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Abstract. A test paper blueprint/question paper 

blueprint, also known as the table of specifications 
represents the structure of a test. It has been highly 
recommended in assessment textbook to carry out the 
preparation of a test with a test blueprint. The paper 
focuses on modeling a dynamic test paper blueprint 
using multi-objective optimization algorithm and makes 
use of the blueprint in dynamic generation of 
examination test paper. Multi-objective optimization-
based models are realistic models for many complex 
optimization problems. Modeling a dynamic test paper 
blueprint, similar to many real-life problems, includes 
solving multiple conflicting objectives satisfying the 
blueprint specifications. Optimizing a particular 
candidate blueprint solution with respect to a single 
objective can result in undesirable results with respect to 
rest of the objectives. A reasonable solution to the multi-
objective blueprint modeling problem is to examine a set 
of solutions, each of which satisfies the objectives at a 
satisfactory level without being dominated by any 
other solution. 

Keywords. Multi-objective optimization, test paper 

blueprint, meta-heuristic algorithms, Bloom's taxonomy.  

1 Introduction 

The general terminology used in this paper is 
briefly discussed in Table 1. The Test Paper 
Blueprint (TPB) shown in Table 2 is a systematic 
design plan, which lays out exactly how the test 
paper is created.  

The TPB with maximum marks (TM), 
distribution of unit/module weights (u1, u2..., um), 
distribution of cognitive levels weights (l1, l2..., ln), 
etc., so suggested in the TPB Format in Table 1 is 
expected to ensure that: 

(a) The weight given to each unit/module, (u1, 
u2..., um) in a   test paper is appropriate, so that 
the important modules are not neglected. 

(b) The weightage of cognitive skills, (l1, l2..., ln) 
tested are appropriate. For example, there are 
sufficient questions requiring application and 
understanding of logical reasoning. 

(c) Weight of modules and weight of cognitive 
skills are proportionately adjusted for 
generating blueprints that are used for 
different test papers with varying total 
marks, TM. 

(d) Test paper satisfies both time and 
marks constraints. 

(e) Test paper takes into account of different 
difficulty levels. 

(f) Weight allotted to a cell of a blueprint also 
known as module-level-weight, x11..., xmn is the 
proportionate weightage assigned to the 
particular level under a module of a blueprint. 

In order to incorporate all the above 
requirements of a blueprint, it is necessary to 
design an algorithm for dynamic blueprint 
generation and use it for generation of test paper. 

This test paper has proper weightage allotted to 
subject content, cognitive learning domain, type of 
question, total marks, etc., and can be used for 
generation of several test papers almost without 
repetition depending on the paper-setter's choice. 

The number of unique test papers (without any 
overlap) that can be prepared for the given subject 
using a generated blueprint (Suskie, 2009) 
depends on the quality and  size  of  the   Question 
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Bank (QB) (Hwang et al., 2006). The quality of a 
QB is decided on the basis of the type of questions, 

such as questions of 1 mark, 2 marks, 5 marks, etc. 
that exist in the QB for each unit under different 

Table 1. Terminology used for Dynamic Blueprint Generation 

Term Meaning 

Course 
Course is a Degree/Diploma program offered at a university. Example: 1. Bachelor of Science 
(Computer Science), B.Sc (Comp. Sc.) 2. Bachelor of Computer Application, BCA. 

Subject 
S is a subject/paper offered in different semesters of a course. Example: Software Engineering 
(SE) in 6thSemester and Information Technology (IT) in 1st Semester of B.Sc. (Comp. Sc). 

Modules/ Units 

For each subject, there is a prescribed syllabus having different modules/units. A set of related 
topics is grouped as one unit/module. Each module is allotted a particular weightage. Example: 
Module on Software Requirement in SE subject has weightage of 30% in the 6 th semester of 
B.Sc (Comp. Sc). 

Educational 
Taxonomy 

A classification system of educational objectives based on level of student understanding 
necessary for achievement or mastery. Example: Benjamin Bloom, Solo, etc. 

Educational 
Taxonomy 
Levels 

Educational Taxonomy has its cognitive stages in learning called taxonomy levels. Example: 
Bloom's Taxonomy Levels: Knowledge, Comprehension, Application, Analysis, Synthesis and 
Evaluation. 

M,N,m,n,TM 
M,N,m,n,TM are the number of modules in the subject, number of levels in the taxonomy, 
instructor specified number of modules, number of levels and total marks respectively for 
generating a dynamic Test Paper Blueprint (TPB). 

Module (pi) pi is the ith module specified by instructor for TPB, p =< p1..., pm > 

Taxonomy Level 
(qj) 

qj is the jth level specified by instructor for TPB, q =< q1..., qn > 

Module Weight 
(ui) 

ui is the weight assigned to the ith module in the TPB. 

Level Weight (lj) lj is the weight assigned to the j
th 

level in the TPB. 

Module-Level-
Weight (xij) xi j is the weight assigned to the j

th 
module of j

th 
level in the TPB. 

Test Paper 
Blueprint (TPB) 
of maximum 
marks TM 

TPB  is  an  m× n  matrix  with  rows  representing  Modules pi (i=1 to m), columns representing 

Educational Taxonomy Levels qj (j=1 to n), cells representing i
th 

module of j
th

level xij such that 
∑  𝑚

𝑖=1 ui = ∑  𝑛
𝑗=1 lj =TM i=1, j=1. 

m', n', tm 
m', n', tm is instructor specified number of modules, number of levels and total marks respectively 
for generating a scaled TPB. 

Scaled Module 
Level-Weight 
(x'vw) 

x'vw is the scaled weight assigned to the v
th 

module of w
th 

level. 

Scaled Module 
Weight (u'v) u'v is the scaled weight assigned to the v

th 
module. 

Scaled Level 
Weight (l'w) u'v is the scaled weight assigned to the w

th 
level. 

Scaled TPB 
(tpb) Of 
maximum 
marks, tm 

TPB is an m' × n' matrix generated from TPB by scaling its rows with respect to m' modules 

and scaling its columns with respect to n' levels such that  ∑  m`
v=1  u`v = ∑  𝑛`

𝑤=1 l`w=tm. 
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cognitive levels of an Educational Taxonomy 
(Krathwohl, 2002). 

2 Related Work 

Two main methods have been proposed by 
researchers for solving Multi-Objective 
Optimization Problems (MOOP) namely 
(1)  conventional or classical method and (2) meta-
heuristic algorithms. The classical methods 
commonly use a single random solution, updated 
at each of the iteration with a deterministic 
procedure to find the optimal solution. Hence, 
classical methods are able to generate one optimal 
solution at the end of the iterative procedure. On 
the other hand, meta-heuristic algorithms are 
based on a population of solutions, which will lead 
hopefully to a number of optimal solutions at 
every  generation.  

The population based meta-heuristics 
algorithms collect ideas and features present in 
nature or in our environment and use it for 
implementing them as search algorithms using a 
stochastic procedure. Search mechanisms of 
meta-heuristics have the capability to explore large 
and complex search spaces while finding one or 
more optimal solutions (Zitzler and Deb, 2008). 
The features found in nature represented as an 
algorithm through these methods generally use a 
substantial number of operators and parameters, 
which must be appropriately set. There is no 
unique/standard definition of meta-heuristics in the 
literature. However, the recent trend is to name all 
stochastic algorithms with randomization and 
global exploration as meta-heuristic.  

Randomization provides a good way to move 
away from local search to the search on the global 
scale. Therefore, almost all meta-heuristic 
algorithms are usually suitable for global 
optimization. Meta-heuristic can be an effective 
way to use, by trial and error, to produce 
acceptable solutions to a complex problem in a 
reasonably practical time. The complexity of the 
problem of interest makes it impractical to search 
every possible solution or combination and  
therefore, the goal is to find good and feasible 
solutions in a satisfactory time period. There is no 
guarantee that the optimum solution can be found. 
Also, we are unable to predict whether an 

algorithm will work and if it does work, there is no 
reason that explains why it works. The idea is to 
have a competent and practical algorithm, which 
will work majority of the time and will be able to 
produce qualitatively good solutions (Gandomi et 
al., 2013). 

Among the quality solutions found, it can be 
expected that some of them are nearly-optimal or 
optimal, though there is no guarantee for such 
optimality to occur always. Hence, meta-heuristic 
algorithms have been successfully applied to find 
solutions for many complex real-world optimization 
problems. Meta-heuristic algorithms can be 
classified into different categories based on the 
source of inspiration from nature. The main 
category is the biologically-inspired algorithms, 
which generally use biological evolution and/or 
collective behavior of animals as their model. 
Science is an added inspiration for meta-heuristic 
algorithms. These algorithms are generally 
inspired by physics and chemistry. Furthermore, 
art-inspired algorithms have been successful for 
global optimization. 

These are generally inspired by the creative 
behavior of artists such as musicians and 
architects. Social behavior is an additional source 
of inspiration and the socially inspired algorithm 
simulate social manners to solve optimization 
problems. Even though there are dissimilar 
sources of inspiration for meta-heuristic 
optimization algorithms, they also have similarities 
in their structures. Therefore, they can also be 
classified into two main categories: 1) evolutionary 
algorithms and 2) swarm algorithms. 

 Evolutionary algorithm generally uses an 
iterative procedure based on a biological evolution 
progress to solve optimization problems, whereas 
swarm-intelligence-based algorithms use the 
collective behavior of animals such as birds, 

Table 2. Test Paper Blueprint (TPB) Format 

Unit/Level Level 1 Level 2 Level 3 
Level 

n 
Unit 

Weight 

unit1 x11 x12 x13 x1n u1 

unit2 x21 x21 x23 x2n u2 

unitm xm1 xm2 xm3 xmn um 

Level 
Weight 

l1 l2 l3 ln TM 
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insects or fishes (Holland, 1975). Three main types 
of evolutionary algorithms have been evolved 
during the last few years: Genetic Algorithms (GA) 
mainly developed by J.H. Holland (Holland, 1975), 
Evolutionary Strategies (ES) developed by Ingo 
Rechenberg (Fogel, 1994), and Evolutionary 
Programming (EP) by D.B. Fogel (Fogel, 1995). 
Each of these Evolutionary Algorithms uses 
different representations of data, different 
operators working on them and 
different implementations. 

They are inspired, however, by the same 
principles of natural biological evolution. Similar to 
evolutionary algorithms, three main types of swarm 
algorithm have also been evolved during the last 
few years: Particle Swarm Optimization (PSO) 
developed by Kennedy and Eberhart (Kennedy  
and Eberhart, 1995), Ant Colony Optimization 
(ACO) developed by D. Karaboga (Karaboga, 
2005) and Artificial Bee Colony (ABC), algorithm 
also developed by D. Karaboga (Karaboga, 2005). 

Each of these Swarm Algorithms deals with 
collective behaviors of animals that result from the 
local interactions of individual components with 
each other as well as with their environment. 
Finding an optimal solution to an optimization 
problem is often a challenging task, and depends 
on the choice and the correct use of the 
right  algorithm. 

The choice of an algorithm may depend on the 
type of problem, the available set of algorithms, 
computational resources and time constraint. For 
large-scale, nonlinear and global optimization 
problems, there is often no standard guideline for 
algorithm choice and in many cases; there are no 
efficient exact algorithms (Holland, 1975). 

Therefore, depending on the number of multiple 
conflicting objectives that need to get satisfied as 
well as on the complexity of the search space, it is 
necessary to choose efficient and effective search 
and optimization mechanisms from the available 
population based, biologically inspired meta-
heuristic Evolutionary Algorithms and Swarm 
Algorithms that solve the problem by applying 
reasonable time and space constraints. 

The automated objective test sheet generation 
model has undergone many changes over a period 
of time and also has incorporated efficient 
algorithms such as Evolutionary Algorithms (Zhi et 
al., 2010; Lin et al. 2012; Peipei et al., 2012; Hu  et 

al., 2011; Huang et al., 2009; Liu, 2010; Ho et al. 
2009; Lirong & Jianwei, 2010; Liu et al., 2008) and 
Swarm Algorithms  (Bloom, 1956; Ming et al., 
2009; Dascalu, 2011; Yin et al., 2006) for 
generation of single test sheet or multiple test 
sheet sets that meet multiple assessment criteria. 
Both these algorithms were similar in terms of their 
search and optimization, and were found 
successful in composition of near-optimal multiple 
objective test sheets. 

As a matter of choice, we proceeded with the 
pioneer algorithm among them; Evolutionary 
Algorithm (EA), for the generation of automated 
descriptive test paper model. EAs typically, have a 
set (population) of solution candidates 
(individuals), which we try to improve gradually. 
Improvements may be generated by applying 
different variation operators, most notably mutation 
and crossover, to certain individuals. The quality of 
solutions is measured by a so-called fitness 
function or objective function. Mutation means a 
new individual is generated by slightly altering a 
single parent individual, whereas crossover 
operator generates a new individual by 
recombining information from two parents. 

Most Evolutionary Algorithms used in practice 
consider either one or both of these operators. 
Based on the fitness value of individuals, a 
selection procedure removes some individuals 
from the population. The cycle of variation and 
selection is repeated until a solution of sufficient 
fitness is found. The strength of this general 
approach is that each component can be adapted 
to the particular problem under consideration. This 
adaptation can be guided by an experimental 
evaluation of the actual behavior of the algorithm 
or by previously obtained experience. 

In addition, not every Evolutionary Algorithm 
(EA) needs to have all components described 
above (Coello-Coello et al., 2007; Deb, 2001). 
Since a population of solution candidates gets 
processed in each of the iteration, the outcome of 
EA can also be a population of feasible solutions. 
If an optimization problem includes a single 
objective, EA population members are expected to 
converge to a single optimum solution satisfying 
the given objective.  

On the other hand, if a problem includes multi-
objectives, EA population members are expected 
to converge to a set of optimum solutions satisfying 
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multiple objectives. Solution to multi-objective 
problems consists of sets of tradeoffs between 
objectives. Multiple optimal solutions exist because 
no one solution can be optimal for multiple 
conflicting objectives. If none of the two solutions, 
of multi-objective problem that are compared 
dominates each other, these solutions are called 
non-dominated solutions, Pareto-optimal solutions 
or trade-off solutions. 

The set of all Pareto-optimal solutions is called 
the Pareto-optimal set (Pareto-front). Since such 
solutions are not dominant on each other and there 
exists no other solution in the entire search space, 
which dominates any of these solutions, such 
solutions are of utmost importance in a MOOP. 
Hence, Evolutionary MOOP consists of 
determining all solutions to the MOOP problem that 
are optimal in the Pareto sense (Deb and Gupta, 
2005; Thiele and Zitzler, 1999). 

2.1 Pareto Genetic Algorithm Approach for 
Test Paper Blueprint Generation 

The adaptability of evolutionary approach was 
used best for TPB generation. Even though 
Evolutionary Algorithm (EAs) designed in (Jun, 
2019) have been successfully implemented for test 
paper generation, they are found not efficient with 
respect to time for meeting multi-constraints 
specified by an instructor for generating multiple 
TPB for different types of test papers. The 
evolutionary approach-based test paper blueprint 
of (Jun, 2019) had a major disadvantage that it 
used randomized approach for assigning module-
level weights. Even though it generated population 
of test paper blueprint iteratively, many of them 
were not adequate in terms of its fitness. During 
the iterative population generation, significant 
runtime delay was observed. 

This is due to the wastage of time in searching 
a set of random module-level-weights that satisfied 
both module weights and level weights. Also, EAs 
never guaranteed the generation of the instructor 
specified number of blueprints even after running it 
for the instructor specified number of iterations. 

In order to overcome the limitation of EAs, an 
enhanced EA using Pareto-optimal solution has 
been designed. This algorithm is found to generate 
multiple optimal Test Paper Blueprints (TPBs) in 
lesser time satisfying instructor specified multi-

constraints. Pareto-optimality based Multi-
Objective Evolutionary Algorithm (MOEA) 
generates optimal trade-off solutions also known 
as Pareto-optimal set of TPBs. As a notion in 
Pareto-optimal MOEA, the instructor/paper-setter 
has been provided with a set of Pareto-optimal 
TPB solutions, which are not dominated by any 
other TPB solutions. Each of these designed TPBs 
can act as a standard in generating a test paper by 
performing an intelligent search of questions based 
on the designed TPB. 

2.1.1 Goals of MOEA Implemented for Pareto-
Optimality 

Two goals have been taken into account while 
designing Pareto-approach based MOEA for 
multiple TPB generation, which are listed below: 

a) Guiding the search towards Pareto set, 

b) Keeping a diverse set of non-
dominated solutions. 

The first goal is mainly related to assigning 
scalar fitness values in the presence of multiple 
objectives. Scalar fitness assignment is carried out 
by transforming multi-objective problem into a 
mono-objective problem (Guang, 2010). The 
second goal concerns generation of diverse 
candidate solutions. In contrast to single-objective 
optimization, where objective function and fitness 
function is directly and easily related, in multi-
objective optimization fitness assignment and 
selection have to take into account all the different 
objectives. Among the different fitness assignment 
strategies, the most commonly used are those 
based on aggregation (Talbi, 2009; Caramia and 
Olmo, 2008). 

This approach, which mimics the weighted-sum 
method, aggregates the objectives into a single 
parameterized objective function.  The parameters 
of this function are varied systematically during the 
optimization run in order to find a set of non-
dominated solutions instead of a single trade-
off solution. 

In our MOEA, we apply the weighted sum 
method to optimize the two objectives such as: the 
percentage of coverage assigned to module 
weights and the percentage of importance 
assigned to taxonomy level weights. 
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Our aggregate function applies two different 
weights independently to these objectives and 
generates a single parameterized objective 
function equivalent to these two objectives. The 
methodology adopted is the same as the one used 
in evolutionary approach. 

2.2 Steps for Evolutionary Approach in Test 
Paper Blueprint Generation 

Step 1. Generate Population of TPB: Q different 
test paper blueprint as specified by 
instructor/paper-setter are either generated initially 
or at successive iterations to form a population. 
The set of blueprints of the initial population is 
formed by calculating the module-level-weights of 
each cell by using the formula: xmn= (um × ln) / TM 
and adjusting them to its nearest integer values. 

Step 2. Calculate Fitness of TPB: Calculate 
fitness of TPBs using the Fitness Function. Details 
of Fitness (F) calculation is explained in section 4. 

Step 3. Selection: Apply selection operation to the 
generated TPBs. It is carried out based on the 
criteria that the set of TPBs with fitness value in the 
range of 0.8-1.0, is to be identified and selected. 

Step 4. Mutation: Among the selected TPBs, 
identify the ones that can be mutated to increase 
its fitness value. Perform mutation on these 
identified blueprints by altering the module-level 
weight of any cell and accordingly adjusting the 
rest of the cell values. 

Step 5. Termination: Step 1 till step 4 are 
repeated iteratively until an optimum number of 
solutions is found or the instructor specified 
number of iterations is completed, whichever 
is  earlier. 

3 Problem Description 

a) Input for TPB Generation: 

(1)  TM = Total marks allotted for designing 
TPBs. 

(2)  U=U=<u1, u2..., um>, the vector of 
selected unit/module weights where ui is 
the weight assigned to the i-th unit. 

(3) L=<l1, l2..., ln>, the vector of selected 
cognitive level weights of educational 
taxonomy where lj is the weight assigned 
to the j-th cognitive level. 

b) Problem Statement: 

The problem is to assign module-level-weights, 
X=<x11..., xmn>, so as to get the optimum value for 
the Fitness Function (F).  

Let w1 be the percentage of importance 
assigned to module coverage and let w2 be the 
percentage of importance assigned to taxonomy 
level coverage. In order to define fitness, we have 
defined the following terms: 

1) The Weakness of a Unit WUi: 

𝐹𝑜𝑟 𝑎 𝑢𝑛𝑖𝑡 𝑖, 𝑊𝑈𝑖 = ∑ 𝑥𝑖𝑗

𝑛

𝑗=1
 . (1) 

2) The Fitness of a Unit (Funit): 

𝐹𝑢𝑛𝑖𝑡 = ∑
𝑊𝑈𝑖

𝑇𝑀
.

𝑚

𝑖=1
 (2) 

3) The Weakness of a Level (WLj): 

𝐹𝑜𝑟 𝑎 𝑙𝑒𝑣𝑒𝑙 𝑗, 𝑊𝐿𝑗 = ∑ 𝑥𝑖𝑗 .
𝑚

𝑖=1
 (3) 

4) The Fitness of a Level (Flevel): 

𝐹𝑙𝑒𝑣𝑒𝑙 = ∑
𝑊𝐿𝑖

𝑇𝑀
.

𝑛

𝑗=1
 (4) 

5) The Overall Fitness (F), of the Blueprint: 

𝐹 =
(𝑤1 ∑ 𝐹𝑢𝑛𝑖𝑡 +𝑚

𝑖=1 𝑤1  ∑ 𝐹𝑙𝑒𝑣𝑒𝑙
𝑛
𝑗=1 )

𝑤1 + 𝑤2
 . (5) 

The term Question Paper Blueprint (QPT) has 
been used interchangeably at many places in the 
paper instead of Test Paper Blueprint (TPB). 

3.1 Algorithm Design 

Pareto-optimal TPB generation has been carried 
out by Pareto-optimal TPB Generation Algorithm is 
presented as Algorithm 1. 

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1627–1642
doi: 10.13053/CyS-24-4-3174

Dimple Valayil Paul1632

ISSN 2007-9737



Algorithm. 1. Pareto-optimal Evolutionary TPB 

Generation Algorithm 

Procedure Pareto-optimal QPT Generation (U,L, w1,w2, TM ) 

Input: U,L, w1,w2, TM 

  U= <u1, u2,…, um>: Insturctor specified modules for template 
generation 

  L=< l1, l2,…, lm>: Instructor specified levels for template generation 

  w1: percentage of importance assigned to module coverage 

  w2: percentage of importance assigned to module coverage 

  TM: Instructor specified total marks for QPT 

  Output QPT, Pareto-optimal Evolutionary Approach based QPT 

  //Assign module-level-weights for QOT 

  for each ui in U (i=l to m) do 

  for each lj in L (j=1 to n) do 

 𝑥𝑖𝑗 ← (𝑢𝑖  x 𝑙𝑗)𝑇𝑀 

//Evaluate-Unit-Fitness-Constraints 

For i=l to m do 

 𝑊𝑈𝑖 = ∑ 𝑥𝑖𝑗
𝑛
𝑗=1  

 𝐹𝑢𝑛𝑖𝑡 =
𝑊𝑈𝑖

𝑇𝑀
 

end for 

//Evaluate-Level-Fitness-Constrains 

  For j=1 to n do 

 𝑊𝐿 = ∑ 𝑥𝑖𝑗
𝑚
𝑖=1  

  𝐹𝑙𝑒𝑣𝑒𝑙 =
𝑊𝐿𝑗

𝑇𝑀
 

end for 

//Evaluate-Overall-Fitness-of-Template 

𝐹 =
(𝑤1 ∑ 𝐹𝑢𝑛𝑖𝑡 +𝑚

𝑖=1 𝑤1  ∑ 𝐹𝑙𝑒𝑣𝑒𝑙
𝑛
𝑗=1 )

𝑤1 + 𝑤2

 

end procedure 

4 Experimental Data 

Using the Goa University examination test papers 
and the cognitive levels of Bloom's taxonomy, 
multiple TPB's were generated for the subject of 
Software Engineering (SE) offered at the third year 
of the three years bachelor's degree course of 
computer science (B.Sc. Computer Science): 

Input Data: 

1) Total marks= 50, 

2) Selected module weights =05, 15, 15, 15, 

3) Selected level weights = 15,15,05,15, 

4) Population size=10, 

5) Mutation rate=0.2, 

6) Paper-setter Specified Number of 
iterations=50, 

7) percentage of importance assigned to module 
coverage=0.50, 

8) percentage of importance assigned to 
taxonomy level coverage =0.50, 

9) Expected number of TPBs=3. 

5 Obtained Results for GA 

SE Pareto-optimal TPB1 of Table 3, SE Pareto-
optimal TPB2 of Table 4 and SE Pareto-optimal 
TPB3 of Table 5 below shows the three different 
samples of generated TPB's for SE. Generation of 
these TPB's were successful within 50 iterations. 

5.1 Performance Analysis of TPB Generation 

Table 6 shows the experimental results obtained 
after iteratively generating the instructor specified 
number of SE TPBs (3 in this case). 

Table 3. SE Pareto-optimal TPB1 

Module/Level know under appl anal 
module 
weight 

Software 
Architecture 

2 1 1 1 05 

Software Test. 
Tech. 

4 5 1 5 15 

Software 
Process 

5 4 1 5 15 

Software Conf. 
Mgmt. 

4 5 2 4 15 

Level weight 15 15 5 15 50 

Table 4. SE Pareto-optimal TPB2 

Module/Level know under appl anala 
module 
weight 

Software 
Architecture 

1 2 1 1 05 

Software Test. 
Tech. 

5 4 2 4 15 

Software 
Process 

4 5 1 5 15 

Software Conf. 
Mgmt. 

5 4 1 5 15 

Level weight 15 15 5 15 50 
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Results indicate that the Pareto-optimal based 
evolutionary algorithm has achieved optimal TPBs 
at the 40th iteration. 

5.2 Discussion for the Application of GA 

A new approach for generating multiple set of test 
papers using TPBs has been discussed. The main 
advantage of Pareto-optimal based evolutionary 
algorithm as compared to state of art evolutionary 
algorithm is that the runtime delay of the 
evolutionary genetic approach is significantly 
reduced by avoiding randomized approach for 
population generation.  

We have carried out the experimental study of 
Pareto-optimal evolutionary algorithm with a 
population size of 10 with its mutation probability of 
0.2, which successfully explored the search space 
and optimally generated multiple sets of dynamic 
blueprints. This new approach is important in 
situations where instructors wish to generate 
multiple set of test papers in a subject for the same 
examination. Examinations such as in-semester, 
end-semester etc., forces the proportionate 
coverage of modules and cognitive levels. 

Using multiple TPBs, there are lesser 
probabilities of similar questions automatically 
extracted during the question selection process. 
Complexity of Pareto-optimal evolutionary 
approach has been generally determined in terms 
of the relationship between the search space and 
the difficulty in finding a solution.  

The search space in our multi-objective Pareto-
optimal evolutionary approach-based optimization 
problem of dynamic blueprint generation is discrete 
and two-dimensional; that is, a solution in the 
search space is represented by two different types 
of components such as the selected units of the 
syllabus and the selected levels of Bloom's 
taxonomy. Hence, complexity of this blueprint 
generation algorithm is found to be proportional to 
the number of units and the number of levels 
specified for TPB generation. 

6 Bi-Proportional Scaling Method for 
Test Paper Blueprint Generation 

The dynamic blueprints generated by the 
previously discussed genetic approach is 

Table 5. SE Pareto-optimal TPB3 

Module/Level know under appl anal 
module 
weight 

Software 
Architecture 

1 1 1 2 05 

Software 
Test. Tech. 

5 5 1 4 15 

Software 
Process 

5 5 1 4 15 

Software 
Conf. Mgmt. 

4 4 2 5 15 

Level weight 15 15 5 15 50 

Table 6. Performance Analysis of Pareto-optimal 

Evolutionary Algorithm 

Evolutionary 
Algorithm 

Pareto-Optimal Evolutionary 
Algorithm 

Template 
No. 

Iteration 
No. 

Fitness 
Template 

No. 
Iteration 

No. 
Fitness 

t1,1 1 0.5001 t1,1  0.7045 

t1,2 1 0.5212 t1,2 1 0.7066 

t1,3 1 0.5334 t1,3 1 0.7077 

t1,4 1 0.5475 t1,4 1 0.7079 

t1,5 1 0.5511 t1,5 1 0.7093 

t1,6 1 0.5613 t1,6 1 0.7108 

t1,7 1 0.5733 t1,7 1 0.7127 

t1,8 1 0.5812 t1,8 1 0.7149 

t1,9 1 0.5884 t1,9 1 0.7158 

t1,10 1 0.6094 t1,10 1 0.7198 

t 2,1 2 0.6104 t 2,1 2 0.7202 

t 2,2 2 0.6183 t 2,2 2 0.7209 

t 3,1 3 0.6275 t 3,1 3 0.8223 

t 4,1 4 0.6364 t 4,1 4 0.8291 

t32,1 32 0.6603 t32,1 32 0.8717 

t32,2 32 0.6686 t32,2 32 0.8726 

t34,1 34 0.6911 t34,1 34 0.9313 

t34,2 34 0.6936 t34,2 34 0.9326 

t 40,1 40 0.7198 t 40,1 40 0.9971 

t 40,2 40 0.7205 t 40,2 40 0.9988 

t 40,2 40 0.7232 t 40,2 40 0.9997 

t 45,1 45 0.7311 t 45,1 45 terminate 

t 45,2 45 0.7365 t 45,2 45 terminate 

t 50,9 50 0.7399 t50,9 45 terminate 
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successful in providing the flexibility for 
constructing many qualitatively sound examination 
test papers using the same blueprint. Pareto-
optimal based evolutionary algorithm has been 
able to reduce the run-time delay, but still is unable 
to guarantee always the generation of optimal 
solutions within the user specified number of 
iterations. In order to overcome the limitation, we 
have introduced a matrix balancing technique that 
automatically scales and balances all entries of 
the TPB. 

The Bi-proportional matrix balancing technique 
performs iterative scaling and proportional fitting of 
the TPB to satisfy the instructor specified number 
of modules of the subject, instructor specified 
number of levels of taxonomy and instructor 
specified marks requirement of each examination. 

The mathematical foundation and wide spread 
application of matrix scaling problem has attracted 
researchers from multiple disciplines to use it in 
various applications. Estimating the entries of a 
large matrix to satisfy a set of prior consistency 
requirements is a problem that frequently occurs in 
economics, transportation, statistics, regional 
science, operation research and other areas 
(Schneider and Zenios, 1990; Gake and 
Pukelsheim, 2008; Speed, 2005). 

There are several scaling problems, each with 
different consistency requirements and therefore 
the definition of a scaled matrix is problem 
dependent (Mesnard, 2002; Lahr and 
Mesnard  2004).  

In general, matrix scaling is considered as a 
mathematical scaling procedure, which can be 
used to ensure that a matrix of data is adjusted so 
that the scaled matrix agrees with the original row 
and column constraints. The original matrix values 
are adjusted gradually through repeated iterations 
to fit it to user input row and column constraints. To 
solve a problem using matrix scaling procedure, 

we need to identify the marginal tables and the 
seed cells.  

The procedure alternates between fitting the 
rows and fitting the columns of the seed cells to the 
identified marginal table entries. Result of the fitting 
process is a scaled matrix with corresponding set 
of estimated cells probabilities or cell means 
(Fienberg and Meyer, 2004). An L1-error function 
is incorporated normally in matrix scaling problems 
for measuring the distance between current row 
and column sums and target row and column 
marginal entries.  

The procedure converges to bi-proportional fit if 
and only if the L1-error tends to zero. In case of 
non-convergence, a separate procedure to handle 
error points (+e and -e) needs to be considered 
(Pukelsheim, 2014; Oelbermann, 2013). The seed 
cell entries can be of continuous variant or of 
discrete variant types (Oelbermann, 2013). In the 
continuous variant, non-negative real numbers are 
permitted, where as in the discrete variant, non-
negative integers are considered.  

Matrix scaling procedure with discrete variant is 
found appropriate for TPB scaling. The procedure 
alternates between fitting the modules and fitting 
the cognitive levels and converges with a bi-
proportionally scaled and balanced TPB. Cognitive 
processing levels of a TPB are decided on the 
basis of the taxonomy that is selected for 
each examination.  

The scaled TPB so generated is used for 
framing a test paper by performing an intelligent 
selection of questions. 

6.1 Problem Statement 

Given a TPB for subject S of maximum marks TM 
as shown in Table 1.10 represented as m × n 
matrix where m is the number of units/modules 
such that p={p1, p2,...,pm}, n is the number of 

 

Fig. 1. Scaled TPB Generation using Bi-proportional Matrix Scaling Method 
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levels such that q={q1, q2,...,qn} and each cell xi j 
representing the weight assigned to the i-th module 
for the i-th taxonomy level, the problem is to 
dynamically generate a scaled tpb for the instructor 
input number of modules m', instructor input 
number of levels n' and instructor input total 
marks tm. 

6.2 Bi-proportional Matrix Scaling for 
Dynamic TPB Generation 

The main modules for scaled TPB generation 
using bi-proportional matrix scaling procedure are 
shown in Figure 1. 

The term Question Paper Blueprint (QPT) has 

been used interchangeably at many places in the 
paper instead of Test Paper Blueprint (TPB). 

The brief details of modules of Scaled TPB 
generation are presented in different steps below: 

Step 1. TPB-Seed-Cell-Generation: Extracts 
TPB module-level-weights corresponding to 
instructor input m' modules and n' levels and 
represents the extracted module-level-weights as 
Seed-Cells. 

Step 2. Apply-Module-Constraints: Extracts 
TPB module weights corresponding to instructor 
input m' modules, normalizes the module weights 
with respect to instructor input tm (total marks) and 
represents the normalized module weights as 
scaled-module-weights. 

Step 3. Apply-Level-Constraints: Extracts TPB 
level weights corresponding to instructor input n' 

levels, normalizes the level weights with respect to 
instructor input tm (total marks) and represent the 
normalized level weights as scaled-level-weights. 

Step 4. TPB-Seed-Cell-Scaling: Iteratively scale 
the rows and columns of Seed-Cells to fit them to 
the scaled-module-weights and scaled-level-
weights until the Seed-Cells meet the imposed 
module, level and total marks constraints and 
outputs the scaled matrix as tpb. 

Step 5. TPB-Seed-Cell-Rounding: It applies 
closest integer rounding rule on tpb. 

Step 6. L1-error-Fixing: The L1-error 
encountered during rounding procedure is 
identified by counting along the rows and columns 
of tpb and verifying how many of them are not yet 
adjusted to the row totals and column 
totals respectively.  

If L1-error encountered is zero, then the 
generated output is considered as an optimal 
dynamic tpb. In all the other cases, the generated 
output is a near-optimal tpb. L1-error converges by 
proportionately adjusting the rows and columns 
with +e and –e errors.  

Algorithm Design Scaled TPB generation has 
been carried out by processing six different 
modules such as TPB-Seed-Cell-Generation, 
Apply Module-Constraints, Apply Level-
Constraints, TPB-Seed-Cell-Scaling, TPB-Seed-
Cell-Rounding and L1-error-Fixing with a 
comprehensive Scaled TPB Generation Algorithm 
is Algorithm 2. 

Table 7. SE test paper blueprint (SETPB) 

Module/Level Know Under appl anal synth eval Cumulative-Module-Weigth 

Legacy Systems 1 4 1 1 6 2 15 

Requirement Eng. 1 6 2 2 2 2 15 

Software Prot. 1 2 2 1 2 2 10 

Software Arch. 1 1 1 4 2 6 15 

Soft. Test. Tech 1 1 2 2 2 2 10 

Software Process 1 1 2 2 2 2 10 

Soft. Conf. Mgtm. 1 2 6 2 2 2 15 

CASE tools 4 1 1 1 1 2 10 

Cumulative-Level-
Weigth 

11 18 17 15 19 20 100 
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Algorithm 2 Scaled TPB Generation using Bi-

proportional Matrix Scaling  

Procedure Scaled QPT Generation (p, q, tm) 

  Input: QPT, p, q, tm 

  QTP: Instructor specified Question Paper Template 

  p= <p1, p2,…,pm> : Instructor specified modules for scaling 

  q= <q1, q2,…,qn> : Instructor specified levels for scaling 

  tm: Instructor specified total marks for scaled QTP 

Output: qpt, Scaled QPT 

  //QTP-Seed-Cell-Generation 

  for each p, in p (v=l to m´) do 

    for each q, in q (w=l to n`) do x`vn ← xij; 

    //Apply-Module-Constraints 

  //Extract module-weights corresponding to m`modules 

  for v=l to m`do u`, ←∑ (𝑥`𝑣𝑛);𝑛
𝑤=1   

  //Normalize module-weights with respect to tm total marks 

  for v=l to m`do u`v ←(u`v/∑ 𝑢`)𝑚
𝑣=1 x tm; 

  // Apply Level-Constraints 

// Extract level-weights corresponding to n levels 

  for w=1 to n´ do 𝑙´𝑤 ← ∑ (𝑥´𝑚);𝑚
𝑣=1  

//Normalize level-weights with respect to tm total marks 

  for w=1 to n´do 𝑙´𝑤 ←  
𝑙´𝑤

∑ (𝑙´𝑛);𝑛
𝑤=1

 x 𝑡𝑚 

//QPT-Seed-Cells-Scaling 

  flag_sum_mw=false; 

  flag_sum_lw=false; 

While (flag_sum_mw=false|| flag_sum_lw=false) do 

//Check whether Seed-Cell satisfies imposed module constrains 

  for w=1 to m´ do 𝑠𝑢𝑚_𝑚𝑤 ← ∑ 𝑥´𝑣𝑛
𝑛
𝑤=1 ; 

  if u´v ≠ 𝑠𝑢𝑚_𝑚𝑤 then exit for 

       else if 𝑣 = 𝑚´then 

       flag_sum_mw=true; 

end if 

end for 

//Check wheter Seed-Cell satisfies imposed level constraints 

  for w=1 to n´ do 𝑠𝑢𝑚𝑙𝑤 ← ∑ 𝑥´𝑣𝑤 ;𝑚
𝑣=1  

    if 𝑙´𝑤 ≠ 𝑠𝑢𝑚_𝑙𝑤 then exit for 

    else if w=n´ then 

    flag_sum_lw=true; 

    end if 

  end for 

//perform iterative alternate scaling of seed-row and seed-

column in order to fit them to scaled moduled-weigths and 

scaled-level-weight respectively 

if (flag_sum_tw =false|| flag_sum_lw )false) then 

// Seed-row-scaling 

  for v=1 to m´do 

    for w=1 to n´do (
𝑥´𝑣𝑤

∑ 𝑥´𝑣𝑛
𝑛
𝑤=1

) 𝑢´𝑣; 

// Seed-column-scaling 

    for v=1 to m´ do 

  for w=1 to n´ do (
𝑥´𝑣𝑤

∑ 𝑥´𝑣𝑛
𝑚
𝑣=1

) 𝑙´𝑤; 

end if 

end while 

Call QPT-Seed-Cell-Rounding 

Call L1-error-Fixing 

return qpt // a scaled QPT 

end procedure 

6.3 Experimental Results for Bi-proportional 
Matrix Scaling 

Experimental study was carried out using the 
following case study. We have considered Bloom's 
taxonomy for this study. Experimental data used 
for the case study are as follows: 

Table 8. SETPB-Seed-Cells 

4 1 6 2 

2 1 2 2 

1 4 2 6 

1 2 2 2 

2 2 2 2 

1 1 1 2 

Table 9. SETPB-Scaled-Module-Weights 

Module SE-mw 

Legacy Systems 15 

Software Prot. 7 

Software Arch. 16 

Soft. Test. Tech 8 

Software Process 8 

CASE tools 6 

Total Marks 60 

Table 10. SETPB-Scaled-Level-Weights 

Level Under Anal Synth Eval 
Total 

marks 

SE-lw 13 12 17 18 60 

Table 11. Initial Stage of SETPB-Seed-Cell-Scaling 

Start 13 12 17 18 

15 4 1 6 2 

7 2 1 2 2 

16 1 4 2 6 

8 1 2 2 2 

8 2 2 2 2 

6 1 1 1 2 
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a) S = Software Engineering (SE), a subject 
offered at the third year of the three year 
bachelor's degree course of computer science 
(B.Sc Computer Science) at Goa University, 

b) m=8; m'=6, 

c) n=6; n'=4, 

d) p = {legacy systems, requirement engineering, 
software prototyping, software architecture, 
software testing techniques, software 
processes, software configuration 

Table 12. Iterative Stages of SETPB-Seed-Cell-Scaling 

Row Adjustement Column Adjustement 

Iteration 1 

 12.19 12.56 16.87 18.38  13 12 17 18 

15 4.62 1.15 6.92 2.31 15.26 4.92 1.10 6.98 2.26 

7 2.00 1.00 2.00 2.00 7.06 2.13 0.96 2.02 1.96 

16 1.23 4.92 2.46 7.38 15.73 1.31 4.70 2.48 7.23 

8 1.14 2.29 2.29 2.29 7.94 1.22 2.18 2.30 2.24 

8 2.00 2.00 2.00 2.00 8.02 2.13 1.91 2.02 1.96 

6 1.20 1.20 1.20 2.40 5.99 1.28 1.15 1.21 2.35 

Iteration 2 

 12.93 12.07 16.92 18.09  13 12 17 18 

15 4.84 1.08 6.86 2.22 15.04 4.87 1.08 6.89 2.21 

7 2.11 0.95 2.00 1.94 7.01 2.13 0.94 2.01 1.93 

16 1.34 4.78 2.52 7.36 15.96 1.34 4.76 2.54 7.32 

8 1.23 2.20 2.32 2.25 7.99 1.23 2.19 2.33 2.24 

8 2.13 1.91 2.01 1.95 8.00 2.14 1.90 2.02 1.95 

6 1.28 1.15 1.21 2.36 6.00 1.29 1.14 1.22 2.34 

Iteration 3 

 12.99 12.01 16.99 18.01  13 12 17 18 

15 4.85 1.07 6.87 2.20 15.01 4.36 1.07 6.87 2.20 

7 2.12 0.94 2.00 1.93 7.00 2.13 0.94 2.01 1.93 

16 1.35 4.77 2.54 7.34 15.99 1.35 4.77 2.54 7.34 

8 1.24 2.19 2.33 2.25 8.00 1.24 2.19 2.33 2.24 

8 2.14 1.90 2.02 1.94 8.00 2.14 1.89 2.02 1.94 

6 1.29 1.14 1.22 2.35 6.00 1.29 1.14 1.22 2.34 

Iteration 4 

 13.00 12.00 17.00 18.00  13 12 17 18 

15 4.85 1.07 6.87 2.20 15.01 4.85 1.07 6.87 2.20 

7 2.13 0.94 2.01 1.93 7.00 2.13 0.94 2.01 1.93 

16 1.35 4.77 2.54 7.34 15.99 1.35 4.77 2.55 7.34 

8 1.24 2.19 2.33 2.24 8.00 1.24 2.19 2.33 2.24 

8 2.14 1.89 2.02 1.94 8.00 2.14 1.89 2.02 1.94 

6 1.29 1.14 1.22 2.35 6.00 1.29 1.14 1.22 2.34 
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management, CASE tools}; p'= {legacy 
systems, software prototyping, software 
architecture, software testing techniques, 
software configuration management, 
CASE  tools}, 

e) q = {knowledge(know), understanding(under), 
application(appl), analysis(anal), 
synthesis(synth), evaluation(eval)}; q' = 
{understanding, analysis, synthesis, 
evaluation}, 

f) TPB = SETPB, an end semester TPB of SE 
for maximum marks, TM = 100 as shown in 
Table 7; tm = 60. 

Sequence of steps carried out for Scaled 
SETPB Generation is as below: 

Step 1. SETBP-Seed-Cell-Generation: SETPB 
seed cells are formulated by extracting SETPB 
module-level-weights corresponding to six 
selected modules and four selected levels. 
SETPB-Seed-Cells formulated are represented in 
Table 8. 

Step 2. Apply-Module-Constraints: SETPB 
scaled-module-weights are generated by 
normalizing the module weights of modules such 
as legacy systems, software prototyping, software 

architecture, software testing techniques, software 
configuration management and CASE tools with 
respect to 60 marks. SE-scaled-module-weights, 
SE-mw generated is shown in Table 9. 

Step 3. Apply-Level-Constraints: SETPB 
scaled-level-weights are generated by normalizing 
the level weights of levels such as understanding, 
analysis, synthesis and evaluation with respect to 
60 marks. SE-scaled-level-weights, SE-lw 
generated are represented in Table 10. 

Step 4. SETPB-Seed-Cell-Scaling: SETPBs 
iterate alternate scaling starts by merging the SE-
Seed-Cells with SE-mw and SE-lw. Initial stage of 
SE-Seed-Cell scaling is shown in Table 11. 

SETPBs iterative scaling continues until the 
scaled SETPB, SEtpb fulfills SE-mw and SE-lw. 
Iterative stages of SE-Seed-Cell-Scaling are 
represented in Table 12. SETPB iterative alternate 
bi-proportional scaling terminates at the end of 
fourth iteration. 

Step 5. TPB-Seed-Cell-Rounding: Table 13 
represents the scaled and rounded integer values 
of SE-Seed-Cells at the end of fourth iteration. 

Step 6. L1-error-Fixing: The near optimal SE-
Seed-Cells of Table 13 get proportionately 
adjusted with +1 and -1 L1-error. The SE-Seed-
Cells generated after fixing L1-error are shown in 
Table 14. The resulting optimal SE-tpb is shown 
Table 15. 

6.4 Discussion for Bi-proportional Matrix 
Scaling 

This work focused on an incremental approach for 
dynamic test paper generation by using bi-
proportional matrix scaling method. The main 
advantage of this approach is that it performs 
automatic scaling and balancing of all entries of the 
TPB by carrying out iterative scaling and 
proportional fitting procedure.  

The procedure alternates between fitting the 
modules and fitting the cognitive levels and 
converges with a bi-proportionally scaled and 
balanced TPB. Bi-proportional matrix scaling has 
been found successful in generating a scaled TPB 
with lesser computational resources.  

Table 13. Scaled and Rounded Seed-Cell-Scaling 

 13 12 17 18 

15 5 1 7 2 

7 2 1 2 2 

16 1 5 3 7 

8 1 2 2 2 

8 2 2 2 2 

6 1 1 1 2 

Table 14. SE-Seed-Cells after L1-error Fixing 

 13 12 17 18 

15 5 1 7 2 

7 2 1 2 2 

16 1 5 3 7 

8 2 2 2 2 

8 2 2 2 2 

6 1 1 1 3 
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An L1-error function is incorporated normally in 
matrix scaling problems for measuring the distance 
between current row and column sums and target 
row and column marginal entries. The procedure 
converges to bi-proportional fit if and only if the L1-
error tends to zero.  

We have used matrix scaling with discrete 
variant, which iteratively scales the TPB, assigns 
integer valued marks (integer round up operation) 
under different levels of a module, x L1-error by 
proportionately adjusting the candidate rows and 
columns with +1 and -1 values respectively and 
generates a bi-proportionally scaled and balanced. 
The dynamic TPB so generated can drastically 
reduce the time and e ort of the user while ensuring 
test paper quality also. 

7 Conclusion 

Reforms in the educational system emphasize 
more on continuous assessment. Continuous 
assessment requires the generation of dynamic 
test papers for different examinations. 
Automatically generating dynamic TPB, satisfying 
instructors specified number of modules and 
instructor specified number of taxonomy levels, 
has been found to be very important in situations 
where novice instructors wish to formulate test 
papers for different examinations.  

The evolutionary approach of section 2.3 has 
been able to generate population of TPBs, but 
encountered significant run-time delay during the 
iterative population generation. Alternatively, 
Pareto-optimal based evolutionary algorithm of 
section 2.3 has been able to reduce run-time delay, 
but still was unable to always guarantee generation 

of optimal solutions within user specified number of 
iterations. 

In order to overcome these limitations, bi-
proportional matrix balancing technique has been 
designed and implemented. The bi-proportional 
matrix balancing technique performs iterative 
scaling and proportional fitting of the TPB to satisfy 
the instructor specified number of modules of 
subject, instructor specified number of levels of 
taxonomy and Instructor specified marks 
requirement of each examination.  

The best advantage of bi-proportional scaling 
technique is that it avoids re-execution of 
computationally expensive multi-objective 
evolutionary algorithms for generating different 
variants of the successfully generated evolutionary 
approach based optimal blueprint.  

Finally, our experimental analysis concludes 
that evolutionary approach and Pareto-optimal 
evolutionary approach are efficient in generating 
new and different types of blueprint, whereas 
matrix scaling procedure is suitable for re-
generating different variants of an existing 
evolutionary algorithm based TPB with lesser 
computational resources. 
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