum diversity is achieved when one 
of the two classifiers makes a mistake in classifying 
an object and the other one classifies it correctly. 
In this case the probability of making a mistake the 
two classifiers is 𝑝(2)=0. On the other hand, the 
minimum diversity will be achieved when the failure 
of a classifier is always accompanied with the 
failure of another one. Then, the probability that the 

two classifiers fail it is the same that the probability 
that a chosen classifier in a random way fails, this 
is 𝑝(1). 

This measure can be computed as follows: 

  𝐺𝐷 = 1 −
𝑝(2)

𝑝(1)
, 0 ≤ 𝐺𝐷 ≤ 1,  (11) 

𝑝(1) = ∑
𝑖

𝐿
∗ 𝑝[𝑖]

𝐿

𝑖=1

,    𝑝(2) = ∑
𝑖 ∗ (𝑖 − 1)

𝐿 ∗ (𝐿 − 1)
∗ 𝑝[𝑖]

𝐿

𝑖=1

 . 

The minor diversity is when 𝑝(2)= 𝑝(1) and the 

higher diversity is when 𝑝(2)=0. L is the number 
of classifiers. 

3.3 Analysis of Diversity in Classifiers 
Ensembles 

Some investigations establish there is no total 
correspondence between the diversity and 
accuracy of the classifier ensemble. However, 
there is a consent in the fact that diversity is a key 
aspect in the built of a classifiers ensemble. 
According to [8] the problem resides in the 
definition of what is considered a diverse set and 
the form of using this definition in the built of better 
classifier ensembles. For these reasons, in some 
investigations the classifier ensembles build 
exploiting the diversity generated in the approach 
of Bagging and Boosting and in the 
features selection. 

Sharkey proposes in [35] a hierarchy of four 
levels of diversity in the combination of neural 
networks. The first level defined is an ideal 
example in which the classifiers do not have 
coincident fails. Therefore, there are not examples 
where the classifiers fail more than once.  

In this case, the use of the majority vote as a 
way of combining the classifiers outputs cause that 
the ensemble always determined the correct 
classification (if the number of combined classifiers 
is bigger than two). Levels 2 and 3 admit the 
occurrence of certain number of fails. The main 
difference between them resides in following idea: 
in Level 2 most of the classifiers give correct 
outputs and they do not affect the output of the 
classifier ensemble. However, in Level 3 the 
ensemble classification can be affected by the 
number of errors made, although at least one 
classifier has the correct answer.  
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Several fails shared by all the classifiers occur 
in the last level of diversity, which affects the 
behavior of the classifier ensemble. Levels 2 and 3 
are used in [36] to analyze the diversity in 
classifiers ensembles that use the majority vote as 
combination function for the classifier outputs and 
the error in the classification as error function. 

In [24] the authors create an outline  with three 
stages to guarantee the diversity. Each stage uses 
the result of the previous stage. The first stage 
divides the original data set in several subsets 
where each one has a subset of the total features. 
After, a resampling is applied on these subsets in 
the same way that it is made in Bagging. Finally, 
several learning algorithms are used to build the 
classifier ensembles. In the simulations of this 
study it was observed that the diversity increased 
according to the diversity levels proposed in [35]. 
This indicates that they can be considered as a 
good measure. Also, in the analysis of the Q-
statistical measure the classification error 
decreases when the diversity increases. 

The diversity should be related with the 
combination way of the classifiers outputs that are 
used in the classifier ensemble [37]. Nevertheless, 
there are diversity measures that do not depend of 
the combination way. Although it has not been 
proven completely, most of the diversity measures 
seem to be more related to the majority vote [39]. 
It is difficult to define a diversity measure 
applicable to any classifier ensemble with any 
combination form for the classifiers outputs. That is 
due to the weak relationship that has been 
observed in numerous investigations relating to the 
bond of diversity-accuracy. 

Some authors refer that the analysis of diversity 
during the ensemble building should take into 
account the accuracy of the individual classifiers to 
improve the classification set [40, 41]. 

 Combining classifiers with low accuracy 
produce poor results in the ensemble 
classification, unless these classifiers are 
combined with classifiers of good accuracy [5]. 
This behavior in shown in [17] where the authors 
used metaheuristics to obtain the best 
combinations in a classifiers set and they included 
the individual classifiers of better behavior. Also, 
this is also related with the levels of diversity 
discussed in [35], since including one or several 
classifiers of good behavior can reduce the fails 

coincidence and to increase the complementary 
of classifiers. 

In other cases, the diversity in a classifier 
ensemble can only be used as descriptive 
information of the ensemble. A classifier ensemble 
is formed by individual classifiers that can be 
sufficiently precise to classify correctly an 
examples subset. Maybe combining them for 
majority vote is obtained a bigger set of examples 
correctly classified.  This is the idea used implicitly 
by Bagging, where without using a diversity 
measure, it is tried to form a classifier ensemble 
better than the best individual classifier. 

Some studies [6, 8, 37, 42] have established the 
relationship between diversity and accuracy of the 
ensemble  due to the form of determining the 
diversity is inherently related with the accuracy. In 
essence, two things are wanted: diverse classifiers 
that do not make the same errors and a high 
number of coincidence in the correct outputs of the 
classifiers. The first one is related to the ideas 
presented in [36], taking into account that the 
diversity of these errors does not affect negatively 
the ensemble result. In the second case, in the 
analysis of the ensemble diversity, a high number 
of correct coincidences among the classifiers 
indicates that those examples where there is 
disagreement should be considered, as well as, 
those examples where  there is no disagreement 
on a simultaneous way, either correct and 
incorrectly [15]. The establishment of a balance 
among these three subspecies (there is 
disagreement among the classifiers, the classifiers 
coincide correctly and the classifiers coincide 
incorrectly) it can condition a good behavior of the 
built ensemble. 

On the other hand, most of the studies made in 
search of the establishment of a connection 
between diversity and accuracy determine that not 
always to high diversity correspond a bigger 
accuracy. Even, in some occasions the biggest 
accuracy is obtained in an intermediate point of the 
diversity range (applying the traditional measures). 
Also, this can be determined by the data 
dimensionality [43, 44]. The above mentioned 
suggests that in some way a big difference in the 
individual outputs of the classifiers can influence 
negatively in the ensemble results. 

Another idea that contradicts the previously 
mentioned ideas is that with very precise individual 
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classifiers there is less opportunity to find diversity 
among them. Therefore, there is less opportunity 
of considering useful the diversity in the build of 
classifiers ensemble with better behavior [15, 17]. 
This is due to that accuracy and diversity are two 
mutually restricted factors. Equivalent to the above 
mentioned, a big diversity can cause a deformation 
in the capacity of generalization of the formed 
ensemble and negatively to affect the ensemble 
accuracy [40]. For this reason, it is important take 
into account the complementary degree that exists 
among the individual classifiers. 

4 Diversity Measures Based on 
Coverage and Similarity of the 
Classification 

Many times when researchers use the opinion of 
several experts to classify they desire experts with 
a very high precision. If experts, not coincide in 
errors then some of them can cover a correct 
classification with their opinion. This is the central 
idea of Kuncheva [9] about the diversity in the 
classifier ensembles. It is clearly justified for the 
fact that if all classifiers classify equally, it does not 
make sense to combine them. That is why, in 
classifiers combination the diversity should be 
considered as an important requirement for the 
success of the final classification ensemble. In 
practice, it seems difficult to define a new diversity 
measure and even more relate it with the 
classification of a classifiers set in an 
explicit dependence. 

4.1 Reduced Matrix in the Classification 

If we have a classifier set with classifiers of equal 
behavior, then there is no need to combine them in 
a classifier ensemble. Since this situation takes 
place a few times, it is always necessary to take 
into account that classifiers make errors and it is 
good to complement their outputs. This 
complementarity is conditioned to the way used to 
combine the individual outputs of the classifiers. 
The results obtained using a majority vote or 
another combination way does not necessarily 
have to be the same. 

In Figure 1 we show a fragment of the 
classification behavior of 6 classifiers.  

Each cell shows the probability of the predicted 
class. A red color indicates an error in the 
classification and a yellow color indicates the 
opposite. According to the previous ideas about 
diversity, the classification in the examples 123 
and 124 are not diverse. In these cases, all 
classifiers are correct or incorrect respectively. In 
these two examples if we combine any of the 
classifiers shown in Figure 1, the result will be 
always the same and equal to result of any 
individual classifier. In example 124 if we applied 
different forms to combine the classifiers outputs 
using the classifier ensemble Vote the following 
can happen: 

– The rule AVG determines that the average of 
the probabilities assigned to the incorrectly 
elected class is bigger than average of the 
probabilities assigned to the class that was not 
chosen. This result in an incorrect 
classification and coinciding with the 
classification of the individual classifiers. 

– The rule MAJ by majority vote determines that 
the classification should be incorrect because 
all classifiers give its vote to the incorrect class.  

– The rule MAX/MIN determines the same 
classification since the maxim/minim 
probability corresponds to one of the elected 
classes for the individual classifiers. 

– The rule PROD applied on the examples 
whose classification is the same in all the 
classifiers determines the same classification. 
The product of the probabilities of the elected 

 

Fig. 1. Classification behavior of 6 classifiers. Red 
color means incorrect classification and yellow 
color means correct classification 
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class is bigger than the product of the 
probabilities of the non-elected class. 

On the other hand, in examples like the 120 
exist diversity in the classification since the 
classifiers results are not the same. In this case the 
classifiers make different errors. Formalizing the 
above we can consider that “on a Vote approach, 
in the classification of an example there is diversity 
if its classification is different, at least, in one 
classifier from the set”. In this work we define by 
result of the classification the state of the example 
after classification, i.e., correctly classified or 
incorrectly classified.  

In addition, we define an example correctly 
classified when the classifier once trained assigns 
the real class to the example. The previous 
definition is not contradicted with other definitions 
in [36] where the diversity is enunciated as 
consequence of making two decisions: an error 
function and a combination function. In our case, 
the error function is determined by making an error 
in the assigned class and the combination function 
is represented by a majority vote. 

Nevertheless, it is not enough that at least one 
classifier has a classification different to the rest of 
the classifiers. Some works [17, 43, 44] evidenced, 
contrary to the expected, that a bigger diversity is 
not necessarily associated to a bigger accuracy in 
the ensemble. The main reason can be related to 
the own classification mechanism where a bigger 
diversity favors a deformation of the ensemble 
accuracy. If we analyze the previous definition, we 
can deduce that in the example classification there 
is a point in which a bigger diversity among the 
classifiers is not desired. This situation far from 
being good for the ensemble accuracy causes a 
deformation from the accuracy when reducing the 
correctly classified examples. 

In [36] the authors analyze this phenomenon 
proposing that in the classification process there 
are two types of diversity: a good diversity that 
favors the ensemble and a bad  one that makes the 
opposite. If we have any example, it can happen 
two things: that the example has correct 
classification or incorrect classification. If the 
classification of the classifier ensemble is correct, 
the existence of some disagreement between the 
classifiers does not influence the decision of the 
ensemble since it is correct.  

This is the good diversity, i.e., to measure the 
disagreement when the decision of the classifier 
ensemble is correct. On the other hand, in the bad 
diversity, if the classification of the classifier 
ensemble is incorrect then a disagreement 
between the classifiers does not influence the 
decision of the ensemble. 

For all the above, we propose to analyze the 
diversity only in the examples that meet the given 
definition of diversity instead of using all the 
examples. Thus, we define the following: “a 
Reduced Matrix (MR) is formed by all the examples 
where at least the decision of one classifier is 
different to the rest of the classifiers from the set”. 
Additionally, we can define the following: “a 
Positive Reduced Matrix (MRP) is formed by a 
Reduced Matrix (MR) and also includes all the 
examples that were classified correctly by all the 
individual classifiers”. This, together with the ideas 
expressed by Brown and Kuncheva in [36], leads 
to the existence of an examples set in MR and in 
MRP that favor the good diversity and the bad 
diversity. Graphically, each one of these parts is 
represented like a characterization of the individual 
classification. This can be used when making 
decisions about when to build, or not, a classifiers 
ensemble (see Figure 2). 

Analyzing Figure 2, we can deduce that: 

– A + B + C is the total number of examples in 
the data set. 

 

Fig. 2. Characterization of individual classification 
in classifiers ensembles 
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– B represents the number of examples of the 
Reduced Matrix (MR). B1 and B2 represent the 
good and bad diversity respectively. The sum 
of them (B1+B2) coincides with the total of 
examples of B. 

– B + C is the number of examples of the Positive 
Reduced Matrix (MRP). 

The use of this characterization is conditioned 
to the individual behavior of the classifiers inside 
the ensemble. This, together with the number of 
combined classifiers leads to the fact that, at some 
point, there are only examples of B. This is 
because when building a classifier ensemble with 
individual classifiers of regular behavior, the 
probability of finding examples where all classifiers 
agree (correctly or incorrectly) decreases when the 
size of the ensemble increases. 

On the other hand, if the individual behavior of 
classifiers is very good or very bad, then the 
biggest number of examples will belong to A or C. 

4.2 Diversity Measure Based on the Reduced 
Matrix and Coverage of the Classification 

A first approach to diversity according to the 
definition assumed in this paper is related with MR 

and MRP. Be Vi = (di1; di2;…;dij;…;diT); where 

dij ∈ {0,1}, each component dij indicates if the 

classifier j classifies correctly (1) or incorrectly (0) 
the example i.  T is the number of individual 
classifiers that were included in the classifier 
ensemble. A vector with all equal components 
corresponds with to examples sets A and C of 
Figure 2. On the other hand, if at least one 
component is different, it corresponds to the 
examples set B, which coincides with the size of 
the Reduced Matrix. B = N indicates that in any of 
the examples the decision taken by the classifiers 
coincides. Therefore, it can refer to the biggest 
possible diversity. 

Some diversity measures exploit the previous 
idea but the main difference consists in the use of 
all classified examples to quantify the diversity. 

The definition of MR and MRP does not lead to 
the creation of a new measure. These definitions 
imply the need to apply the diversity measures 
reported in literature on a set different to the one 
usually used.  

According to the definition of diversity 
previously assumed, the diversity measures would 
be calculated only in the examples that are really 
considered diverse. In this case, it would be the 
Reduced Matrix and their extension considering 
the correctly classified examples. 

Even so, it is necessary to consider what 
happens if in the examples set B (where there is 
disagreement in at least one classifier) the 
classifier ensemble makes a mistake. In this case, 
it is not enough to count the number of examples 
where at least one classifier makes a mistake. 
Also, it is necessary to take into account the 
expressed in [36] respect to the two types of 
diversity. Therefore, we define the following: “in a 
majority vote approach, an example incorrectly 
classified by one of the classifiers is covered by the 
ensemble if the number of classifiers that classified 
it correctly is higher than the number of classifiers 
that don’t classify it correctly”.  

This cover concept is related with the definition 
expressed in [36] respect to the good and bad 
diversity. Suppose that an example in vector V is 
represented by Figure 3. This example, using a 
majority vote approach, is covered by the 
ensemble according to the previous definition. This 
example represents the good diversity since the 
ensemble result is correct. 

On the other hand, in an example where the 
number of classifiers that classified correctly is not 
enough for the correct ensemble decision (see 
Figure 4), the cover is not guaranteed. This 
example represents the bad diversity. 

This way, we can obtain two information types 
with the objective of evaluating how diverse are the 
combined classifiers: the contribution by examples 
and the contribution by classifier to the ensemble. 

 

Fig. 3. Covered example by an ensemble of six 
classifiers 

 

Fig. 4. Not covered example by an ensemble of six 
classifiers 
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The first one coincides with the good diversity 
since there are examples that were covered by the 
ensemble. In the contribution by classifiers we try 
to measure the number of incorrect examples that 
classifies an individual classifier but were covered 
by the ensemble. For each classifier we calculate 
this measure and the average of these values 
gives a reference of how distant is the classification 
of the ensemble respect to the total cover of the 
errors. A value near to 0 indicates that few 
incorrectly classified examples were covered. This 
means there are no errors or that the errors could 
not be covered. The contribution by classifiers is 
calculated in the following way: 

  𝐶𝑜𝑃 =
∑

𝐼𝑛𝐶𝑖

𝐼𝑚𝐶𝑖

𝑇
𝑖=1

𝑇
, 0 ≤ 𝐶𝑜𝑃 ≤ 1,    (12) 

where: 

– 𝑇 represents the number of individual 
classifiers combined in the ensemble. 

– 𝐼𝑛𝐶𝑖 represents the total incorrectly classified 

examples by the classifier 𝐶𝑖  which were 
covered by the ensemble. 

– 𝐼𝑚𝐶𝑖 represents the total incorrectly classified 

examples  by the classifier 𝐶𝑖. 

In this work we center the analysis of diversity 
on the contribution by classifiers to the ensemble 
since the contribution by examples or good 
diversity was already discussed by Brown and 
Kuncheva [36]. 

4.3 Diversity Measure Based on the Similarity 
of the Classification  

Theoretically, in a classifier ensemble if the 
classifiers make errors these should be 
complemented. In this way, when the classifiers 
outputs are combined the ensemble decision will 
be better. We exploited this idea in the coverage 
definition previously mentioned and it is related 
with the good diversity expressed in [36]. Also, the 
best individual classifier (the one that less errors 
makes) should influence in some way the classifier 
ensemble behavior. In [17] the authors use 
heuristic search to find classifiers combinations 
with diversity and an accuracy superior to the best 

individual classifier. Most of times, the best 
performing classifier tends to be included in 
the combination. 

Not always to obtain a combination of diverse 
classifiers implies a better ensemble accuracy 
respect to the best individual classifier. Therefore, 
we should be considering in some way the 
information given by the best individual classifier to 
determine how diverse the set is. For example, 
Figure 5 shows the classification behavior of a set 
of 16 classifiers in two different scenarios.  

Taking a reference point in the center of each 
graph, in the case of Figure 5A we observe that the 
individual classification is very similar. Therefore, 
the ensemble result maybe does not improve the 
classification generated by the reference point. 
However, in Figure 5B the individual classification 
is a little far from the reference point defined. In this 
case, the probability that the ensemble 
performance could be equal to the reference 
point  decreases. 

To determine the similarity of the individual 
classification with respect to a reference point two 
fundamental elements should be decided. First, to 
choose the reference point, second, to choose a 
function that allows calculating the distance of the 
classification of each individual classifier towards 
the reference point. In the first one, we choose the 
best individual classifier. This is given by the fact 
that with individual classifiers very similar to the 
best individual classifier then it is unlikely that a 
classifier ensemble would improve the results. 

 

Fig. 5. Similarity among classifiers taking into 
account the individual classification A: the 
individual classification is similar. B: the individual 
classification is different with respect to a 
reference point 
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Another way of choosing the reference point is 
to measure the diversity among the individuals with 
some population algorithms. For example, in the 
Particle Swarm optimization (PSO) algorithm they 
control the diversity or similarity of the particles to 
avoid the convergence of the swarm very soon in 
a small area of the search space. A common 
measure to make this is to calculate the distance 
of all the particles to an average point. This 
average particle is obtained averaging each 
position of the vectors that represent the particles.  

However, for the similarity of the individual 
classification where the vector components are 
binary, the average is not an applicable metric. In 
this case, we can use the mode or the most 
common decision given by each classifier. As we 
only consider the use of the majority vote to 
combine the individual outputs of the classifiers, 
then the average vector obtained coincides with 
the decision taken by the classifier ensemble. 

As it can be seen in Figure 3 and Figure 4, the 
vector Vi of each example i is formed with the 
correct classification (1) or incorrect classification 
(0) of the individual classifiers. Then the 
classification given for each one of the examples 
by a single classifier can be represented as a 

vector 𝑉 !. As each component of the previous 
vector is binary then the Hamming distance can be 
used to measure the similarity of the individual 
classification with respect to a reference point (see 
Figure 6). 

The Hamming distance is usually used in 
Information Theory to measure the effectiveness of 
the block codes. Nevertheless, its way of 
measuring the difference between two binary 
vectors can be used as similarity measure when 
counting the number of points or examples that 
differ from a vector taken as reference. Therefore, 
a diversity measure for one individual classifiers 
set according to the similarity of their classification 
can be defined as: 

𝑆𝑖𝑚(𝑉 !) =
1

𝑁𝑇
∑ ∑|𝑉𝑖𝑗 − 𝑉 !

𝑗|

𝑁

𝑗=1

𝑇

𝑖=1

, (13) 

where: 

– 𝑇 represents the number of individual 
classifiers combined in the ensemble. 

– 𝑁  represents the number of test examples or 
dimension of 𝑉 !. 

– 𝑉𝑖𝑗 represents the decision taken by the 

classifier i in the example j. 

– 𝑉!
𝑗 represents the decision taken in the 

example j of the reference vector that is 
chosen. 

In this measure, if their value is big then there 
is less similarity in the classification and there will 
be great diversity among the individual classifiers. 
The resulting value is in the interval [0,1]. 

5 Experiments 

The main experiments describe the behavior of the 
diversity in the formed classifier ensembles. Also, 
we analyze the relationship among the values 
obtained with the diversity measures and the 
classifier ensembles accuracy. We applied several 
descriptive analysis techniques, correlation tests, 
analysis of main components, hypothesis contrast 
for the determination of significant differences and 
the hierarchical conglomerates method to group 
the diversity measures more related to the 
classifier ensemble accuracy. Besides, we study 
the influence of the number of combined classifiers 
over the relationship between accuracy and the 
measured diversity. 

5.1 Generation of the Experimental Data 

In the analysis of the diversity measures, we 
conformed the learning examples as the points 
generated in the space that correspond to a rotated 
board, see Figure 7 (A). We obtained the data 
using a modification of the algorithm proposed by 
Kuncheva in [9]. Contrary to the original algorithm, 
we include certain level of noise in the obtained 
class. We add this noise exchanging the 

 

Fig. 6. Similarity between two vectors according 
to the Hamming distance 
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determined class by its opposite according to 
certain probability. The result is similar to Figure 
7 (B). 

In general, the learning examples only have two 
features: the coordinates (x; y) of the generated 
points. The classes assigned to each point are 

 

Fig. 7. Generation of 1000 points in a rotated board. A: Original board. B: Board with noise in the classes 

of the points (a = 0;63; 𝜃 = 0;3) 

 

Fig. 8. Algorithm to obtain the classifiers set Φ 
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green or blue (depending on the area in which the 
point is generated). In the generation of this type of 
data, the parameters a and 𝜃 are considered. The 
first one specifies the length of the internal squares 
and the second one establishes the rotation angle 
to apply on the board. 

The points that form this board type are 
interesting in the experimentation in classification 
problems because: 

– Both classes are perfectly separable and 
therefore the function of “zero error” can be 
used in the process of training and test. 

– Although the original board defines disjoint 
classification regions, the incorporation of 
certain level of noise in them can be used to 
study the behavior of different learning  
algorithms. 

– The limits among each classification region are 
not parallel to the coordinate axes. 

5.2 Experimental Design 

The construction of the classifier ensembles is 
carried out with subsets of individual classifiers of 
an initially generated set. We considered the 
following learning algorithms in to build the 
individual classifiers. All of them are in WEKA [45]: 

– MultilayerPerceptron, Logistic, IBk, J48, 
RandomTree, DecisionStump, REPTree, 
NaiveBayes, ZeroR, SMO, SimpleLogistic. 

In the case of Multilayer Perceptron (Artificial 
Network AN) we use five AN. The first one with the 
default parameters of WEKA. The other four with 
random values for two parameters: momentum 
and learning rate. In the case of IBk we use k = 1; 
k = 3; k = 5 y k = 7. In the rest of the algorithms we 
keep the default parameters of WEKA. 

In total we select 18 learning algorithms for the 
build of the initial classifiers set (set P). After, we 
obtain a set Φ of 2.000 classifiers according to 
Algorithm 1, shown in Figure 8. 

Taking into account the Φ classifiers set, we 
executed the experimentation according to the 
following steps: 

1. Generate a validation set 𝛤 and a test set Ʌ 

with 
𝑁

2
 examples each one. 

2. The size 𝑇 of the classifier ensembles vary in 
each one of the following values: 𝑇 ∈ {5; 9; 13; 
19; 31; 51; 71; 101; 201; 501; 1001}. 

3. For each value of 𝑇, 50 classifier ensembles 
are generated: 

a. we randomly select 𝑇 classifiers of the Φ set 
to build the ensemble. 

b. we make the validation and test each 
classifier ensemble formed. 

c. we calculate and store the following values: 

 The classifier ensemble accuracy 
calculated on the test set Ʌ. 

 The good and bad values of diversity 
according to [36], calculated on the 
validation set 𝛤. 

 The size of the Reduced Matrix (MR) in 
the validation set 𝛤. 

 On the validation examples of 𝛤, MR 

and MRP, we calculate the diversity 
measures: p, D, Q, DF, R, E, KW, k, 
DIF, GD. 

 The CoP measure calculated over all 
the examples of the validation set 𝛤. 

 The SimBest measure calculated over 

all the examples of the validation set 𝛤. 

 The SimProm measure calculated over 

all the examples of the validation set 𝛤. 

The SimBest and SimProm measures make 
reference to the similarity measure 

proposed Sim(V!). In the first case, it takes into 
account the similarity with the best individual 
classifier. In the second case, it takes into account 
the similarity with the average starting from the 
individual classifiers. 

4. We executed 50 iterations and we conserve all 
the obtained values to analyze them 
statistically. All diversity measures were 
standardized according to [46]. 

5.3 Statistical Methods Applied 

We use measures of central tendency and 
dispersion for the exploratory study of the values of 
diversity and accuracy. For example, minimum, 
maximum, the standard deviation and the 
arithmetic mean. 

Consequently, comparing with other studies we 
consider the analysis of  the  relationship  between  
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Table 5. Average of diversity measures (DM) reported in literature, calculated in all the validation examples 
(FULL), in Reduced Matrix (MR) and in Positive Reduced Matrix (MRP) 

𝑻 DM FULL MR MRP 𝑻 DM FULL MR MRP 

33 

 

ρ 0.266 0.754 0.266 

5 

ρ 0.292 0.498 0.365 

Q 0.154 0.733 0.429 Q 0.157 0.501 0.272 

D 0.232 0.667 0.255 D 0.234 0.485 0.247 

DF 0.857 0.870 0.952 DF 0.859 0.826 0.914 

R 0.266 0.754 0.266 R 0.267 0.576 0.267 

E 0.349 1.000 0.382 E 0.342 0.712 0.362 

KW 0.039 0.111 0.043 KW 0.027 0.057 0.029 

k 0.307 0.678 0.445 k 0.308 0.507 0.377 

DIF 0.889 0.976 0.944 DIF 0.904 0.955 0.936 

GD 0.454 0.729 0.729  GD 0.456 0.594 0.594 

9 

ρ 0.293 0.399 0.332 

1 

 

 

13 

ρ 0.293 0.365 0.320 

Q 0.158 0.349 0.214 Q 0.158 0.286 0.195 

D 0.235 0.379 0.243 D 0.235 0.335 0.240 

DF 0.859 0.823 0.889 DF 0.859 0.830 0.881 

R 0.269 0.452 0.269 R 0.268 0.396 0.268 

E 0.339 0.549 0.350 E 0.336 0.482 0.344 

KW 0.017 0.027 0.017 KW 0.012 0.017 0.012 

k 0.308 0.415 0.343 k 0.307 0.379 0.332 

DIF 0.914 0.939 0.931 DIF 0.918 0.934 0.930 

GD 0.456 0.526 0.526 GD 0.456 0.505 0.505 

 ρ 0.293 0.339 0.312  ρ 0.294 0.317 0.303 

 Q 0.159 0.239 0.183  Q 0.159 0.198 0.171 

 D 0.236 0.301 0.239  D 0.236 0.269 0.238 

 DF 0.859 0.839 0.874  DF 0.859 0.849 0.867 

19 R 0.269 0.351 0.269 31 R 0.269 0.310 0.269 

 E 0.336 0.429 0.391  E 0.334 0.381 0.335 

 KW 0.008 0.011 0.009  KW 0.005 0.006 0.005 

 k 0.308 0.354 0.324  k 0.308 0.331 0.316 

 DIF 0.920 0.929 0.929  DIF 0.923 0.927 0.927 

 GD 0.456 0.488 0.488  GD 0.455 0.473 0.473 
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the most used to study the degree of lineal 
relationship between two quantitative variables. 
This coefficient takes values between -1 and 1. A 
value of 1 indicates positive perfect lineal 
relationship and a value -1 indicates relationship 
lineal perfect negative. In both cases, the points 

are disposed in one straight line. On the other 
hand, a coefficient equal to zero indicates that it is 
not possible to establish a relationship among the 
two variables. 

According to the definition of MR and MRP 
(Epigraph 4), the consideration of diversity only in 

𝑻 DM FULL MR MRP 𝑻 DM FULL MR MRP 

51 

ρ 0.295 0.303 0.299 

71 

ρ 0.294 0.297 0.296 

Q 0.160 0.174 0.164 Q 0.159 0.165 0.161 

D 0.237 0.249 0.238 D 0.236 0.241 0.237 

DF 0.859 0.856 0.863 DF 0.859 0.858 0.860 

R 0.270 0.285 0.270 R 0.269 0.276 0.269 

E 0.334 0.351 0.335 E 0.332 0.339 0.332 

KW 0.003 0.003 0.003 KW 0.002 0.003 0.002 

k 0.309 0.317 0.312 k 0.308 0.311 0.309 

DIF 0.924 0.926 0.926 DIF 0.925 0.925 0.925 

GD 0.457 0.464 0.464  GD 0.456 0.459 0.459 

101 

ρ 0.294 0.295 0.295 

 

 

 

201 

ρ 0.294 0.294 0.294 

Q 0.159 0.161 0.159 Q 0.159 0.159 0.159 

D 0.236 0.238 0.236 D 0.236 0.236 0.236 

DF 0.859 0.859 0.859 DF 0.859 0.859 0.859 

R 0.269 0.271 0.269 R 0.269 0.269 0.269 

E 0.331 0.333 0.331 E 0.329 0.329 0.329 

KW 0.002 0.002 0.002 KW 0.001 0.001 0.001 

k 0.308 0.309 0.308 k 0.308 0.308 0.308 

DIF 0.925 0.925 0.925 DIF 0.926 0.926 0.926 

GD 0.457 0.457 0.457 GD 0.456 0.456 0.456 

501 

ρ 0.294 0.294 0.294 

 

 

 

 

 

1001 

 

ρ 0.294 0.294 0.294 

Q 0.159 0.159 0.159 Q 0.159 0.159 0.159 

D 0.236 0.236 0.236 D 0.236 0.236 0.236 

DF 0.859 0.859 0.859 DF 0.859 0.859 0.859 

R 0.269 0.269 0.269 R 0.269 0.269 0.269 

E 0.329 0.329 0.329 E 0.329 0.329 0.329 

KW 0.000 0.000 0.000 KW 0.000 0.000 0.000 

k 0.307 0.307 0.307 k 0.308 0.308 0.308 

DIF 0.926 0.926 0.926 DIF 0.926 0.926 0.926 

GD 0.456 0.456 0.456 GD 0.456 0.456 0.456 
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those learning examples where at least one 
classifier makes error drives to determine if there 
are significant differences in the calculated 
diversity values.  

These vales can be calculated take into 
account the whole examples set, as well as these 
two matrices. We assumed there is not existence 
of normality in data and we apply the non-
parametric test of the aligned ranges of Friedman 
[48]. In case of significant differences, we apply the 
post-hoc test of Bergmann and Hommel [49] 
because of the potent results it offers. 

Besides, we determined if it is possible to 
establish a grouping between diversity measures 
and the classifier ensemble accuracy. The 
objective of this analysis resides in determining 
which diversity measures (including the measures 
calculated on the MR and MRP) are more related 
to the classifier ensemble accuracy. This analysis 
helps as a complement to the results obtained in 
the correlation analysis. In this sense, we use the 
technique of analysis of main components and the 
method of grouping of hierarchical conglomerates. 

The analysis of the main components carries 
out two fundamental operations. It reduces the 
data dimensionality and quantifies the original 
variables in new variables attending to the 
correlation among them. The use of this technique 
is justified by the fact that it allows to obtain groups 
of variables related in each one of the 
formed components. If we have as variables each 
one of the studied measures and the classifier 
ensemble accuracy, then the measures included in 
the same component that has the classifier 
ensemble accuracy are more related with this 
last one. 

The hierarchical conglomerate is a multivariate 
agglomerative method that leaves of the individual 
variables and creates subgroups among these, 
until obtaining only one group that contains all of 
them. For the use of this method, we need to 
determine the way of building the groups and the 
distance measure to be used. In the first one, one 
of the most used methods is the relationship or 
linking among the groups. In this case, the union of 
the groups is according to the arithmetic mean of 
the distances among all the components of each 
group, considered two by two. This method makes 
groups with similar and small variances. In the 
case of the distance among the groups we use the 

Pearson correlation as distance in the application 
of the analysis of hierarchical conglomerates. A 
distinctive element between the method of 
hierarchical conglomerates and other grouping 
methods are the dendrograms. They can be used 
to show the elements that are grouped and the 
moment they are added to the group. We make the 
analysis of the results with the software SPSS and 
the statistical packages existent for R.  

6 Results and Discussion 

To facilitate the analysis and discussion of the 
results, we first discuss the results with the 
measures of the literature calculated over the 
Reduced Matrices. After, we discuss the results of 
the proposals measures. In addition, we apply the 
analysis of main components and the method of 
hierarchical conglomerates to evaluate the 
behavior of all the diversity measures respect to 
the accuracy of the classifier ensembles formed. 
Besides, we show a study about the correlation 
among the two proposed measures and the 
existing measures. Finally, we present the 
classifiers ensembles obtained using at least four 
different scenarios. 

6.1 Results of Diversity Measures from 
Literature Calculated in the Reduced 
Matrices 

In Table 5, we show the average of each of the 
diversity measures studied in each group of 𝑇 
classifiers. This average is calculated on all 
validation examples (FULL), on the Reduced 
Matrix (MR) and on the Reduced Matrix 
Positively (MRP).  

We observe that the DIF measure is the one 
that bigger diversity determines in the classifier 
ensembles formed. In general, the result of the 
diversity measures is below 0.5. Only the 
measures DF (1.6) and DIF (1.13) quantify the 
diversity above this value. This last, is shown also 
in the results obtained in [17]. Besides, we observe 
for classifier ensembles of size 3, 5, 9 and 13 that 
the biggest diversity is on the group of examples of 
the Reduced Matrix, independently of the measure 
that is used. This evidences that for classifier 
ensembles with sizes inferior to 13 the Reduced 
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Matrix constitutes an alternative to calculate the 
diversity measures. Although, their use can be 

extended for classifier ensembles with around a 
maximum of 71 classifiers (see Figure 9).  

 

Fig. 9. Comparison of diversity values obtained in each of three sets of analyzed examples and for each 
value of T. Each letter belongs to one of the measures presented in section 3, in corresponding order 

 

Fig. 10. Classification behavior in classifier ensembles of size T. A, B and C belong to the sets given by the 
characterization of the classification in Figure 2 
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Starting from 71 classifiers the quantified 
diversity is very similar and inferior to the values 

obtained with the combinations of 71 classifiers 
or less. 

 

Fig. 11. Diversity calculated with DF measure in all the validation examples (DF FULL), on the Reduced 
Matrix (DF MR) and on the Positive Reduced Matrix (DF MRP) 

 

 

 

Fig. 12. R Measure calculated on MRMR. A: the present negative correlation when T = 3. B: the 
correlation is lost until practically be null with T = 1001 
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This behavior makes sense according to the 
characterization of the classification previously 
proposed. If we increase the number classifiers to 
combine it is very difficult to obtain examples 
where all the classifiers coincide in their decision. 
On the other hand, the occurrence of errors is low 
if classifiers have very good behavior in 
classification.  

Therefore, the probability to obtain examples 
where all the classifiers have correctly 
classification will be higher. The same happens if 

the individual behavior is bad, but in this case the 
classifiers coincide in the incorrect decision. 

We observe that the individual accuracy 
average of the formed ensembles is around 72.5%, 
we consider a moderately good individual 
behavior. Therefore, incrementing the number of 
classifiers to combine it is difficult to assure to 
obtain examples that belong to A or C in Figure 2.  

We observe in Figure 10 that if the classifiers 
number increases, the proportion of the examples 
set where at least one classifier makes a mistake 

 

Fig. 13. Factor of Pearson correlation obtained among the DF and DIF measures and the classifier 
ensemble accuracy, for each value of T 

 

Fig. 14. Number of times that the best correlation is obtained in each one of the examples sets studied, 
taking into account the type of diversity measure 
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(B of Figure 2) increases respect to the examples 
sets where the individual decision coincides (A and 
C, of Figure 2). Starting from a value of T = 71 the 
size of MR (B) and MRP (B+C of Figure 2) tends to 
be similar to the total of the examples set. 

Starting from the above, we analyzed the 
diversity values obtained on the built ensembles 
with 71 classifiers or less. Also, we analyzed the 
ensembles that consider 101 or more classifiers to 
combine. The analysis is guided to determine if 
there are significant differences among the 
diversities measured on all the validation examples 
(FULL), in the Reduced Matrix (MR) and in the 
Positive Reduced Matrix (MRP). The non-
parametric test of the aligned ranges of Friedman 
determines that the diversity measured in 
ensembles with 71 or less classifiers presents 
significant differences among each one of these 
groups, except in punctual cases (R in FULL/MRP 
and GD in MR/MRP). However, in ensembles that 
combine 101 or more classifiers the significant 
differences are mainly on the diversity calculated 
with all validation examples and on the 
Reduced Matrix. 

According to the definition of MR and MRP, the 
reduction in the examples number to calculate the 
diversity implies in most of the measures an 
increment of their values. This, together to the 
previous analysis, can justify the bigger diversity in 
MR respect to the diversity calculated on all 
examples and on MRP. In Figure 11 we show the 
effect of calculating the diversity in each of the 
three sets for DF measure. 

As before, this behavior depends of the 
examples number that belong to each sets of the 
characterization of the individual classification in 
Figure 2. 

In general, to calculate the diversity in MR and 
MRP implies a bigger separability of the cloud of 
points, at least when few classifiers are combined 
being more evident over values calculated on MR. 
We observe a convergence of the diversity towards 
only one point if the number of classifiers 
increment in the combination. This indicates that in 
that moment the diversity cannot be criteria to 
follow to build the classifier ensemble. 

Finally, it depends to the existence of some 
correlation degree between the classifier 
ensemble accuracy and the diversity value. 
Therefore, we confirm that the number of individual 

classifiers in the combination is an important factor 
when building of classifier ensembles, together 
with the diversity and the individual accuracy. 

Related with the observed in Figure 9, the factor 
of Pearson correlation for each value of 𝑇 begin to 
coincide in certain moment when 𝑇 is increased. At 
this point, any existent correlation can decrease, 
increase or disappear.  

For example, for the R measure calculated on 
the Reduced Matrix (see Figure 12), the best 
correlation (negative) is reached when the 
classifier ensembles are built with 𝑇 = 3. If we 
increase the number of classifiers then the 
correlation increases until it is lost, to practically be 
null when classifier ensembles are built with 𝑇 = 
1001 classifiers. 

In most of the diversity measures, a good 
correlation is not achieved with the ensemble 
accuracy. Once again, DF and DIF (see Figure 13) 
are the measures that better correlation have with 
the accuracy, coinciding with results in [8, 16, 17]. 

On the other hand, we confirm that diversity 
calculated on the examples considered in the MR 
and in the MRP obtain better correlation values 
with the classifier ensembles formed (see Figure 
14). Also, for non-pairwise measures it is better to 
calculate the diversity on MR or on MRP. However, 
for pairwise measures the best option is to 
continue calculating them on all the examples or 
depending on the measure to use the MRP. 

6.2 Results of Diversity Measures Based on 
Coverage and Similarity of the 
Classification 

In this section, we make analyze the results of the 
diversity measures proposed in this paper: 
coverage of the classification by the ensemble 
(CoP), similarity of the classification respect to the 
best individual classifier (SimBest) and similarity of 
the classification respect to a classifier 
average (SimProm). 

Table 6 shows the average of these three 
diversity measures in each group of 𝑇 classifiers. 
From the three measures, the similarity of the 
classification respect to a classifier average 
(SimProm) determines the biggest diversity. On 
the other hand, the coverage of the classification 
by the ensemble (CoP) obtains the 
smalle diversity. 
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According to the test of aligned ranges of 
Friedman there are significant differences among 
the three measures. The values obtained for these 
measures evidence a behavior where the 

increment of the number of classifiers causes the 
convergence of diversity to one point. We observe 
this behavior equally in the other 
diversity measures. 
Figure 15 show a dispersion graph of the accuracy 
values in the ensemble formed vs the measured 
diversity with the coverage of the classification 
(CoP). We choose three values of 𝑇: 3, 31 and 
1001. They are represented with different colors. 
Each point represents a classifier ensemble of 𝑇 
size. Similar to diversity measures reported in the 
literature, the CoP values are more dispersed 
when the value of 𝑇 is small. Although for 𝑇=3 the 
cloud of points does not have a very established 
group structure, we observe better groups with 𝑇 = 

31 and 𝑇 = 1001, even being one a subset 
of  others. The above is related with the mentioned 
convergence and with the given 
coverage definition.  

In a classifier ensemble with a small number of 
classifiers the contribution of each classifier to the 
ensemble through the coverage of the 
classification (CoP) has a bigger effect in the final 
decision of the ensemble. Since the limit 
established in an example to be considered 
covered by the classification is easier to reach in 
these cases.  

However, when the number of classifiers 
increases the diversity values reach a stable point. 
In this case, there is more probability to cover the 
example. Similar results are presented in [36], 
when they analyze the terms of good and bad 
diversity. Another analysis that comes from Figure 
15 is respect to the contribution of the individual 
classifiers to the ensemble.  

Besides being stabilized when grows 𝑇, also it 
decreases in their magnitude. This indicates that 
with more combined classifiers, not necessarily 
better results are obtained in the ensemble. 

On the other hand, we observe high values in 
the measures based on similarity of the 
classification. This indicates that in the formed 
ensembles the individual classifiers have very 
different decisions respect to the reference point 
taken. In case of the similarity with the best 
individual classifier in the combination (SimBest), 
high values indicate that this classifier stands out 
significantly from the other ones. In relation to the 
similarity with the classifier average SimProm (as 
in the present study we only work with the 

Table 6. Average of diversity measures based on 
coverage and similarity of the classification 

𝐓 CoP SimProm SimBest 

3 0.255 0.884 0.767 

5 0.307 0.863 0.765 

9 0.336 0.849 0.766 

13 0.347 0.845 0.772 

19 0.351 0.841 0.777 

31 0.353 0.838 0.782 

51 0.355 0.836 0.785 

71 0.355 0.836 0.787 

101 0.355 0.836 0.788 

201 0.357 0.836 0.789 

501 0.357 0.836 0.789 

1001 0.357 0.836 0.789 

 

Fig. 15. Dispersion graph of classifier ensembles 
accuracy vs the diversity measure based on 
coverage of the classification, for three values of 𝑇 
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occurrence or not of errors in the classification) this 
classifier average is formed with the most repeated 
decision by the individual classifiers, that coincides 
with the majority vote. Therefore, this classifier 
average is given by the formed ensemble.  

In addition, the measured diversity indicates 
how near is the behavior of individual classifiers 
respect to the ensemble. From the three 
measures, this last shows the bigger diversity. 
Therefore, it establishes the existence of 
differences between the classification of the 

individual classifiers and the classification of the 
formed ensemble. 

To check the behavior of SimProm, we analyze 
the classifier ensembles accuracy and the average 
of the individual accuracy. Figure 16 shows as the 
average of individual accuracy of the classifiers 
used in each classifier ensemble is much smaller 
than the ensemble accuracy. Therefore, the 
measure SimProm is the one with higher values. 

Finally, we execute a correlation analysis to 
determine if there is a relationship among the 

 

Fig. 16. Classifier ensemble accuracy and average of the individual accuracy in each value of T 

 

Fig. 17. Coefficient of Pearson correlation between the proposed diversity measures and the classifier 
ensemble accuracy 
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classifier ensemble accuracy and the diversity 
values obtained with the new measures. Figure 17 
shows the coefficient of Pearson correlation for 
each value of 𝑇.  

Each point represents the obtained coefficient 
of applying the correlation analysis of the 
ensembles of 𝑇 size, in the proposed measures. In 

this way, it is easy to study the behavior of these 
two elements according to the increment of the 
number of classifiers combined. The results show 
that measure based on the coverage of the 
classification (CoP) is the one with better 
correlation coefficient, moving their values 
between 0,6 and 0,8. Although the correlation 

 

Fig. 18. Dendogram formed for the diversity measures calculated on the classifiers ensembles with T ≤ 13 

 

Fig. 19. Dendrogram formed for the diversity measures calculated on the classifiers ensembles with 19 ≤ 𝑇 
≤ 101 
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obtained for the measure SimBest is the second 
better.  

The coefficient is above 0,6 for most of the 
ensembles with 13≤𝑇≤201 size. Therefore, also we 

 

Fig. 20. Dendrogram formed for the diversity measures calculated on the classifiers ensembles with T ≥ 
201 

 

Fig. 21. Correlation between the proposed measures and the measures from literature 
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consider this measure to be positively related with 
the classifier ensemble accuracy. 

Are interesting the results of the SimProm 
measure. This measure is the one with the biggest 
values of diversity.  

However, the correlation with the ensemble 
accuracy is smaller than the rest and it is negative.  

Therefore, high diversity values not necessarily 
have to be linked with the classifier ensemble 
accuracy. This fact is already concluded in several 
investigations [8, 17]. 

Previously, we mention that increment of 𝑇 
tends to stabilize the diversity values and to form 
groups very well defined. Even so, the relationship 
with the ensemble accuracy can vary. If this 
relationship is demonstrated, will always be 
necessary an exploratory study of the results 
obtained in certain problem. For example, the 
correlation of the measures based on the similarity 
stay relatively stable in certain values of 𝑇 (for 

SimProm starting from 𝑇 = 71 and for SimBest with 
13 ≤ 𝑇 ≤ 201). However, we did not observe this 
behavior in the CoP measure. The best correlation 

is with 𝑇 = 13 and starting from there it begins to 

decrease the correlation, until in 𝑇 = 101 
increase again. 

6.3 Relationship of Diversity with the 
Ensemble Accuracy 

To complement the correlation analysis, we apply 
the method of the main components to determine 
which measures are more related with the 
accuracy of the formed ensemble. We calculate 
the measures reported in the literature on all the 
examples and in the Reduced Matrices (MR and 
MRP) to validate the previous analyzed results. 

We decide to carry out the analysis of main 
components dividing the results of the built 
ensembles with 𝑇 ≤ 13, 19 ≤ 𝑇 ≤ 101 and 𝑇 ≥ 201. 
This is due to the behavior observed in the 
correlation of the proposed diversity measures with 
the classifier ensemble accuracy in each value of 
𝑇. We make the extraction of the factors using the 
criterion from the auto-values superior to the unit. 
Also, we use the rotation varimax to facilitate the 
better interpret of the results. 

We apply the Bartlett test in the three groups 
previously formed. We prove the relevance of 
applying the analysis of main components when 

obtaining a signification smaller than 0,05. For 
each group a total of three components are 
extracted and the variance described in them is 
around to 95% in the three intervals. Table 7 shows 
the extraction of each one of the variables in the 
three formed components for each analyzed 
interval of 𝑇. Also, we suppress the absolute 
values smallest than 0,5 to facilitate the 
interpretation. The line corresponding to SA 
represents the values for the ensemble accuracy. 

As we expected, the SimProm measure is not 
extracted in any moment together with the variable 
of the ensemble accuracy. This corroborates the 
results observed in Figure 17 related to the little 
correlation among these two variables. In the case 
of SimBest measure, starting from 𝑇 ≥ 19 it is 
included in the component that contains to the 
ensemble accuracy. 

Therefore, we not recommend their use to build 
classifier ensembles with a value of 𝑇 inferior to 
this. On the other hand, the CoP measure is 
associated to the ensemble accuracy in the three 
groups of 𝑇, proven again their relationship with 
this variable. 

Nevertheless, when 𝑇 ≥ 201 the expression of 
this measure is bigger in the first component 
extracted. This component does not contain the 
accuracy variable. In addition, we observe that DF 
and GD measures (independently of where they 
are calculated) are associated in the same 
component that contains the ensemble accuracy. 
There is a similar result with the DIF measure but 
the calculation over the Reduced Matrix is not 
related to the accuracy. 

For the analysis of hierarchical conglomerates, 
we keep the three previous intervals. We apply the 
linking method among groups to form the groups 
with the Pearson correlation like distance. Figures 
18, 19 and 20 show the result of the analysis for 
the three study intervals. Four groups formed 
according to the included measures are stood out. 

For 𝑇 ≤ 13, the ensemble accuracy is 
fundamentally associate with the measures DF, 
DIF and CoP, like we already observe in the 
analysis of main components. Interesting is the 
result of the two diversity measures based on the 
similarity of the classification (for these values of 𝑇 
and for the cut point established). They form a 
single group that is the last one that join to the 
remaining ones formed in the analysis. 
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Table 7. Matrix of rotated components obtained for 𝑇 ≤ 13, 19 ≤ 𝑇 ≤ 101 and 𝑇 ≥ 201 

 𝑻 ≤ 13 19 ≤ 𝑻 ≤ 101 𝑻 ≥ 201 

 1 2 3 1 2 3 1 2 3 

SA   0.94   0.88  0.86  

ρ  0.93  0.901   0.91   

ρ -MR 0.99    0.87  0.91   

ρ-MRP 0.81   0.73   0.91   

Q  0.96  0.98   0.98   

Q-MR 0.96    0.95  0.98   

Q-MRP 0.80   0.85   0.98   

D  0.98  0.99   0.99   

D-MR 0.99    0.97  0.99   

D-MRP  0.98  0.98   0.99   

DF   0.81   0.98  0.99  

DF-MR   0.81   0.78  0.99  

DF-MRP 0.78  0.50   0.89  0.99  

R  0.99  0.99   0.99   

R-MR 0.94    0.97  0.99   

R-MRP  0.99  0.99   0.99   

E  0.98  0.96   0.95   

E-MR 0.99    0.96  0.95   

E-MRP  0.96  0.94   0.95   

KW 0.77 0.59   0.88    0.99 

KW-MR 0.99    0.95    0.99 

KW-MRP 0.81 0.55   0.88    0.99 

k  0.89  0.88   0.88   

k-MR 0.99    0.81  0.88   

k-MRP 0.72   0.75  0.55 0.88   

DIF  0.58 0.68 0.68  0.72 0.69 0.72  

DIF-MR 0.88     0.78 0.69 0.72  

DIF-MRP   0.79   0.82 0.69 0.72  

GD  0.75 0.59 0.72  0.68 0.72 0.69  

GD-MR 0.82  0.55   0.76 0.72 0.69  

GD-MRP 0.82  0.55   0.76 0.72 0.69  

CoP  0.59 0.69 0.63  0.64 0.71 0.53  

SimProm  -0.92  -0.96   -0.96   

SimBest  -0.83  -0.55  0.78 -0.57 0.80  
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Starting from 𝑇 ≥ 19 the SimProm measure 
stays isolated of the remaining formed groups. On 
the other hand, SimBest begins to be related better 
with the ensemble accuracy. In fact, Figure 19 and 
Figure 20 show as how the second and fourth 
group respectively includes this measure together 
with the ensemble accuracy. Contrary to the 
observed with the measure CoP in the analysis of 
main components, except for 𝑇 ≤ 13, this measure 
is not included together with the ensemble 
accuracy in the same group. 

Another important element is the association of 
the DF measure (independently of where it is 
calculated) with the classifier ensemble accuracy, 
as it was shown previously. Also, we observe 
certain relationship among the measures reported 
in literature calculated on the Reduced Matrix since 
most of them are included in the same group. 
Although this relationship tends to disappear when 
𝑇 increasing. This proves again the previously 

discussed about the influence of 𝑇 values in the 
calculation of diversity on the Reduced Matrices. 

6.4 Correlation of the Proposed Measures 
with the Measures in Literature 

We analyze the correlation between the proposed 
measures with the diversity measures reported in 
literature. In this case, we use the artificially 
generated data set. Furthermore, we consider the 
30,000 classifier ensembles obtained for all values 
of 𝑇.  

We obtain the Pearson's correlation coefficient 
for each one of the possible combinations. In 
addition, we include in this study the classifier 
ensemble accuracy (SA) for comparison purposes. 
A value close to -1 indicates a negative correlation 
between the variables and a value close to 1 
indicates a positive correlation. Otherwise, a value 
close to zero indicates no relation between the 
analyzed variables. For the analysis we use the 
test of correlation between paired samples (Test 
for correlation between Paired Samples) of the 
stats module of the statistical package R. 

Figure 21 presents the result of the correlations 
between the measures. For simplicity, we only 
show the upper triangular matrix of the 
correlations. In this case, the completely white cells 
correspond to the cases in which the correlation is 
not significant. The blue color means a positive 

correlation and the red color means a negative 
correlation. The size of circle is bigger if the value 
is near to 1 or -1. On the other hand, the size of 
circle is smaller if the value is closer to zero. 

We can observe that in the SimProm measure 
there is a positive correlation only with the SimBest 
measure. On the other hand, the SimBest measure 
also has a positive correlation with the classifier 
ensemble accuracy (SA). Finally, the CoP 
measure has a positive correlation with several 
measures and with the classifier 
ensemble accuracy. 

6.5 Obtaining Classifier Ensembles in 
Different Scenarios 

We made a last study to select classifiers 
ensemble in at least four different scenarios: 
randomly, using the first proposed measure, using 
the second proposed measure and using a 
measure from literature. In this case, we use 
several benchmark data sets. They are taken from 
the Machine Learning Repository from the 
University of California Irvine (MLRUCI) [50]. Table 
8 shows their characteristics. 

From each database, we take 66% of the 
instances for training, 17% for validation and 17% 
to evaluate the final classifier ensemble. The 
instances considered in the evaluation are not 
used in the training set or in the validation set. The 
instances considered in the validation set are not 

Table 8. Characteristics of the data sets 

   Features 

Nro Dataset Instances Nom Num 

1 Australian 690 5 9 

2 Breast-Cancer 683 9 0 

3 Echocardiogram 132 1 11 

4 German_credit 1000 13 7 

5 Heart-statlog 270 0 13 

6 Hepatitis 155 13 6 

7 House-votes 435 16 0 

8 Diabetes 768 0 8 

9 Pro-ortology 4294 0 11 
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used in the training set either. On the training set, 
we made 33 samplings (with replacement) with a 
size equal to the 85% of the original size.  

Each of these samples is used as training set 
for one of the following randomly selected learning 
algorithms: Logistic, KNN con k= {1, 3, 5, 7}, J48, 
five neural networks with different values of the 
learning rate and momentum (4 are randomly set 
and one is the default value), Random tree, 
DecisionStump, REPTree, NaiveBayes, ZeroR, 
SMO and SimpleLogistic. They are taken from the 
WEKA tool (Waikato Environment for Knowledge 
Analysis) [51]. 

In total, we generated a set of 33 classifiers 
trained with different learning algorithms and with 
different partitions of the original training set. After 

we have the classifiers trained, they are evaluated 
using the validation set.  

Starting from the best individual classifier (best 
accuracy), we realize an in-depth search of 
classifiers that improve one of the following criteria 
when they are incorporated into the ensemble: 

– Diversity/Accuracy using CoP, 

– Diversity/Accuracy using SimBest, 

– Diversity/Accuracy using the DIF literature 
measure. 

In this study, we include the DF measure from 
literature because it is one of the measure that 
better correlation has with the ensemble accuracy 
according to the previous results. 

 

Fig. 22. Improved accuracy over Random selection 

 

Fig. 23. Improved diversity over Random selection 
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We compare the obtained results with the base 
case of randomly selecting the classifiers to build 
the ensemble. We consider classifiers ensembles 
with size equal to nine. Once the classifier 
ensemble is formed, we evaluate to make the 
comparison in the four different scenarios. 

Due to the randomness introduced when 
selecting the learning algorithms and the instances 
of each training set, we repeated the procedure 10 
times and we use the average value of diversity 
and accuracy of the combinations found. Figures 
22 and 23 show the results. 

Figure 22 shows that in most of the datasets the 
accuracy improves when the classifiers ensembles 
are formed using the diversity measures. Just in 
two datasets (German_credit and Heart-statlog) is 
better the random selection to form the classifiers 
ensembles. Also, we observe that in several 
datasets the SimBest measure offer the 
better results. 

Figure 23 shows that in most of the datasets the 
diversity improves when the classifiers ensembles 
are formed using the diversity measures. Only in a 
few cases of two datasets (Breast-Cancer and Pro-
ortology) is better the random selection to form the 
classifiers ensembles. In this case, we observe 
again that the SimBest measure offers 
better results. 

This study demonstrates the usefulness of the 
proposed measures for obtaining highly accurate 
or diversity classifier ensembles.  

7. Conclusions 

In this paper, we presented two new diversity 
measures based on coverage and similarity of the 
individual classification. In addition, we show a 
study of their relationship with the classifier 
ensemble accuracy. Besides, we analyze the 
diversity measures reported in literature and their 
behavior on a reduced dataset. 

The results demonstrate how the diversity 
measured according to the coverage and similarity 
of the individual classification presents a lineal 
correlation with the classifier ensemble accuracy. 

In case of the similarity measure, we obtained 
the best correlation using the output of the best 
individual classifier as reference point. In the case 
of diversity measures reported in literature, we 

observed a better relationship of diversity with the 
ensemble accuracy when the diversity is measured 
on a reduced data set.  

This reduced data set consists in the Reduced 
Matrix (MR) or Positive Reduced Matrix (MRP). 
They are obtained starting from the output of the 
individual classifiers. 

The DF and DIF measures show the better 
correlation with the ensemble accuracy. According 
to the results, we demonstrated that for non-
pairwise measures it is better to calculate the 
diversity over MR or over MRP. On the other hand, 
for pairwise measures the best option is to 
continue calculating them over all the examples or 
depending on the measure, over MRP. 

In addition, we proved that when building 
classifier ensembles, the number of individual 
classifiers influences the ensemble behavior. This 
influence, measured in form of diversity, means 
that if we increased a lot the number of classifiers 
the diversity can lead to a deformation of the 
classifier ensemble accuracy.  

This deformation can be expressed in a loss of 
the relationship of this accuracy with the diversity. 
We need take into account that diversity should be 
controlled in the permissible limits to guarantee 
that the formed ensemble has the 
maximum  behavior. 

Besides, we show the correlation between the 
proposed measures with the diversity measures 
reported in literature. The most important results 
are: the SimBest measure has a positive 
correlation with the classifier ensemble accuracy 
(SA). On the other hand, the CoP measure has a 
positive correlation with several measures and with 
the classifier ensemble accuracy. The SimProm 
measure has a positive correlation only with 
SimBest measure. 

Finally, we presented a study to select a 
classifiers ensemble in at least four different 
scenarios to demonstrate the usefulness of the 
proposed measures. In most of the cases, the 
results show that the proposed measure SimBest 
offers better results to form classifiers ensembles 
with better accuracy or diversity.  

These results are compared with other three 
scenarios: random selection, the CoP measure 
and DF measure from literature. 
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