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Abstract. Knowledge of material properties, microstruc-
ture, underlying material composition and manufacturing
process parameters that the material has undergone
is of significant interest to materials scientists and
engineers. A large amount of information of this nature
is present in the form of unstructured sources. To access
the right information for a given problem at hand, various
domain specific search systems have been developed.
Domain terminologies, when available, can significantly
improve the quality of such systems. In this paper, we
propose a novel similarity driven learning approach for
automatic terminology extraction for materials science
domain. It first uses various intra-domain and
inter-domain unsupervised corpus level features to score
and rank candidate terminologies. For inter-domain
features, we use British National Corpus (BNC) as
the general purpose corpus. The ranked candidate
terms are then used to generate training data for
learning a similarity based scoring function. The
parameters of this scoring function are learnt using a
Siamese neural network which uses word embeddings
learnt from both the domain as well as the general
purpose corpora to leverage contrasting term features.
The proposed similarity based learning approach
consistently outperforms other reported classification
approaches on the materials dataset.

Keywords. Terminology extraction, computational
terminology, domain specific search, natural language
processing.

1 Introduction

A material’s properties depend not only on the
chemical composition of the material, but also
on its internal structure. The structure in turn
depends on the processes performed on the

material. Knowledge of composition-process-
structure-property relationships is therefore central
to the success of materials engineering. A large
body of knowledge of this kind is available in
the form of publications, company reports, and
so on, that capture results from experiments and
simulations.

However, finding the right information from this
large body that is relevant for a given problem is
not an easy task. First, one has to sift through
and select right set of documents. Then one has
to scan through these documents to extract pieces
of information that are relevant to the problem.
Traditional search engines are not very helpful here
as they are keyword centric and weak on relation
processing [15, 16].

Suppose an engineer wants to know what
composition of steel gives him a minimum
hardness of 40RC when the annealing temperature
is in the range of 500-600◦C. A simple
keyword based search for “steel and composition
and hardness 40RC and annealing temperature
500-600◦C” will not be very helpful. It will simply
retrieve all the documents where the terms steel,
composition, hardness, annealing, temperature,
40, 500, 600 appear somewhere in the document
without necessarily being related. For instance, 50
need not be related to hardness and 500 need not
be related to annealing temperature, resulting in lot
of noise. What we need is an intelligent search
engine that understands value relations.

To address this need, various domain specific
search systems have been proposed in the
literature [15, 20]. These systems are not
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just keyword centric but also understand domain
entities and relations to improve search accuracy.
In materials science domain, [20] have developed
a system that supports value constraint queries
on materials entities. For example, one can
use the query “steel & composition & annealing
temperature:[500, 600]◦C & hardness ≥ 40RC” for
the case discussed above. The search engine
looks for mentions of domain concepts in the
text and extracts and indexes these mentions and
relations between them. It also extracts values
associated with the mentions and indexes them.

The generated index is then used for processing
user queries. The search engine uses domain
dictionaries to identify domain concepts of interest.
These dictionaries are usually supplied by domain
experts. However, a domain such as materials
science is large and continuously growing, so
expecting users to supply complete and up
to date dictionaries is impractical. Tools that
can automatically mine and extract domain
terminologies are of great help in this context as
they can serve as building blocks for constructing
domain dictionaries [13].

1.1 Automatic Domain Terminology Extraction

Various approaches to terminology extraction can
broadly be classified into supervised, weakly su-
pervised and unsupervised methods. Supervised
approaches cast this as a binary classification
problem [8, 5, 24]. However, they need a large
amount of labelled data for learning. This is hard
to come by for an application domain such as
materials science. Weakly supervised approaches
on the other hand rely on small labelled data and a
large pool of unlabelled data to learn classification
models in an iterative manner. For instance,
co-training based approaches [4]. However,
these approaches suffer from the problem of
semantic drift [19] wherein if non-domain terms
are incorrectly added to the labelled data during
earlier iterations, the later iterations are adversely
affected and this downgrades the overall quality of
the extracted terminologies.

Unsupervised approaches such as [23] primarily
depend on various unsupervised corpus level
intra-domain and inter-domain base features such

as C-value, TF-IDF, domain relevance, etc.
Sophisticated scoring functions are then defined
using these base features that try to capture
termhood and unithood [11] of various domain
terminologies. Co-training based approaches are
also proposed in literature where the labelled
data is generated from base features in a fully
unsupervised manner. This is essentially done
by ranking the candidate terms using the scoring
function and taking the top p terms as positive
examples and bottom p as negative examples. The
parameter p is critical to the performance of the
classifier. With larger p, the distinction between
positive and negative examples blurs, and with
smaller p, we do not have enough training data.

In this paper, we propose a novel similarity
driven learning approach as opposed to standard
classification based approaches for unsupervised
terminology extraction. In this approach, as against
taking top p terms as positive examples and bottom
p as negative, we take pairs of terms: we pair top
p terms with each other to generate similar data
set, and we pair top p terms with bottom p terms
to generate dissimilar data set. Thus we have
p2 positive examples and p2 negative examples,
significantly increasing the training data size. This
allows us to choose a small enough p that sharply
delineates positive terms from negative terms.

We first use various corpus level statistical
features to score and rank candidate terms. We
use both intra-domain and inter-domain features
for this purpose. For inter-domain features, we
use British National Corpus (BNC) 1 as the general
purpose corpus. Inter-domain features essentially
measure the contrastive nature of domain specific
terms. The ranked candidate terms are then
used to generate training data for learning a
similarity based scoring function. The parameters
of the scoring function are learnt using a Siamese
neural network [10] that uses word embedding
representations of the candidate terms. We use
two embeddings to represent a term - one learnt
from the domain corpus and the other from the
general corpus to leverage contrasting features
present in the two corpora.

The proposed Siamese network based method
has been compared with standard baselines

1available at http://www.natcorp.ox.ac.uk/
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such as C-value, domain relevance, etc., used
in terminology extraction literature. It is also
compared with a co-training based unsupervised
fault tolerant learning approach proposed by [23].
Our method outperforms both the baselines as
well as the co-training approach. To evaluate the
effectiveness of similarity driven learning, we also
compare our model with a standard feed forward
network having similar complexity.

The rest of the paper is organized as follows.
Section 2 discusses the relevant related work.
Section 3 explains pre-processing steps to identify
candidate terminologies as well as the base
unsupervised features used by our model. Section
4 describes the similarity driven learning approach
and details the learning task for Siamese network
based scoring function. Section 5 describes the
evaluation dataset and discusses the experimental
results. Section 6 summarizes this work and
indicates future work directions..

2 Related Work

Fault Tolerant Learning (FTL) [23] is a completely
unsupervised iterative learning technique for term
extraction leveraging ideas from co-training [4] and
transfer learning [3]. FTL trains two support vector
machine classifiers separately, where predictions
from one classifier are verified by the other
to improve term extraction performance. Input
data for one classifier is generated using the
TF-IDF measure whereas the other classifier
uses delimiter candidate term extraction. [22]
have proposed a weakly supervised co-training
based approach where they focus on learning
multiple representations for terms by composing
constituent words using convolutional neural
network and recurrent neural network based
classifiers. However, these iterative co-training
approaches primarily treat term extraction as
a binary classification problem. The method
proposed in this paper instead learns a similarity
based scoring function that captures feature
similarities of domain terms as opposed to
discriminating domain terms from non-terms.

A closely related work that combines word
embeddings from domain specific as well as
general purpose corpora is by [2]. However, the

local-global vector based approach suggested by
the authors only considers unigram terminologies
and build a pure classification model as opposed to
a similarity driven model such as the one proposed
in this paper.

3 Pre-Processing

Automatic terminology extraction methods first
employ various linguistic and statistical filters to
identify candidate terminologies. The standard
filters used in the literature include Parts of Speech
(PoS) tag filter, stop words filter, frequency filter,
and so on. Once the set of candidate terms are
identified, scores for various unsupervised corpus
level intra-domain and inter-domain features are
computed. Following describes various features
used by our model.

3.1 Intra-domain Features

This category of features are important in bringing
out the terms that are most frequent within a
particular domain. They are primarily statistical
in nature. The following is a summary of the
intra-domain features used in our model.

— TF-IDF [18]: It is a product of TF (fre-
quency of term within a document) and IDF
(Inverse Document Frequency - the number
of documents in which a term occurs). For
the purpose of term extraction, we take the
average TF-IDF values across all documents
in the corpus as TF-IDF feature.

— C-value [9]: This unithood feature scores
candidate terms using a combination of the
following criteria: assigns higher scores to
more frequent terms; penalizes candidate
terms if they occur as substrings of larger
candidate terms; assigns higher scores to
longer candidate terms.

— Term Variance (TV) [6]: It scores a candidate
term by measuring its variance across all
documents in the corpus. It discriminates
between high frequency non-terms appearing
in all documents from terms that occur
frequently in a small set of documents.
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3.2 Inter-domain Features

The inter-domain features used by our model
include,

— Domain relevance [7]: It compares the
frequency of candidate terms in domain
corpus and general corpus.

— Relevance [7]: It improves domain relevance
by down weighting candidate terms that occur
rarely in domain corpus or occur highly
frequently in general corpus.

— Weirdness [1]: This measure is similar to do-
main relevance but takes relative frequencies
into account by considering dataset sizes.

The features described above are expected to
score candidate terms such that true domain
terms are assigned higher scores compared
to non-terms. Accordingly, candidate terms
are ranked in descending order by the score
value. This ranked list is then used to measure
precision@k which computes the number of
correct domain terms identified among the top k
candidate terms in the list.

An issue with all these statistical features is that
they are very sensitive to term frequency, so they
fail to identify terms that lack statistical significance.
Hence they need to be augmented with learning
based approaches that learn to identify other
aspects of similarity to distinguish domain terms
from non terms. The ranked list produced by
the base features can serve as the starting point
to identify a seed list of positive and negative
examples to train a classifier.

3.3 Pre-trained Embeddings

For the learning phase, we represent the candi-
date terms using pre-trained word embeddings.
Inspired by the local-global vector based approach
proposed in [2], we use pre-trained 100 dimen-
sional GloVe [17] vectors to represent statistical
strength of words as they appear in general corpus
(referred as general vectors). Whereas, word
embeddings capturing domain semantic similarity
are learnt using domain specific text corpus
(referred as domain vectors). A unigram term in our

system is represented by concatenating its general
and domain vectors. The input representation for
multiwords then corresponds to concatenation of
constituent unigram terms. We currently consider
multi grams with maximum size 3. The rest
of the paper refers to this representation as
pre-trained vector.

4 Proposed Similarity Driven Scoring
Function

As mentioned earlier, our approach leverages
feature similarity across domain terms to learn a
term scoring function. Figure 1 shows the Siamese
network architecture (referred as SNet) used to
learn this function. The network takes a pair
of terms as input and outputs a similarity score
between them. Training instances for learning
parameters of this network are generated in the
following way.

1. The scoring functions explained in section 3
are used to generate a ranked list of candidate
terms. Domain terms are expected to be
ranked higher in this list.

2. Top p terms from the ranked list are denoted
as positive terms whereas bottom p terms are
denoted as negative terms.

3. Total p × (p − 1) pairs of terms are generated
using positive terms and assigned similarity
score of 1.

4. Total p × p pairs of terms are generated by
taking the cross product of the terms present
in the positive and negative term sets. These
pairs are assigned a score of 0.

5. The word pairs generated in step 3 and 4
constitute the training data for learning the
parameters of the Siamese network in figure 1.

The data generation framework discussed above
assumes that the terms closer to the top of the
ranking are likely to be true domain terms and
the terms closer to the bottom are likely to be
non-domain terms. Hence the selection of the top
p terms as positive terms and the bottom p as
negative terms.
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The parameters of the Siamese network are
learnt using stochastic gradient descent with
various choices for distance functions such as
Euclidean distance and Manhattan distance. Once
the network parameters are learnt, all remaining
candidate terms are scored in the following way:
a total of p term pairs are formed by taking the
cross product of the given candidate term with
all positive terms. These pairs are then passed
through the network in figure 1 to compute their
similarity scores. The average similarity score
across these p pairs is then used as the score
for the candidate term. Once the scores for all
candidate terms are computed, they are ranked
in descending order to generate a ranked list of
domain terms.

Fig. 1. Siamese Network architecture for scoring
similarity between term pairs

For comparison, we also use a simple feed
forward neural network (referred as FFNet)
architecture. Top p terms ranked by the base
features are marked as domain terms with output

1 and bottom p terms are marked as negative
terms with output 0. These terms are then used to
learn the network parameters. Similar to SNet, this
network also takes the concatenated pre-trained
vector of the candidate terms as input. It then
uses binary cross-entropy loss to optimize network
parameters. Once the parameters are learnt, all
the remaining candidate terms are scored using
this network and ranked in descending order to
generate a ranked list of domain terms. Note that
for the same p positive and p negative terms, FFNet
has only 2p training examples, whereas SNet has
2p2 examples. Also the SNet approach relies on
average similarity with all p positive terms.

5 Experimental Evaluation

Since materials science is the focus of our work,
we use a materials science corpus for domain
terminology extraction. We use British National
Corpus (BNC) as the general purpose corpus.

5.1 Dataset

The text corpus used for term extraction consists of
1000 publications downloaded from ISIJ2 Interna-
tional Journal. This Journal contains publications
on fundamental and technological aspects of the
properties, structure, characterization, processing,
etc. of iron, steel and other related engineering
materials. The downloaded publications are in the
PDF format. We first convert these PDF files to text
using Grobid [14].

Following filters are then applied
on the converted text: PoS tag filter:
((Adj)?(Noun)+)|((Adj|Noun) ∗ (Verb)?); stop
words filter; frequency filter with minimum term
frequency of 10; and shallow stemming that only
converts plural forms to singular. This resulted
in a total 17000 candidate terms. Few example
candidate terms are: quenching, quenching
temperature, grain size, elongation and tensile
strength. The filters used for candidate term
extraction have been designed by analysing
few sample documents in the corpus. We use

2The Iron and Steel Institute of Japan -
https://www.jstage.jst.go.jp/browse/isijinternational/-char/en
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the pre-trained domain vectors3 developed by
[12] for materials science domain. Whereas
for general vectors, we use pre-trained GloVe
[17] embeddings4.

5.2 Comparison with Previous Work

The unsupervised features described in section
3 serve as the baseline. We then compare
the performance of SNet and FFNet with a
simple voting algorithm and classification based
algorithms such as Fault Tolerant Learning (FTL)
[23] and Single Classifier (SC). The voting
algorithm [25] simply uses the rankings produced
by the base features. The score for a term is
computed by summing the inverse of its rank in the
participating base features. We use intra-domain
and inter-domain features to provide different views
of data for FTL approach. It starts with an initial
list of s seed terms to bootstrap the classifiers. It
then iteratively adds n high confidence terms to the
seed list until convergence. SC is a non-co-training
version of FTL that uses only a single classifier.
The results were manually evaluated by three
domain experts. We use Precision@k as the
evaluation metric.

5.2.1 Experimental Setting

The SNet architecture for the materials science
domain contains a single fully connected hidden
layer. A distance function is then applied on
the output of the hidden layer followed by a
sigmoid activation. Binary cross entropy loss
is then minimized using RMSProp stochastic
gradient descent (SGD) [21]. The network also
applies ReLU activation for the units in the
hidden layer along with dropout regularization.
Grid search used for hyper parameter tuning
consists of: hidden layer units in {6, 8, 10,
12}; distance function in {euclidean distance,
manhattan distance}; dataset size parameter
p in {100, 200}; data generation features
in {all-features, single best feature from each
category namely C-value for intra-domain and

3downloaded from https://github.com/olivettigroup/materials-
word-embeddings

4downloaded from https://nlp.stanford.edu/projects/glove/

domain relevance for inter-domain}. For data
generation, the scores for multiple features are
combined by taking the average of their normalized
scores. The best features from the two categories
are decided by considering their precision@2000.
The architecture for FFNet also consists of a single
hidden layer with similar details except for the
number of positive and negative terms. This has
been varied among {100, 200, 400}. For SNet, the
best hyper parameter combination was found to be
8 hidden units, manhattan distance and all-features
for data generation with p = 100; for FFNet, it was
found to be 8 hidden units and 200 positive and
negative terms.

Similarly we have performed grid search for
hyper parameters of FTL, SC and voting algorithm.
In FTL, the initial seed terms (s) are varied among
{200, 400, 500, 800, 1000} and the number
of terms added in each iteration (n) are varied
among {20, 50, 80, 100, 150}. Different views
for the classifiers are provided by using only the
best intra-domain feature for one classifier and the
best inter-domain feature for the other. We have
also tried using combinations of best features for
generating seed term list. SC also uses a similar
parameter setting. For voting algorithm, we have
tried the following configurations for base features:
all features; top 2 features; top 2 intra-domain
features; and top-2 inter-domain features.

5.3 Results and Discussion

Table 1 shows the results of our experiments.
The similarity based model implemented by SNet
outperforms voting algorithm, classification models
such as FFNet, SC and the co-training approach of
FTL. For smaller values of k such as 200, 500, the
base unsupervised features have better accuracy
with domain relevance giving the best results. This
is to be expected as these are frequency based
measures and the terms ranked closer to the top
are more likely to be domain terms. However,
the terms appearing later in the ranked lists for
these features are not reliable. The classification
and similarity based models give superior results
in this case. Again this is on expected lines as
these approaches learn to discern other aspects
of similarity among positive and negative terms.
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Table 1. Evaluation of term extraction approaches using precision@k

Method k=200 k=500 k=1000 k=1500 k=2000 k=3000
Unsupervised Features
C Value 0.64 0.648 0.639 0.636 0.634 0.613
TFIDF 0.825 0.714 0.64 0.594 0.57 0.549
Term Variance Quality 0.77 0.71 0.654 0.629 0.593 0.577
Domain Relevance 0.89 0.868 0.792 0.749 0.720 0.695
Relevance 0.52 0.55 0.554 0.556 0.551 0.525
Weirdness 0.625 0.614 0.599 0.590 0.566 0.541
Proposed Methods and Previous Works
Fault Tolerant Learning 0.820 0.830 0.804 0.769 0.725 0.725
Single Classifier 0.840 0.868 0.791 0.772 0.703 0.705
Voting Algorithm 0.885 0.866 0.791 0.748 0.720 0.694
FFNet 0.776 0.818 0.785 0.771 0.767 0.759
SNet 0.761 0.822 0.821 0.815 0.806 0.764
FFNet dict 0.831 0.832 0.802 0.817 0.781 0.755
SNet dict 0.856 0.858 0.825 0.815 0.797 0.765

This is evident from the table for values of k >
500. It should also be noted that SNet consistently
beats FFNet with about 3% accuracy improvement
even though both models have similar network
complexity (in terms of number of parameters).
This can be attributed to three reasons:

— SNet’s architecture is designed to explicitly
learn similarity.

— Instead of relying on a single classification
decision, SNet brings in ensemble effect by
averaging over the similarity scores computed
from the top p high confidence terms.

— For similar network complexity, due to pairing
SNet has a much larger dataset available for
learning parameters.

In many practical scenarios, small amount of
domain terminologies are often available. For
instance, in the form of domain dictionaries or
lexicons. These existing domain terminologies can
be exploited to improve the terminology extraction
algorithms. To study the effect of such lexicon, we
created a small dictionary of material properties
and manufacturing processes. The terms present
in this dictionary are added to the list of positive

terms as part of dataset creation. Table 1
shows results for the classification (FFNet dict) and
similarity (SNet dict) based models.

For smaller values of k such as 200, 500,
these models perform better than FFNet and SNet.
This is due to the fact that the dictionary aided
models use true domain terms in addition to the
terms suggested by unsupervised features. Due
to this, the terms which are similar to lexicon
(i.e. material properties and processes) are ranked
higher. However, the number of terms representing
material properties and processes is finite and not
very large. Due to this, terms of various other
categories (for instance, microstructural features)
appear in the ranked list for higher values of k
making domain lexicon less effective. This is
observed in the table for values of k > 500, where
the accuracy of both SNet and FFNet approach
SNet dict and FFNet dict respectively.

6 Conclusion and Future Work

This paper proposes a novel similarity driven learn-
ing approach for materials science terminology
extraction. It uses various unsupervised features to
generate training data. A similarity based scoring
function is then learnt using Siamese network
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architecture. The proposed approach outperforms
standard classification as well as co-training
approaches on materials dataset. Our future
work consists of generating typed dictionaries
from these terminologies. We are also planning
to improve term extraction further by exploiting
compositional nature of multiword terms.
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