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Abstract. Paraconsistent logical systems are well-
known reasoning frameworks aimed to infer new
facts or properties under contradictory assumptions.
Applications of these systems are well known in a wide
range of computer science domains. In this article,
we study the paraconsistent logic CG′

3, which can be
viewed as an extension of the logic G′

3. CG′
3 is

also 3-valued, but with two designated values. Main
results can be summarized as follows: a Hilbert-type
axiomatization, based on Kalmár’s approach; and a new
notion of validity, based on also novel Kripke semantics.
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1 Introduction

Many valued logics, as classical ones, are based
on the principle of truth-functionality.1 In the
classical approach, there are only two truth values,
falsum and verum, which are commonly written “0”
and “1”. Contrastingly, in many-valued logics more
than two truth values are considered. A survey on
many-valued logics may be found in [9]. Originally
motivated by philosophical aims, many-valued
logics are also inspired by formal technical
concerns regarding functional completeness.

Among the first applications of many-valued log-
ics, one may found hardware design. Analogously,
as classical logic is used as a technical tool for
the analysis and synthesis of electrical circuits
built up from switches with two stable states,

1The truth of a compound sentence is obtained by the truth
values of its component sentences.

denoting voltage levels, many-valued logic can be
used as general model of electrical circuits with
more than two stable states. This application
field of many-valued logic is called many-valued
switching [6].

We now list some current state-of-the-art
applications of many-valued logics in artificial
intelligence: imprecise notions inherently tied to
commonsense reasoning in expert systems, can
be naturally modeled via fuzzy logic. Inference
systems for many-valued logics, fuzzy logic in this
context, can then be used as reasoning frame-
works in expert systems [9]. A relatively recent
research perspective in the AI setting, concerns the
many-valued generalization of description logics,
well-known as the reasoning foundation of the
semantic web [10].

In [14], it is extensively reported on
non–monotonic reasoning based on
paraconsistent logics. In particular, it is proposed
a logic programming semantics based on
the paraconsistent logic G′3. This is called
G′3–stable semantics. Inconsistent and vague
domains can be naturally modeled with this
G′3–stable semantics.

In [16], Priest affirms that one of the motives
of da Costa, to build the paraconsistent logic
Cω, was dualizing the negation of intuitionistic
logic. Intuitionistic logic is a logic that allows
for “truth-value gaps”; for example, the Law
Excluded Middle fails. The logic Cω achieves
this but with explicit costs; for example, the
substitution of provable equivalents fails. Da Costa
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Fig. 1. Comparison of G′
3 and CG′

3 with other logics

proceeded axiomatically, preserving the positive
part of intuitionistic logic, and changing the axioms
of negation.

But the various semantics for intuitionistic logic
suggest other ways of pursuing da Costa’s goal.
Evidence of this is the paraconsistent logic created
by Priest that arises when dualizing the modeling
conditions for the negation in Kripke semantics for
intuitionistic logic. This new system is called da
Costa logic daC. We can find at the end of [7,
section 2] a brief study of extensions of fragments
of Heyting Brouwer Logic. This is the case of the
family of logics daCGn; each an extension of daC
characterized by a Kripke frame for daC, which is
linearly ordered and has n − 1 points. We have
that G′3 corresponds to daCG3, and clearly, the
characterization agrees.

In [15], Osorio et al. define G′3 through its
multi-valued semantics. CG′3 is an extension of
G′3 [13]. In contrast with G′3, whose designated
value is 1, CG′3 has 1 and 2 as designated values.
It is important to note that G′3 is not comparable
with Gödel logic G3. In Figure 1, we present
some logics related to CG′3 where the arrows
mean contention.

The structure of the document is as follows. In
Section 2, we present the definition of CG′3 from
many-valued semantics. In Section 3, we give the
formal axiomatic theory L for CG′3 and examine
some interesting properties of L, and we close
the section seeing that L is sound and complete
concerning CG′3. To prove that L is complete, the
authors follow the procedure of completeness proof
used for classical logic given in [12] and originally
due to Kalmar. This method has been used in
other many-valued logics, see [1, 11]. In Section 4,
we show the semantical similarities between CG′3
and the many-valued logic Ł3. In Section 5, we

introduce the Kripke-type semantics to CG′3, in two
different ways.

2 Many-Valued Semantics for CG′3

We first introduce the syntax of the logical formulas
considered in this paper. We follow standard
notation and basic definitions as M. Osorio in [15].

The following symbols will be used for logical
connectives: ∧ (conjunction, binary); ∨ (dis-
junction, binary); ↔ (biconditional, binary); ¬
(weak negation, unary); ∇ (inconsistency operator,
unary); ∼ (strong negation, unary) and ⊥ (bottom
formula, 0-arity).

Fix the propositional language L whose primitive
symbols are:

— the variables p0, p1, . . .;

— the connectives: ∧, ∨, ¬, and→;

— the punctuation marks: ( and ),

— the formulas of L are defined inductively:

– all the variables in L are atomic formulas
o simply atoms;

– if ϕ and ψ are formulas then (ϕ∧ψ), (ϕ∨
ψ), and (ϕ→ ψ) are also formulas.

One of the most popular semantics for many-
valued logical systems is the standard logical
matrices. The most appropriate way to define
semantics for a logic of many-values is through
a logical matrix characteristic from its language,
that is:

— the set of values of truth (domain),

— the set of designated values, which form a
subset of the set of truth degrees and act
as substitutes for the traditional truth value
verum,

— the functions of degree of truth interpreted by
the propositional connectives.
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Table 1. Truth functions of the connectives in CG′
3

∨ 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

∧ 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

→ 0 1 2
0 2 2 2
1 0 2 2
2 0 1 2

¬
0 2
1 2
2 0

(a) Connectives ∨,∧,→, and ¬

¬¬ ∇ ∼
0 0 0 2
1 0 2 0
2 2 0 0

↔ 0 1 2
0 2 0 0
1 0 2 1
2 0 1 2

(b) Connectives ¬¬,∇,∼, and↔

A well-formed formula ϕ of a propositional
language counts as valid under some valuation v2

if and only if it has a designated truth value under
v. And ϕ is a tautology if and only if it is valid under
all valuations, and we denote this by ||= ϕ.

The paraconsistent logic CG′3 is introduced in
[13] and is given, by the matrix M = 〈D,D∗,F 〉;
where D = {0, 1, 2} is the domain, D∗ = {1, 2}
is the set of designated values, and F is the set of
truth functions for the connectives {∧, ∨,→,¬} and
consists of the functions displayed in Table 1a.

Definition 1. Given a formula ϕ in the language
of a logic CG′3, we say that this is a tautology in
CG′3 if, for every possible valuation, the formula ϕ
is valid, and we denote this by ||=CG′

3
ϕ.

In [8], the authors present some properties
from the semantic point of view that veri-

2The valuation v maps the set of propositional variables into
the set of truth degrees and can extend to the set of well-formed
formulas, as usual.

fies this logic, to mention some we have:
WE ¬ϕ→ (¬¬ϕ→ ψ)
NI ¬¬(ϕ→ ϕ)
WC (¬ϕ→ ¬ψ)↔ (¬¬ψ → ¬¬ϕ)

Peirce
(

(ϕ→ ψ)→ ϕ
)
→ ϕ

3 Axiomatization of CG′3 Logic

Let us consider L, a formal axiomatic theory
for CG′3 defined over the signature L = {¬,→
,∧}. Some logical connectives defined in terms of
the primitives:

∼ϕ := ϕ→ (¬ϕ ∧ ¬¬ϕ)
∇ϕ := ∼∼ϕ ∧ ¬ϕ

ϕ ∨ ψ :=
(

(ϕ→ ψ)→ ψ
)
∧
(

(ψ → ϕ)→ ϕ
)

ϕ↔ ψ := (ϕ→ ψ) ∧ (ψ → ϕ)

The truth tables of the connective ∼, ∇, and ↔
can see in Table 1b. The set of atoms is denoted
as Atom(L), and the set of well-formed formulas
constructed in the usual way and denoted by
Form(L).

Axiom Schemes

Pos1: ϕ→ (ψ → ϕ)

Pos2:
(
ϕ→ (ψ → σ)

)
→
(

(ϕ→ ψ)→ (ϕ→ σ)
)

Pos3: (ϕ ∧ ψ)→ ϕ

Pos4: (ϕ ∧ ψ)→ ψ

Pos5: ϕ→
(
ψ → (ϕ ∧ ψ)

)
Cw1: ϕ ∨ ¬ϕ

CG-1:
(

(ϕ→ ψ)→ ϕ
)
→ ϕ

CG-2: ¬¬(ϕ→ ψ)↔
(

(ϕ→ ψ) ∧ (¬¬ϕ→ ¬¬ψ)
)

CG-3: ¬¬(ϕ ∧ ψ)↔ (¬¬ϕ ∧ ¬¬ψ)

CG-4: ¬ϕ→ (¬¬ϕ→ ψ)

Inference Rule

ϕ ϕ→ ψ

ψ
MP
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We say that ϕ is derivable from Γ in L, denoted
as Γ `L ϕ if there is a derivation of ϕ of Γ in L.

As can be seen, the list of axioms given above
contains only the first five axioms of the positive
part of Intuitionistic Logic, in addition to Cw1, CG-
1, CG-2, CG-3, and the axiom CG-4.

The following meta-theorems of L will prove to
be quite useful, their proofs are straightforward.

Theorem 1. Let Γ, ∆ be set of formulas, and let ϕ,
ψ be formulas, then the following properties it holds
in L:

1. Monotonicity:
If Γ `L ϕ then Γ ∪∆ `L ϕ .

2. Deduction theorem:
Γ, ϕ `L ψ if and only if Γ `L ϕ→ ψ.

3. Cut:
If Γ `L ϕ and ∆,ϕ `L ψ then Γ ∪∆ ` ψ.

4. Rules-AND:
Γ `L ϕ ∧ ψ if and only if Γ `L ϕ and Γ `L ψ.

Lemma 1. For any formulas ϕ,ψ,σ, and ξ, the
following formulas are theorems in L:

(a) ` ϕ→ ϕ

(b) ϕ→ ψ, ψ → σ ` ϕ→ σ

(c) ϕ→ ψ, σ → ξ ` (ϕ ∧ σ)→ (ψ ∧ ξ)

(d) `
(
ϕ→ (ψ → γ)

)
→
(

(ϕ ∧ ψ)→ γ
)

(e) ϕ→ (ψ → γ) ` ψ → (ϕ→ γ)

(f) ` (ϕ ∧ ψ)↔ (ψ ∧ ϕ)

(g) ` ϕ→
(

(ϕ→ ψ)→ ψ
)

(h) ϕ→ σ, (ϕ→ ψ)→ σ,σ → ψ ` σ

Proof. Each item can be proved using Pos1-Pos5,
MP, and Deduction theorem.

It, is worth mentioning that in the list of axiom
schemes of L not all axioms of the positive part of
Intuitionistic logic are included, however, they can
be derived from this list, as well as from other well-
known axiom schemes some of them are shown in
the following lemma:

Lemma 2. The following formulas are theorems
in L:

Pos6 ϕ→ (ϕ ∨ ψ)
Pos7 ψ → (ϕ ∨ ψ)

Pos8 (ϕ→ σ)→
(

(ψ → σ)→ ((ϕ ∨ ψ)→ σ)
)

Cw2 ¬¬ϕ→ ϕ
E1 (¬ϕ→ ¬ψ)↔ (¬¬ψ → ¬¬ϕ)
ON ¬ϕ↔ ¬¬¬ϕ
CG′3 ∇ϕ→ ϕ

Proof. We only present the proof of CG′3, the
other formulas, are proved using the axiom
schemes, Lemma 1, and Modus Ponens.

1. ∇ϕ Hyp
2. ∼∼ϕ ∧ ¬ϕ Abb. ∇
3. (∼∼ϕ ∧ ¬ϕ)→ ∼∼ϕ Pos3
4. ∼∼ϕ 1, 2, MP
5. ∼ϕ→ (¬∼ϕ ∧ ¬¬∼ϕ) Abb. ∼
6. (ϕ→ (¬ϕ ∧ ¬¬ϕ))→

(¬∼ϕ ∧ ¬¬∼ϕ) Abb. ∼
7. ¬∼ϕ→ (¬¬∼ϕ→ ϕ) CG-4
8. (¬∼ϕ ∧ ¬¬∼ϕ)→ ϕ Lemma 1
9. (ϕ→ (¬ϕ ∧ ¬¬ϕ))→ ϕ Lemma 1
10. ((ϕ→ (¬ϕ ∧ ¬¬ϕ))→ ϕ)→ ϕ CG-1
11. ϕ 9, 10, MP
12. ∇ϕ ` ϕ 1-11
13. ∇ϕ→ ϕ DMT

Theorem 2. Let Γ be a set of formulas and be
ϕ, ψ arbitrary formulas, then the following property
Proof-by-cases, it is fulfilled in L.

Γ,ϕ `L ψ and Γ,¬ϕ `L ψ if and only if Γ `L ψ.

Proof. Suppose that Γ,ϕ `L ψ and Γ,¬ϕ `L ψ.
Using the Deduction theorem, we have that, Γ `L
ϕ→ ψ and Γ `L ¬ϕ→ ψ, applying Pos8 we obtain
Γ `L (ϕ ∨ ¬ϕ) → ψ. Finally, using the axiom Cw1
and MP, we have Γ `L ψ, as required.

3.1 Soundness and Completeness Theorem

Now it is proved that CG′3 is sound concerning L,
that is, the theorems in L are tautologies in CG′3.
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Theorem 3 (Soundness of L). Let ϕ be a formula.
If ϕ is a theorem in L, then ϕ is a tautology in CG′3,
that is if `L ϕ then |=CG′

3
ϕ.

Proof. Each axiom scheme of L evaluates to 1 or
2, according to the tables of CG′3, that is each
axiom scheme is a tautology in CG′3. It remains to
see that MP preserves tautologies. Suppose that ψ
and ψ → γ are tautologies, and γ takes the value 0
for some 3-valuation. Since ψ is a tautology, it must
take 1 or 2. Therefore, ψ → γ is forced to take the
value 0 for that valuation. This last contradicts the
assumption that ψ → γ is a tautology. Therefore γ
never takes the value 0.

To prove the lemma 5, which is imperative to
prove the completeness theorem, the Lemma 4
is needed, whose proof needs any supplementary
results, viz, Proposition 1 and Lemma 3. These
lemmas model the behavior of the connective ∼, ¬
and ∇. The proof of each item is straightforward
and employs the axiom schemes and the Modus
Ponens rule.

Proposition 1. For any formulas ϕ,ψ, the following
formulas are theorems in L:

(a) ` ∼ϕ→ (ϕ→ ψ)

(b) (ϕ→ ψ), (ϕ→ ∼ψ),ϕ ` (¬ψ ∧ ¬¬ψ)

(c) ` (¬ψ ∧ ¬¬ψ)→ (¬ϕ ∧ ¬¬ϕ)

(d) ` (ϕ→ ψ)→
(

(ϕ→ ∼ψ)→ ∼ϕ
)

(e) ` (ϕ→ ψ)→ (∼ψ → ∼ϕ)

(f) ∼∼ψ,∼ϕ, (ψ → ϕ) ` (∼ψ ∧ ∼∼ψ)

(g) ` (∼ψ ∧ ∼∼ψ)→
(
¬(ψ → ϕ) ∧ ¬¬(ψ → ϕ)

)
(h) ` (∼∼ψ ∧ ∼ϕ)→ ∼(ψ → ϕ)

(i) ` ∼∼ϕ→ ∼∼(ψ → ϕ)

(j) ` ϕ→ ∼∼ϕ

(k) ` ψ →
(
∼ϕ→ ∼(ψ → ϕ)

)
(l) ` ∼∼ϕ→ ϕ

(m) ` (∼∼ϕ ∧ ∼∼ψ)→ ∼∼(ϕ ∧ ψ)

The following lemma characterizes the behavior
of negation ¬ and negation ∼.

Lemma 3. The following formulas are theorems
in L:

(a) ` ∼ϕ→ ¬ϕ

(b) ` ∼¬ϕ→ ∼∼ϕ

(c) ` ¬¬ϕ→ ∼∼ϕ

(d) ` ∼ϕ→ ¬¬∼ϕ

(e) ` ¬∼ϕ→ ∼∼ϕ

Now we present Lemma 4, which models the
behavior of the connectives of L. If a formula
v(ϕ) = 0, then ∼ϕ is assigned. When v(ϕ) =
1, ∇(ϕ) is assigned, while ¬¬ϕ corresponds to
the case where v(ϕ) = 2. With these ideas,
the interpretation of item (a) is as follows: ¬¬ϕ
tells us that the value of the formula ϕ is 2, then
the meaning of its negation ¬ϕ must be 0, which
is written by ∼¬ϕ. Item (b) indicates that if ϕ
evaluates 1, then we have ∇ϕ, and its negation
must be 2. Finally, item (c) models the fact that
when a formula takes the value 2, its negation must
be equal to 0. These items model the connective
negation. The connective implication is modeling
by items (d) to (i), and the connective conjunction
model by entry (j) to (o).

Lemma 4. The following formulas are theorems
in L:

(a) ` ¬¬ϕ→ ∼¬ϕ

(b) ` ∇ϕ→ ¬¬¬ϕ

(c) ` ∼ϕ→ ¬¬¬ϕ

(d) ` ∼ϕ→ ¬¬(ϕ→ ψ)

(e) ` ¬¬ψ → ¬¬(ϕ→ ψ)

(f) ` (∇ϕ ∧ ∼ψ)→ ∼(ϕ→ ψ)

(g) ` (∇ϕ ∧∇ψ)→ ¬¬(ϕ→ ψ)

(h) ` (¬¬ϕ ∧∇ψ)→ ∇(ϕ→ ψ)

(i) ` (¬¬ϕ ∧ ∼ψ)→ ∼(ϕ→ ψ)
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(j) ` ∼ϕ→ ∼(ϕ ∧ ψ)

(k) ` ∼ψ → ∼(ϕ ∧ ψ)

(l) ` (∇ϕ ∧∇ψ)→ ∇(ϕ ∧ ψ)

(m) ` (∇ϕ ∧ ¬¬ψ)→ ∇(ϕ ∧ ψ)

(n) ` (¬¬ϕ ∧∇ψ)→ ∇(ϕ ∧ ψ)

(o) ` (¬¬ϕ ∧ ¬¬ψ)→ ¬¬(ϕ ∧ ψ)

Now it is shown that CG′3 is complete
concerning L. To prove that each tautology in CG′3
is a theorem in L, the completeness proof strategy
used for the Classic Propositional Logic given in
[12] originally due to Kalmár.

Definition 2. Given a 3-valuation v of CG′3 and
a formula ϕ, we define the formula ϕv called the
image of ϕ, as follows:

ϕv =

 ¬¬ϕ if v(ϕ) = 2,
∇ϕ if v(ϕ) = 1,
∼ϕ if v(ϕ) = 0.

Let Φ be a set of formulas. The set {ϕv|ϕ ∈ Φ}
is denoted by Φv.

Lemma 5 (Kalmár’s Lemma for CG′3). Let
be ϕ a formula and v a valuation in CG′3, if
Atom(ϕ) denotes the set of formulas in ϕ, then
Atom(ϕ)v ` ϕv.

Proof. The proof is done by induction on the
complexity of ϕ.
Base Case: If ϕ = p, where p is an atomic formula,
then we need to show that Atom(ϕ)v ` ϕv, but this
is evident since Atom(ϕ)v = ϕv = pv.

Let us see now that for any formula ϕ, the claim is
true. Suppose that if formula ψ has less complexity
than ϕ, then the lemma holds.

Inductive step: Suppose that ϕ is a non-atomic
formula. We have three cases, and we only present
the implication case:
Case →: Suppose that ϕ = β → ζ. By the
inductive hypothesis, we know that Atom(β)v ` βv
and Atom(ζ)v ` ζv. Then, we have six subcases:

1. If v(β) = 0, then βv = ∼β. By inductive
hypothesis, Atom(β)v ` ∼β. Note that v(ϕ) =
v(β → ζ) = 2, so ϕv = ¬¬ϕ. But ϕ =
β → ζ, hence ϕv = ¬¬(β → ζ). We need
to prove Atom(ϕ)v ` ¬¬(β → ζ). By Lemma
4, we know that ` ∼β → ¬¬(β → ζ) and by
inductive hypothesis, Atom(β)v ` ∼β. With
the application of MP to previous statements,
we conclude Atom(β)v ` ¬¬(β → ζ). Finally,
by monotonicity Atom(ϕ)v ` ¬¬(β → ζ).

2. If v(ζ) = 2, then ζv = ¬¬ζ. By hypothesis:
Atom(ζ)v ` ¬¬ζ. Note that v(ϕ) = v(β →
ζ) = 2, so ϕv = ¬¬ϕ. But ϕ = β →
ζ, then ϕv = ¬¬(β → ζ). We need to
prove Atom(ϕ)v ` ¬¬(β → ζ). By Lemma
4, we know that ` ¬¬ζ → ¬¬(β → ζ)
and by inductive hypothesis, Atom(ζ)v `
¬¬ζ. Applying MP to previous steps, we
conclude Atom(ζ)v ` ¬¬(β → ζ). Finally, by
monotonicity Atom(ϕ)v ` ¬¬(β → ζ).

3. If v(β) = 1 and v(ζ) = 0, then βv = ∇β
and ζv = ∼ζ. By inductive hypothesis, we
have that Atom(β)v ` ∇β and Atom(ζ)v `
∼ζ. Note that v(ϕ) = v(β → ζ) = 0. So
ϕv = ∼ϕ, then ϕv = ∼(β → ζ). We need
to prove Atom(ϕ)v ` ∼(β → ζ). By Lemma
4, we know that ` (∇β ∧ ∼ζ) → ∼(β → ζ)
and by inductive hypothesis, monotonicity and
Rules-AND we have: Atom(ϕ)v ` ∇β ∧ ∼ζ.
With the application of MP to previous steps,
we conclude Atom(ϕ)v ` ∼(β → ζ).

4. If v(β) = 1 and v(ζ) = 1 ,then βv = ∇β
and ζv = ∇ζ. By inductive hypothesis, we
have that Atom(β)v ` ∇β and Atom(ζ)v `
∇ζ. Note that v(ϕ) = v(β → ζ) = 2,
so ϕv = ¬¬ϕ. But ϕ = β → ζ, hence
ϕv = ¬¬(β → ζ). We need to prove
Atom(ϕ)v ` ¬¬(β → ζ). By Lemma 4,
we know that ` (∇β ∧ ∇ζ) → ¬¬(β → ζ)
and by inductive hypothesis, monotonicity and
Rules-AND we have that: Atom(ϕ)v ` ∇β ∧
∇ζ. Applying MP to previous statements, we
conclude Atom(ϕ)v ` ¬¬(β → ζ).

5. If v(β) = 2 and v(ζ) = 1, then βv = ¬¬β
and ζv = ∇ζ. By inductive hypothesis, we
have that Atom(β)v ` ¬¬β and Atom(ζ)v `
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∇ζ. Note that v(ϕ) = v(β → ζ) = 1,
so ϕv = ∇ϕ. But ϕ = β → ζ, then
ϕv = ∇(β → ζ). We need to prove
Atom(ϕ)v ` ∇(β → ζ). By Lemma 4, we
know that ` (¬¬β ∧ ∇ζ) → ∇(β → ζ)
and by inductive hypothesis, monotonicity and
Rules-AND: Atom(ϕ)v ` ¬¬β ∧ ∇ζ. With the
application of MP to previous statements, we
conclude Atom(ϕ)v ` ∇(β → ζ).

6. If v(β) = 2 and v(ζ) = 0, then βv = ¬¬β
and ζv = ∼ζ. By inductive hypothesis, we
have that Atom(β)v ` ¬¬β and Atom(ζ)v `
∼ζ. Note that v(ϕ) = v(β → ζ) = 0,
so ϕv = ∼ϕ. But ϕ = β → ζ, hence
ϕv = ∼(β → ζ). We need to prove
Atom(ϕ)v ` ∼(β → ζ). By Lemma 4, we
know that ` (¬¬β ∧ ∼ζ) → ∼(β → ζ)
and by inductive hypothesis, monotonicity and
Rules-AND we have that: Atom(ϕ)v ` ¬¬β ∧
∼ζ. Applying MP to previous statements, we
conclude Atom(ϕ)v ` ∼(β → ζ).

The following lemma compiles some relevant
results related to connectives ¬ and ∼.

Lemma 6. The following formulas are theorems
in L:

(a) ` ∼ϕ→ (¬¬ϕ→ ¬¬¬¬ϕ)

(b) ` ¬¬∼ϕ→ ¬¬(ϕ→ ¬¬ϕ)

(c) ` ¬¬ϕ→ (¬¬ϕ→ ¬¬¬¬ϕ)

(d) ` ¬¬ϕ→ ¬¬(ϕ→ ¬¬ϕ)

(e) ` ¬(ϕ→ ¬¬ϕ)→ ¬∼ϕ

(f) ` ¬(ϕ→ ¬¬ϕ)→ ∼∼ϕ

(g) ` ¬(ϕ→ ¬¬ϕ)→ ¬ϕ

(h) `
(
¬ϕ ∧ (ϕ→ ¬¬ϕ)

)
→ ∼ϕ

Only one more lemma is needed, to give
the completeness proof, this lemma allows to
eliminate hypotheses once it is shown that they are
independent of the derivation.

Lemma 7. Let ϕ, ψ be formulas and Γ be a set of
formulas. If Γ,¬¬ϕ ` ψ; Γ,∇ϕ ` ψ and Γ,∼ϕ ` ψ;
then Γ ` ψ.

Proof. Applying Deduction theorem to ` (ϕ →
¬¬ϕ) → (ϕ → ¬¬ϕ), we have that, ϕ →
¬¬ϕ,ϕ ` ¬¬ϕ. Through Cut to this latest formula
and hypothesis Γ,¬¬ϕ ` ψ, we obtain Γ, (ϕ →
¬¬ϕ),ϕ ` ψ. On the other hand, by item h) of
Lemma 6, we have, ` (¬ϕ ∧ (ϕ → ¬¬ϕ)) →
∼ϕ, now applying Lemma 1, we derive ` (ϕ →
¬¬ϕ) → (¬ϕ → ∼ϕ), and by Deduction theorem,
we obtain (ϕ → ¬¬ϕ),¬ϕ ` ∼ϕ, because of this
formula and the hypothesis Γ,∼ϕ ` ψ using Cut,
we conclude Γ, (ϕ → ¬¬ϕ),¬ϕ ` ψ. At this time,
we have shown: Γ, (ϕ → ¬¬ϕ),ϕ ` ψ and Γ, (ϕ →
¬¬ϕ),¬ϕ ` ψ; then applying Proof-by-cases, it is
derived Γ, (ϕ→ ¬¬ϕ) ` ψ.

On the other hand, applying Rules-AND to items
f) and g) of the Lemma 6, we obtain ¬(ϕ→ ¬¬ϕ) `
(∼∼ϕ∧¬ϕ), equivalently, due to the abbreviation of
the connective ∇, we get ¬(ϕ → ¬¬ϕ) ` ∇ϕ, then
applying Cut to the last formula and the hypothesis
Γ,∇ϕ ` ψ, it is concluded that Γ,¬(ϕ→ ¬¬ϕ) ` ψ.

Therefore, applying Proof-by-cases to Γ, (ϕ →
¬¬ϕ) ` ψ and Γ,¬(ϕ → ¬¬ϕ) ` ψ we conclude
that Γ ` ψ.

Finally, we have one of the main results of this
section. The proof is a consequence of Lemma 5,
Lemma 7, and Theorem 1.

Theorem 4 (Completeness of L). Let ϕ be a
formula. If ϕ is a tautology in CG′3, then ϕ is a
theorem in L.

Proof. Suppose that ϕ is a tautology whose set of
atomic formulas is Φ. Of the Lemma 5, we have
that Φv ` ϕv for every 3-valuation v. Then we have
two cases.

1. If v(ϕ) = 2, then Φv ` ¬¬ϕ, by the formula
Cw2 and MP, we have that Φv ` ϕ. Let p any
atomic formula in Φ and let Γ := Φ \ {p} then,
we have that; Γv, pv ` ϕ for every v valuation.
So, we obtain Γv,¬¬p ` ϕ; Γv,∇p ` ϕ, and
Γv,∼p ` ϕ. By Lemma 7, we obtain Γv ` ϕ.
After |Φ| steps, we get that ` ϕ.
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Table 2. Truth functions for the connectives ∨, ∧, →, and
¬ in Ł3

∨L 0 1 2
0 0 1 2
1 1 1 2
2 2 2 2

∧L 0 1 2
0 0 0 0
1 0 1 1
2 0 1 2

→L 0 1 2
0 2 2 2
1 1 2 2
2 0 1 2

¬L
0 2
1 1
2 0

2. If v(ϕ) = 1, then Φv ` ∇ϕ, by the formula CG′3
and MP, we have that Φv ` ϕ. Let p any atomic
formula in Φ and let Γ := Φ \ {p} then, we
have that; Γv, pv ` ϕ for every valuation v. So,
we have that Γv,¬¬p ` ϕ; Γv,∇p ` ϕ, and
Γv,∼p ` ϕ. By Lemma 7, we obtain Γv ` ϕ.
After |Φ| steps, we get that ` ϕ.

4 Semantical Similarities Between CG′3
and Ł3 Logic

Let us see now, that the logic of three values
Ł3 of Łukasiewicz, and CG′3 has the same
expressive power. To build the 3-valued logic Ł3
of Łukasiewicz, consider a propositional language
L′ = {→L,∧L,∨L,¬L,♦L,�L,⊥L}.

Lemma 8. In Ł3, if we consider →L and ⊥L

as primitive connective we can obtain the rest of
connectives as abbreviations as follows:

ϕ ∨L ψ := (ϕ→L ψ)→L ψ
¬Lϕ := ϕ→L ⊥L

ϕ ∧L ψ := ¬L(¬Lϕ ∨L ¬Lψ)
♦Lϕ := ¬Lϕ→L ϕ
�Lϕ := ¬L(ϕ→L ¬Lϕ)

Proof. The proof follows directly from the truth
tables of Ł3, see Table 2.

Lemma 9. The connectives of CG′3 are definable
in the connective language of Ł3.

Proof. It is enough to show that ¬CG′
3

and →CG′
3

are definable in terms of the connective in Ł3 since
the rest of connectives have the same truth tables
in both logics. Observe the following:
¬CG′

3
ϕ : = ¬L�Lϕ.

ϕ→CG′
3
ψ : =

(ϕ→L ψ)∧L�L¬L(�L¬L(�L¬L(�L¬Lϕ)→L ψ)).

Lemma 10. The negation and implication of Ł3 are
definable in terms of the connectives of CG′3.
¬Lϕ := (ϕ →CG′

3
(ϕ ∧CG′

3
¬CG′

3
ϕ)) ∧CG′

3

(ϕ ∨CG′
3

(ϕ→CG′
3
¬CG′

3
¬CG′

3
ϕ)).

ϕ→L ψ := (ϕ ∧CG′
3
¬CG′

3
ϕ) ∨CG′

3
(ϕ→CG′

3
ψ).

Note that ⊥L := ¬L(ϕ→L ϕ).

Theorem 5. The connective of Ł3, are represented
in terms of the connectives of CG′3, and vice versa.

Proof. Direct from Lemmas 8, 9, and 10.

5 Kripke-Type Semantics for CG′3

In [8], Osorio et al. proved that the logic G′3 is
an extension of the logic daC, so it is natural
to consider that Kripke models for G′3 are a sub
collection of the Kripke models for daC. On
the other hand, for the case of G3, the Kripke
models are Kripke models for intuitionistic but only
those whose cardinality is two and the relation is a
linear order, a combination of both ideas give us a
characterization for G′3.

Definition 3. A Kripke model for G′3 is a structure
〈W ,R, v〉, where:

1. W is a set of cardinality two,

2. R is a linear order relation on W ,

3. v is a valuation function of Atom(L) to P(W ).
Given a valuation and a point w in W , we
define the function vw : Atom(L)→ {0, 1} as:

vw(p) =

{
1 if w ∈ v(p),

0 otherwise.

The valuation must satisfy the following
restriction for each atom p: If wRw′ and
vw(p) = 1, then vw′(p) = 1.

Computación y Sistemas, Vol. 25, No. 2, 2021, pp. 435–445
doi: 10.13053/CyS-25-2-3363

Miguel Pérez-Gaspar, Verónica Borja Macías, Everardo Bárcenas442

ISSN 2007-9737



H

T

Fig. 2. Kripke model for G′
3

The latter restriction imposed on valuations is
called a Hereditary Property, Heredity Constraint,
or Monotonicity. As we can see in [4, Proposition
2.1], the hereditary property extends to all formulas
in Kripke models for G′3.

In analogy with the logic G3, we can refer to the
worlds in a Kripke model for G′3, respectively, as H
(Here) and T (There). A Kripke model for G′3 is a
structure like the one shown in Figure 2.

Definition 4. LetM = 〈W ,R, v〉 be a Kripke model
for G′3, w ∈W and ϕ a formula.

1. If ϕ := p is an atom, we have that: (M,w) |=G′
3

p iff w ∈ v(p).

2. If ϕ is not an atom the modeling relation is
defined recursively as:
Let ϕ, ψ be formulas and for all worlds w ∈W :

(a) (M,w) |=G′
3
ϕ ∧ ψ iff (M,w) |=G′

3
ϕ and

(M,w) |=G′
3
ψ,

(b) (M,w) |=G′
3
ϕ ∨ ψ iff (M ,w) |=G′

3
ϕ or

(M,w) |=G′
3
ψ,

(c) (M,w) |=G′
3

ϕ → ψ iff for all w′

such that wRw′, if (M,w′) |=G′
3
ϕ then

(M,w′) |=G′
3
ψ,

(d) (M,w) |=G′
3
¬ϕ iff there exists w′ such

that w′Rw, (M,w′) 6|=G′
3
ϕ.

We say a formula ϕ is valid in M and we write
M |=G′

3
ϕ, if and only if, for every w ∈ W ,

(M,w) |=G′
3
ϕ.

Example 1. Logic G′3 does not validate the formula
p→ ¬¬p but it validates the formula ¬¬p→ p.

H ¬¬p¬p
p

p→ ¬¬p

T p→ ¬¬p
¬¬p

¬p
p

Fig. 3. Kripke countermodel for Example 1

Proof. Suppose W = {H,T} is the set of worlds,
the relation isR = {〈H,H〉, 〈H,T 〉, 〈T ,T 〉} and lets
vT (p) = 1, and for any other variable and point
the valuation is 0, the model is depicted, in the
Figure 3. The formula p → ¬¬p is not valid at
H and T in the model. On the other hand, the
formula ¬¬p→ p is valid in all Kripke model for G′3.
Indeed, suppose otherwise. Then there is a model
such that (M,w) |=G′

3
¬¬p and (M,w) 6|=G′

3
p

for some w ∈ W . We know that (M,w) |=G′
3

¬¬p, so there is w′ ∈ W for which w′Rw and
(M,w′) 6|=G′

3
¬p and this is, for all w′′ ∈ W for

which w′′Rw′ and (M,w′′) |=G′
3
p. By the definition

of valuation, we must have (M,w) |=G′
3
p, which is

a contradiction.

Given the narrow relation between G′3 and CG′3,
it is natural to think that if there is a Kripke-type
semantics for the latter, its semantic must be
closely related to that of G′3.

We can define a type for Kripke semantics to
CG′3 in two different ways. The first based on the
semantics of G′3, and the second redefining the
notion of validity as discussed below.

5.1 Semantics-based on G′3 Semantics

Definition 5. LetM = 〈W ,R, v〉 be a Kripke model
for G′3, w ∈ W and ϕ a formula. We define the
modeling relation (denoted by |=CG′

3
) as follows:

(M,w) |=CG′
3
ϕ if and only if there is wRw′ such
that (M,w′) |=G′

3
ϕ.

As we can see, the hereditary property also
holds for |=CG′

3
.
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Theorem 6. If (M,x) |=CG′
3
ϕ and xRy, then

(M, y) |=CG′
3
ϕ.

Proof. The proof is by induction on the length of
the formula ϕ.

The following theorem establishes an equiva-
lence between many-valued semantics and Kripke
semantics for CG′3.

Proposition 2. Let ϕ be a formula on the language
of CG′3. There exists an interpretation t : L →
{0, 1, 2} such that t(ϕ) = 0, if and only if there is
a Kripke model for CG′3 whose valuation v is such
that v(ϕ) = ∅.

Proof. The proof is by induction on the length of
the formula ϕ.

Theorem 7. Let ϕ be a formula in the language of
CG′3, then:

||=CG′
3
ϕ if and only if for any Kripke modelM for
CG′3, it holds thatM |=CG′

3
ϕ.

Proof. The proof is by induction on the length of
the formula ϕ and applying Proposition 2.

5.2 Semantics Redefining the Validity Concept

An alternative way of defining the modeling relation
for CG′3 is to consider that the models for CG′3 are
those for G′3 but changing the Modeling Definition.
In [2], the authors explain the notion of being e-
valid to the characterization of the validity depends
on an existential connective and to distinguish the
concept of validity.

Definition 6. A formula ϕ is said to be e-valid on
a model M for logic CG′3 if exists a point x in M
such that (M,x) |=G′

3
ϕ.

It is easy to check that this new definition
changing the notion of validity coincides with the
preceding one.

Lemma 11. Let ϕ be a formula in the language of
CG′3, then:

||=CG′
3
ϕ if and only if for any Kripke modelM for

CG′3, it holds that ϕ is e-valid.

6 Conclusion and Future Work

Logic CG′3 was defined in [13] utilizing semantics.
In this paper, the authors present the logic CG′3
from a semantic, and syntactic point of view, his
contributions are summarized as follows:

1. A Hilbert type axiomatization for CG′3 us-
ing the Kalmar technique, this axiomatic
system satisfies many properties, such as
those presented in Theorem 1 and Lemma
1. Among these properties, we can find
Deduction theorem, Cut, Rules-AND, among
other things. Through this axiomatization,
we show that Ł3 and CG′3 have the same
expressive power, Theorem 5.

2. A characterization of CG′3 using Kripke
models. Thanks to the Kripke semantics for
these logics, they obtained a new tool that
can help us have a better understanding of
paraconsistent logics.

There are some relevant issues associated with
the CG′3 system that needs to be studied. For
example, in the semantics approach, there is
a many-valued characterization for CG′3, but an
algebraic approach to CG′3 is still missing. In [3]
and [5], we can find some algebraic methods such
as Blok-Pigozzi and Fidel structures, respectively,
that can help the study of these semantics applied
to the logic.
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