
Detection, Counting, and Classification of Visual Ganglia Columns of
Drosophila Pupae

Enrique Javier Arriaga Varela1,2, Eduardo Ulises Moya Sánchez1,2, Armando Aguilar Meléndez1,3,
Octavio Castillo Reyes1, Eduardo Vazquez Santacruz6, Sebastian Salazar Colores4, Ulises Cortés1,5

1 Barcelona Supercomputing Center (BSC), Barcelona,
Spain

2 Universidad Autónoma de Guadalajara, Guadalajara,
Mexico

3 Universidad Veracruzana, Poza Rica,
Mexico

4 Universidad Autónoma de Queretaro, Queretaro,
Mexico
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Abstract. Many neurobiologists use the fruit fly
(Drosophila) as a model to study neuron interaction and
neuron organization and then extrapolate this knowledge
to the nature of human neurological disorders. Recently,
the fluorescence microscopy images of fruit-fly neurons
are commonly used, because of the high contrast.
However, the detection of the neurons or cells is
compromised by background signals, generating fuzzy
boundaries. As a result, it is still common that in many
laboratories, the detection, counting, and analysis of this
microscope imagery is still a manual task. An automated
detection, counting, and morphological analysis of these
images can provide faster data processing and easier
access to new information. The main objective of this
work is to present a semi-automatic detection-counting
system and give the main characteristics of images of
the visual ganglia columns in Drosophila. We present the
semi-automatic detection, count, segmentation and we
concluded that it is possible to obtain an accuracy of 75%
(with a Kappa statistic of 0.50) in the shape classification.

Additionally, we develop python GUI CC Analyzer
which can be used by neurobiology laboratories whose
research interests are focused on this topic.

Keywords. Image processing, computer vision,
machine learning, fruit fly (Drosophila), visual ganglia
columns.

1 Introduction

Many neurobiologists use the visual system of the
fruit fly (Drosophila) as a model to study neuron
interaction [4, 6, 9] and neuron organization into
columnar units in the brain and extrapolate this
knowledge to human behavior and diseases [5,
4, 8]. Drosophila studies have a significant value
for the scientific community with five Nobel prizes
related, because of working and manipulating the
genome of the fruit fly is an easily reproducible
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technique and a big amount of genetic tools
are available. Additionally, this animal shows
a relatively complex behavioral repertoire in a
relatively simply organized brain, with only
100,000 neurons. Within the fly, the optic lobe is
especially appealing because flies are highly visual
animals, with the two optic lobes encompassing
approximately 50% of the total brain volume.

The fluorescence microscopy images of columns
commonly have high contrast. However, the
detection is compromised by background signals,
generating fuzzy boundaries of columns. Addi-
tionally, the number of elements are approximately
103 [6]. Therefore, the detection and counting
of columns are still difficult due to the manual
analysis nature that involves the technique. An
automated detection, counting, segmentation and
morphologic analysis of columns can provide to
researchers a significant advantage on speed and
accuracy in the analysis of this kind of images.

The main aim of this work is to develop an
algorithm for real-time shape recognition, counting,
and classification of the Drosophila pupa visual
ganglia column images obtained by using a
confocal microscope. The main contribution of this
algorithm is that we combine automatic operations
with image analysis results and user parameters in
real-time.

This paper is divided into four sections. In
the next section, we present the methods and
data for the image processing algorithm (including
its limitations), detection, segmentation, and the
decision tree algorithm to obtain the rules which
define a set of good shape or bad shape
columns. In section 3, we present our images
analysis results. Finally, in section 4, we provide
conclusions.

2 Data and Methods

In this section we describe the data and propose
a real-time semi-automatic image processing
algorithm to detect, visualize, find edges, compute
the position (centroid) for fluorescence of optic
lobule fly pupae images.

2.1 Data

We have used 12 fluorescence microscopy images
(120 segmented shapes, 8bit-RGB, JPEG images
of 500x500 pixels). Figure 1 shows an example of
original images.

Fig. 1. Example of fluorescence microscopy image of fly
pupae

2.2 Image Processing

We have used Open CV 3.0 [7] with Python
to develop our real-time image processing and
analysis of a selected Region of Interest (ROI)
selected by the user, with a fixed size 150 x 150
pixels.

The algorithm to detect and segment cell-shapes
is described as follows:

1. RGB image is converted into gray 8-bit
grayscale.

2. Bilateral filter is applied to the gray image
ROI [3]. This filter is highly effective in noise
removal while keeping edges sharp.

3. An adaptive binary threshold operation is
used, with an initial threshold C0 value of -3.
However, the user can define the C.

4. A dilate operation is applied to approximate
the real size of the detected shapes.

5. The contours shapes are obtained from the
binary image with the method [10].
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6. Compute the proportion between width and
height and compare with the main value of the
other shapes.

7. The centroids are computed to count the
possible cells and serves as a visual aid.

8. Draw the visual shape over the first copy of the
squared image (as shown in Fig 4).

The main contribution of this image prepossess-
ing algorithm is that, we can combine automatic
image processing with image analysis, and user
parameters to fine-tune the results and display
them in real-time. It is possible to see and
download this code1.

2.3 Image Processing Limitations

Due to the extremely variable quality of the
microscopic image, even at same the anatomic
region, we measure the range of Signal to Noise
Ratio (SNR), where our algorithm is reliable. To
measure the SNR we used the mean value of the
pixel intensity L as a signal and variance as a
noise (of a normal distribution) of some Regions
of Interest (ROI) with gray images. The SNR can
be obtained as follows:

SNR =
Signal

Noise
=

mean(L)ROI

var(L)ROI
. (1)

In the case that the image has a low value of
SNR the user has the option to select or remove
detected shapes individually as necessary.

2.4 Image Analysis and Feature Extraction

The image analysis computation is focused in
two main areas compute the number of possible
shapes of the column and obtaining features for
their classification. We use the expertise of the
laboratory team and our experimental results in
order to define the main features. The main
features were the width, height, perimeter, area,
the centroid of each segmented shape. In
addition, the main shape analysis measurements
and operations are:

1https://github.com/enriqueav/CCAnalyzer

1. Proportion between width and height:
WHPROPORTION,

2. Proportion between perimeter and area: PXA,

3. Average changes of color per row: CHANGESX,

4. Average changes of color per column:
CHANGESY.

2.5 Cell Classification

We have segmented 120 shape cells, and we
obtain two labels GOOD and BAD cells.

In order to do the image cell classification, we
use the shape as a principal feature. We used
a decision tree not only to obtain a prediction
or classification result but also to obtain logical
rules with a simple explanation. These rules can
be correlated with the features of the anatomical
shapes, expressed by the experts. It is worth to
mention that the decision tree can compute an
accurate value, even with little data and it is not
a black box algorithm [12].

To create the decision tree we used Weka [11,
12]. The JRip algorithm [2] was used to classify the
good and bad cells, with 10 folds cross-validation.
To create the training input information we propose
the following input features:

1. Centroid for each shape: CENTROID,

2. Proportion between width and height:
PROPORTION,

3. Proportion between perimeter and area: PXA,

4. Average changes of color per row: CHANGESX,

5. Average changes of color per column:
CHANGESY.
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Fig. 2. From left to right: 8 bit gray scale ROI transform,
bilateral filter application, adaptive threshold, and dilate
operation

3 Results

3.1 Image Processing

The real-time image processing steps are pre-
sented in Figure 2. The RGB image is converted
into 8-bit grayscale, then bilateral filter is applied
to the gray image, after that, an adaptive binary
threshold operation is used, finally, a dilate
operation is applied.
The contours shapes from the binary image, we
compute the centroids to count the number of cells
and draw the visual shape over the first copy of the
squared image (See Figure 3).

Fig. 3. Example of image detection, segmentation of a
ROI

3.2 Image Processing Limitations

The SNR has been measured for each ROI. Ac-
cording to our measures, the proposed algorithm
works better with SNR > 4.7, this value is closer to
Rose criteria value [1].

In Figure 4 we show an example of the ROI of an
image with SNR = 3.6, in this case, the algorithm
has the ability to detect several shapes (white
contours), but has some false positive results.
Even with this SNR, the user can filter easily in the

application the bad shapes and not include them in
the count.

Fig. 4. Original image (left), ROI of image processed
ROI image with SNR = 3.67 (center), and result of
processing at the ROI (right)

Figure 5 shows the worst quality image that we
have in our experiments. In this case the SNR =
2.7, and even in these conditions, our algorithm can
detect some regular cell shapes.

However, the perimeter, area defined by each
shape, is highly incorrect. We show the original
image, the ROI, and the segmented images.
Additionally, in this case, we present a plot profile
with the intensity of the pixel L, it is possible to see
that there almost the same signal of the cells and
the background.

Fig. 5. Worst SNR image (SNR = 2.7) of the set.
Original image (left), ROI(center), and the result of the
segmentation (left). In the bottom part, we present a plot
profile of the ROI
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3.3 Image Analysis

In Table 1 we present the mean value and
the standard deviation of feateures (F )
WHPROPORTION=W/H, PXA, CHANGESX=CHX and
CHANGESY=CHY. of both classes (C) good (G) and
bad (B). According to the results, the feature mean
values and their standard deviation in both classes
are crossing. As a consequence, is complicated
to use of only a statistical method to define good
cells from the bad ones.

Table 1. Image analysis results

F/C W/H PXA CHX CHY

G 1.4 ± 0.2 32.9 ± 12.2 3.3 ± 0.9 2.7 ± 0.6
B 1.5 ± 0.4 24.3 ± 7.0 4.0 ± 1.1 3.6 ± 1.1

Additionally, we count the number of cells and
each position. We use CENTROID to calculate how
many cells are, their position in the image, and their
classification. Moreover, we obtain some heuristic
rules, that we used to improve the shape detection.
The set of heuristic rules are:

1. Remove very small shapes, most likely
created from remaining noise (perimeter< 30
pixels).

2. Remove the shapes that are totally enclosed
by others, this is to avoid toroid-like shapes.

3. Remove the areas greater than 1.5 standard
deviations (also show as a visual aid).

4. Remove all the incomplete forms and remove
the shapes that more than 50% of the area is
outside ROI.

Examples of good and bad shapes are shown in
Figure 6. It is easy to see that the good cells are
more rounded. In the case of the bad cells, their
shape is irregular and speculated.

3.4 Shape Classification

The accuracy of the shape classification of the cells
was 75%, with a Kappa statistic of 0.5031. The set
of rules created are by the proposed decision-three
are:

Fig. 6. Subset of shapes used to train the classifier. Bad
columns (top) and Good columns (below)

1. IF Perimeter and Area (PXA >= 33.42)
ISGOOD=1 (53.0/8.0).

2. IF average changes of color in Y (CHANGESY
<= 3.27) and proportion between width and
height (WHPROPORTION 1.46 <= 1.63) ISGOOD

= 1 (15.0/2.0).

3. IF (CHANGESY <= 2.51) ISGOOD = 1 (11.0/3.0).

4. ELSE ISGOOD = 0 (92.0/15.0).

The rules obtained are consistent with the expert
criteria. However, in future work, we want to
explore to a convolutional neural network in order
to evaluate the classification of the shapes.

3.5 CC Analyzer GUI

The Figure 7 where is shown the shape, variables,
the count of the cells and the result of the
classification. It is possible to see the contour of
the enclosing rectangles for each of the detected
shape.

Rectangles are printed using 2 different colors:
green when the shape is marked as good shape
and red when the shape is marked as bad shape.

Additionally, the computed cell shape is pre-
sented in white and the centroid is drawing in
orange. We believe that this GUI can be useful
to create a bigger dataset in order to improve the
shape classification.
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Fig. 7. The GUI and the result of the final classification of a ROI

4 Conclusions

We have presented our real-time algorithms to
detect, count and classify correct and disorganized
columns of the optic lobe of Drosophila pupae. In
this paper we present a real-time image processing
method for an ROI to detect cell contour-shapes,
using the analysis information, we get and heuristic
rules to detect the cell shapes.

Additionally, we have used the signal to noise
ratio of the ROI. We conclude that a (SNR > 4.7)
guarantee a 75% (with a Kappa statistic of 0.50)
of accuracy or more in the shape classification
using our decision tree rules. One of the
main contributions of these algorithms is that we
combine automatic operations, with image analysis
results, machine learning techniques, and user
parameters in real-time to obtain a more reliable
result.

Finally, we present a desktop application using
Python and OpenCV 3.0. The results in the GUI
are visible in real-time, giving the user enormous
flexibility and ability to choose the desired ROI and
apply post-processing operations. We believe that
this GUI can be useful to create a bigger dataset in

order to improve the shape classification even for
other applications.
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