
Metaheuristic Algorithms for Designing Optimal
Test Blueprint

Dimple Valayil Paul

Dnyanprassarak Mandal's College and Research Centre, Goa University,
Assagao, Bardez, Goa,

India

dimplevpaul@gmail.com

Abstract. A test paper blueprint/question paper

blueprint, also known as the table of specifications
represents the structure of a test. It has been highly
recommended in assessment textbook to carry out the
preparation of a test with a test blueprint. The paper
focuses on modeling a dynamic test paper blueprint
using multi-objective optimization algorithm and makes
use of the blueprint in dynamic generation of
examination test paper. Multi-objective optimization-
based models are realistic models for many complex
optimization problems. Modeling a dynamic test paper
blueprint, similar to many real-life problems, includes
solving multiple conflicting objectives satisfying the
blueprint specifications. Optimizing a particular
candidate blueprint solution with respect to a single
objective can result in undesirable results with respect to
rest of the objectives. A reasonable solution to the multi-
objective blueprint modeling problem is to examine a set
of solutions, each of which satisfies the objectives at a
satisfactory level without being dominated by any
other solution.

Keywords. Multi-objective optimization, test paper

blueprint, meta-heuristic algorithms, Bloom's taxonomy.

1 Introduction

The general terminology used in this paper is
briefly discussed in Table 1. The Test Paper
Blueprint (TPB) shown in Table 2 is a systematic
design plan, which lays out exactly how the test
paper is created.

The TPB with maximum marks (TM),
distribution of unit/module weights (u1, u2..., um),
distribution of cognitive levels weights (l1, l2..., ln),
etc., so suggested in the TPB Format in Table 1 is
expected to ensure that:

(a) The weight given to each unit/module, (u1,
u2..., um) in a test paper is appropriate, so that
the important modules are not neglected.

(b) The weightage of cognitive skills, (l1, l2..., ln)
tested are appropriate. For example, there are
sufficient questions requiring application and
understanding of logical reasoning.

(c) Weight of modules and weight of cognitive
skills are proportionately adjusted for
generating blueprints that are used for
different test papers with varying total
marks, TM.

(d) Test paper satisfies both time and
marks constraints.

(e) Test paper takes into account of different
difficulty levels.

(f) Weight allotted to a cell of a blueprint also
known as module-level-weight, x11..., xmn is the
proportionate weightage assigned to the
particular level under a module of a blueprint.

In order to incorporate all the above
requirements of a blueprint, it is necessary to
design an algorithm for dynamic blueprint
generation and use it for generation of test paper.

This test paper has proper weightage allotted to
subject content, cognitive learning domain, type of
question, total marks, etc., and can be used for
generation of several test papers almost without
repetition depending on the paper-setter's choice.

The number of unique test papers (without any
overlap) that can be prepared for the given subject
using a generated blueprint (Suskie, 2009)
depends on the quality and size of the Question

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1627–1642
doi: 10.13053/CyS-24-4-3174

ISSN 2007-9737

Bank (QB) (Hwang et al., 2006). The quality of a
QB is decided on the basis of the type of questions,

such as questions of 1 mark, 2 marks, 5 marks, etc.
that exist in the QB for each unit under different

Table 1. Terminology used for Dynamic Blueprint Generation

Term Meaning

Course
Course is a Degree/Diploma program offered at a university. Example: 1. Bachelor of Science
(Computer Science), B.Sc (Comp. Sc.) 2. Bachelor of Computer Application, BCA.

Subject
S is a subject/paper offered in different semesters of a course. Example: Software Engineering
(SE) in 6thSemester and Information Technology (IT) in 1st Semester of B.Sc. (Comp. Sc).

Modules/ Units

For each subject, there is a prescribed syllabus having different modules/units. A set of related
topics is grouped as one unit/module. Each module is allotted a particular weightage. Example:
Module on Software Requirement in SE subject has weightage of 30% in the 6 th semester of
B.Sc (Comp. Sc).

Educational
Taxonomy

A classification system of educational objectives based on level of student understanding
necessary for achievement or mastery. Example: Benjamin Bloom, Solo, etc.

Educational
Taxonomy
Levels

Educational Taxonomy has its cognitive stages in learning called taxonomy levels. Example:
Bloom's Taxonomy Levels: Knowledge, Comprehension, Application, Analysis, Synthesis and
Evaluation.

M,N,m,n,TM
M,N,m,n,TM are the number of modules in the subject, number of levels in the taxonomy,
instructor specified number of modules, number of levels and total marks respectively for
generating a dynamic Test Paper Blueprint (TPB).

Module (pi) pi is the ith module specified by instructor for TPB, p =< p1..., pm >

Taxonomy Level
(qj)

qj is the jth level specified by instructor for TPB, q =< q1..., qn >

Module Weight
(ui)

ui is the weight assigned to the ith module in the TPB.

Level Weight (lj) lj is the weight assigned to the j
th

level in the TPB.

Module-Level-
Weight (xij) xi j is the weight assigned to the j

th
module of j

th
level in the TPB.

Test Paper
Blueprint (TPB)
of maximum
marks TM

TPB is an m× n matrix with rows representing Modules pi (i=1 to m), columns representing

Educational Taxonomy Levels qj (j=1 to n), cells representing i
th

module of j
th

level xij such that
∑ 𝑚

𝑖=1 ui = ∑ 𝑛
𝑗=1 lj =TM i=1, j=1.

m', n', tm
m', n', tm is instructor specified number of modules, number of levels and total marks respectively
for generating a scaled TPB.

Scaled Module
Level-Weight
(x'vw)

x'vw is the scaled weight assigned to the v
th

module of w
th

level.

Scaled Module
Weight (u'v) u'v is the scaled weight assigned to the v

th
module.

Scaled Level
Weight (l'w) u'v is the scaled weight assigned to the w

th
level.

Scaled TPB
(tpb) Of
maximum
marks, tm

TPB is an m' × n' matrix generated from TPB by scaling its rows with respect to m' modules

and scaling its columns with respect to n' levels such that ∑ m`
v=1 u`v = ∑ 𝑛`

𝑤=1 l`w=tm.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1627–1642
doi: 10.13053/CyS-24-4-3174

Dimple Valayil Paul1628

ISSN 2007-9737

cognitive levels of an Educational Taxonomy
(Krathwohl, 2002).

2 Related Work

Two main methods have been proposed by
researchers for solving Multi-Objective
Optimization Problems (MOOP) namely
(1) conventional or classical method and (2) meta-
heuristic algorithms. The classical methods
commonly use a single random solution, updated
at each of the iteration with a deterministic
procedure to find the optimal solution. Hence,
classical methods are able to generate one optimal
solution at the end of the iterative procedure. On
the other hand, meta-heuristic algorithms are
based on a population of solutions, which will lead
hopefully to a number of optimal solutions at
every generation.

The population based meta-heuristics
algorithms collect ideas and features present in
nature or in our environment and use it for
implementing them as search algorithms using a
stochastic procedure. Search mechanisms of
meta-heuristics have the capability to explore large
and complex search spaces while finding one or
more optimal solutions (Zitzler and Deb, 2008).
The features found in nature represented as an
algorithm through these methods generally use a
substantial number of operators and parameters,
which must be appropriately set. There is no
unique/standard definition of meta-heuristics in the
literature. However, the recent trend is to name all
stochastic algorithms with randomization and
global exploration as meta-heuristic.

Randomization provides a good way to move
away from local search to the search on the global
scale. Therefore, almost all meta-heuristic
algorithms are usually suitable for global
optimization. Meta-heuristic can be an effective
way to use, by trial and error, to produce
acceptable solutions to a complex problem in a
reasonably practical time. The complexity of the
problem of interest makes it impractical to search
every possible solution or combination and
therefore, the goal is to find good and feasible
solutions in a satisfactory time period. There is no
guarantee that the optimum solution can be found.
Also, we are unable to predict whether an

algorithm will work and if it does work, there is no
reason that explains why it works. The idea is to
have a competent and practical algorithm, which
will work majority of the time and will be able to
produce qualitatively good solutions (Gandomi et
al., 2013).

Among the quality solutions found, it can be
expected that some of them are nearly-optimal or
optimal, though there is no guarantee for such
optimality to occur always. Hence, meta-heuristic
algorithms have been successfully applied to find
solutions for many complex real-world optimization
problems. Meta-heuristic algorithms can be
classified into different categories based on the
source of inspiration from nature. The main
category is the biologically-inspired algorithms,
which generally use biological evolution and/or
collective behavior of animals as their model.
Science is an added inspiration for meta-heuristic
algorithms. These algorithms are generally
inspired by physics and chemistry. Furthermore,
art-inspired algorithms have been successful for
global optimization.

These are generally inspired by the creative
behavior of artists such as musicians and
architects. Social behavior is an additional source
of inspiration and the socially inspired algorithm
simulate social manners to solve optimization
problems. Even though there are dissimilar
sources of inspiration for meta-heuristic
optimization algorithms, they also have similarities
in their structures. Therefore, they can also be
classified into two main categories: 1) evolutionary
algorithms and 2) swarm algorithms.

 Evolutionary algorithm generally uses an
iterative procedure based on a biological evolution
progress to solve optimization problems, whereas
swarm-intelligence-based algorithms use the
collective behavior of animals such as birds,

Table 2. Test Paper Blueprint (TPB) Format

Unit/Level Level 1 Level 2 Level 3
Level

n
Unit

Weight

unit1 x11 x12 x13 x1n u1

unit2 x21 x21 x23 x2n u2

unitm xm1 xm2 xm3 xmn um

Level
Weight

l1 l2 l3 ln TM

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1627–1642
doi: 10.13053/CyS-24-4-3174

Metaheuristic Algorithms for Designing Optimal Test Blueprint 1629

ISSN 2007-9737

insects or fishes (Holland, 1975). Three main types
of evolutionary algorithms have been evolved
during the last few years: Genetic Algorithms (GA)
mainly developed by J.H. Holland (Holland, 1975),
Evolutionary Strategies (ES) developed by Ingo
Rechenberg (Fogel, 1994), and Evolutionary
Programming (EP) by D.B. Fogel (Fogel, 1995).
Each of these Evolutionary Algorithms uses
different representations of data, different
operators working on them and
different implementations.

They are inspired, however, by the same
principles of natural biological evolution. Similar to
evolutionary algorithms, three main types of swarm
algorithm have also been evolved during the last
few years: Particle Swarm Optimization (PSO)
developed by Kennedy and Eberhart (Kennedy
and Eberhart, 1995), Ant Colony Optimization
(ACO) developed by D. Karaboga (Karaboga,
2005) and Artificial Bee Colony (ABC), algorithm
also developed by D. Karaboga (Karaboga, 2005).

Each of these Swarm Algorithms deals with
collective behaviors of animals that result from the
local interactions of individual components with
each other as well as with their environment.
Finding an optimal solution to an optimization
problem is often a challenging task, and depends
on the choice and the correct use of the
right algorithm.

The choice of an algorithm may depend on the
type of problem, the available set of algorithms,
computational resources and time constraint. For
large-scale, nonlinear and global optimization
problems, there is often no standard guideline for
algorithm choice and in many cases; there are no
efficient exact algorithms (Holland, 1975).

Therefore, depending on the number of multiple
conflicting objectives that need to get satisfied as
well as on the complexity of the search space, it is
necessary to choose efficient and effective search
and optimization mechanisms from the available
population based, biologically inspired meta-
heuristic Evolutionary Algorithms and Swarm
Algorithms that solve the problem by applying
reasonable time and space constraints.

The automated objective test sheet generation
model has undergone many changes over a period
of time and also has incorporated efficient
algorithms such as Evolutionary Algorithms (Zhi et
al., 2010; Lin et al. 2012; Peipei et al., 2012; Hu et

al., 2011; Huang et al., 2009; Liu, 2010; Ho et al.
2009; Lirong & Jianwei, 2010; Liu et al., 2008) and
Swarm Algorithms (Bloom, 1956; Ming et al.,
2009; Dascalu, 2011; Yin et al., 2006) for
generation of single test sheet or multiple test
sheet sets that meet multiple assessment criteria.
Both these algorithms were similar in terms of their
search and optimization, and were found
successful in composition of near-optimal multiple
objective test sheets.

As a matter of choice, we proceeded with the
pioneer algorithm among them; Evolutionary
Algorithm (EA), for the generation of automated
descriptive test paper model. EAs typically, have a
set (population) of solution candidates
(individuals), which we try to improve gradually.
Improvements may be generated by applying
different variation operators, most notably mutation
and crossover, to certain individuals. The quality of
solutions is measured by a so-called fitness
function or objective function. Mutation means a
new individual is generated by slightly altering a
single parent individual, whereas crossover
operator generates a new individual by
recombining information from two parents.

Most Evolutionary Algorithms used in practice
consider either one or both of these operators.
Based on the fitness value of individuals, a
selection procedure removes some individuals
from the population. The cycle of variation and
selection is repeated until a solution of sufficient
fitness is found. The strength of this general
approach is that each component can be adapted
to the particular problem under consideration. This
adaptation can be guided by an experimental
evaluation of the actual behavior of the algorithm
or by previously obtained experience.

In addition, not every Evolutionary Algorithm
(EA) needs to have all components described
above (Coello-Coello et al., 2007; Deb, 2001).
Since a population of solution candidates gets
processed in each of the iteration, the outcome of
EA can also be a population of feasible solutions.
If an optimization problem includes a single
objective, EA population members are expected to
converge to a single optimum solution satisfying
the given objective.

On the other hand, if a problem includes multi-
objectives, EA population members are expected
to converge to a set of optimum solutions satisfying

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1627–1642
doi: 10.13053/CyS-24-4-3174

Dimple Valayil Paul1630

ISSN 2007-9737

multiple objectives. Solution to multi-objective
problems consists of sets of tradeoffs between
objectives. Multiple optimal solutions exist because
no one solution can be optimal for multiple
conflicting objectives. If none of the two solutions,
of multi-objective problem that are compared
dominates each other, these solutions are called
non-dominated solutions, Pareto-optimal solutions
or trade-off solutions.

The set of all Pareto-optimal solutions is called
the Pareto-optimal set (Pareto-front). Since such
solutions are not dominant on each other and there
exists no other solution in the entire search space,
which dominates any of these solutions, such
solutions are of utmost importance in a MOOP.
Hence, Evolutionary MOOP consists of
determining all solutions to the MOOP problem that
are optimal in the Pareto sense (Deb and Gupta,
2005; Thiele and Zitzler, 1999).

2.1 Pareto Genetic Algorithm Approach for
Test Paper Blueprint Generation

The adaptability of evolutionary approach was
used best for TPB generation. Even though
Evolutionary Algorithm (EAs) designed in (Jun,
2019) have been successfully implemented for test
paper generation, they are found not efficient with
respect to time for meeting multi-constraints
specified by an instructor for generating multiple
TPB for different types of test papers. The
evolutionary approach-based test paper blueprint
of (Jun, 2019) had a major disadvantage that it
used randomized approach for assigning module-
level weights. Even though it generated population
of test paper blueprint iteratively, many of them
were not adequate in terms of its fitness. During
the iterative population generation, significant
runtime delay was observed.

This is due to the wastage of time in searching
a set of random module-level-weights that satisfied
both module weights and level weights. Also, EAs
never guaranteed the generation of the instructor
specified number of blueprints even after running it
for the instructor specified number of iterations.

In order to overcome the limitation of EAs, an
enhanced EA using Pareto-optimal solution has
been designed. This algorithm is found to generate
multiple optimal Test Paper Blueprints (TPBs) in
lesser time satisfying instructor specified multi-

constraints. Pareto-optimality based Multi-
Objective Evolutionary Algorithm (MOEA)
generates optimal trade-off solutions also known
as Pareto-optimal set of TPBs. As a notion in
Pareto-optimal MOEA, the instructor/paper-setter
has been provided with a set of Pareto-optimal
TPB solutions, which are not dominated by any
other TPB solutions. Each of these designed TPBs
can act as a standard in generating a test paper by
performing an intelligent search of questions based
on the designed TPB.

2.1.1 Goals of MOEA Implemented for Pareto-
Optimality

Two goals have been taken into account while
designing Pareto-approach based MOEA for
multiple TPB generation, which are listed below:

a) Guiding the search towards Pareto set,

b) Keeping a diverse set of non-
dominated solutions.

The first goal is mainly related to assigning
scalar fitness values in the presence of multiple
objectives. Scalar fitness assignment is carried out
by transforming multi-objective problem into a
mono-objective problem (Guang, 2010). The
second goal concerns generation of diverse
candidate solutions. In contrast to single-objective
optimization, where objective function and fitness
function is directly and easily related, in multi-
objective optimization fitness assignment and
selection have to take into account all the different
objectives. Among the different fitness assignment
strategies, the most commonly used are those
based on aggregation (Talbi, 2009; Caramia and
Olmo, 2008).

This approach, which mimics the weighted-sum
method, aggregates the objectives into a single
parameterized objective function. The parameters
of this function are varied systematically during the
optimization run in order to find a set of non-
dominated solutions instead of a single trade-
off solution.

In our MOEA, we apply the weighted sum
method to optimize the two objectives such as: the
percentage of coverage assigned to module
weights and the percentage of importance
assigned to taxonomy level weights.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1627–1642
doi: 10.13053/CyS-24-4-3174

Metaheuristic Algorithms for Designing Optimal Test Blueprint 1631

ISSN 2007-9737

Our aggregate function applies two different
weights independently to these objectives and
generates a single parameterized objective
function equivalent to these two objectives. The
methodology adopted is the same as the one used
in evolutionary approach.

2.2 Steps for Evolutionary Approach in Test
Paper Blueprint Generation

Step 1. Generate Population of TPB: Q different
test paper blueprint as specified by
instructor/paper-setter are either generated initially
or at successive iterations to form a population.
The set of blueprints of the initial population is
formed by calculating the module-level-weights of
each cell by using the formula: xmn= (um × ln) / TM
and adjusting them to its nearest integer values.

Step 2. Calculate Fitness of TPB: Calculate
fitness of TPBs using the Fitness Function. Details
of Fitness (F) calculation is explained in section 4.

Step 3. Selection: Apply selection operation to the
generated TPBs. It is carried out based on the
criteria that the set of TPBs with fitness value in the
range of 0.8-1.0, is to be identified and selected.

Step 4. Mutation: Among the selected TPBs,
identify the ones that can be mutated to increase
its fitness value. Perform mutation on these
identified blueprints by altering the module-level
weight of any cell and accordingly adjusting the
rest of the cell values.

Step 5. Termination: Step 1 till step 4 are
repeated iteratively until an optimum number of
solutions is found or the instructor specified
number of iterations is completed, whichever
is earlier.

3 Problem Description

a) Input for TPB Generation:

(1) TM = Total marks allotted for designing
TPBs.

(2) U=U=<u1, u2..., um>, the vector of
selected unit/module weights where ui is
the weight assigned to the i-th unit.

(3) L=<l1, l2..., ln>, the vector of selected
cognitive level weights of educational
taxonomy where lj is the weight assigned
to the j-th cognitive level.

b) Problem Statement:

The problem is to assign module-level-weights,
X=<x11..., xmn>, so as to get the optimum value for
the Fitness Function (F).

Let w1 be the percentage of importance
assigned to module coverage and let w2 be the
percentage of importance assigned to taxonomy
level coverage. In order to define fitness, we have
defined the following terms:

1) The Weakness of a Unit WUi:

𝐹𝑜𝑟 𝑎 𝑢𝑛𝑖𝑡 𝑖, 𝑊𝑈𝑖 = ∑ 𝑥𝑖𝑗

𝑛

𝑗=1
 . (1)

2) The Fitness of a Unit (Funit):

𝐹𝑢𝑛𝑖𝑡 = ∑
𝑊𝑈𝑖

𝑇𝑀
.

𝑚

𝑖=1
 (2)

3) The Weakness of a Level (WLj):

𝐹𝑜𝑟 𝑎 𝑙𝑒𝑣𝑒𝑙 𝑗, 𝑊𝐿𝑗 = ∑ 𝑥𝑖𝑗 .
𝑚

𝑖=1
 (3)

4) The Fitness of a Level (Flevel):

𝐹𝑙𝑒𝑣𝑒𝑙 = ∑
𝑊𝐿𝑖

𝑇𝑀
.

𝑛

𝑗=1
 (4)

5) The Overall Fitness (F), of the Blueprint:

𝐹 =
(𝑤1 ∑ 𝐹𝑢𝑛𝑖𝑡 +𝑚

𝑖=1 𝑤1 ∑ 𝐹𝑙𝑒𝑣𝑒𝑙
𝑛
𝑗=1)

𝑤1 + 𝑤2
 . (5)

The term Question Paper Blueprint (QPT) has
been used interchangeably at many places in the
paper instead of Test Paper Blueprint (TPB).

3.1 Algorithm Design

Pareto-optimal TPB generation has been carried
out by Pareto-optimal TPB Generation Algorithm is
presented as Algorithm 1.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1627–1642
doi: 10.13053/CyS-24-4-3174

Dimple Valayil Paul1632

ISSN 2007-9737

Algorithm. 1. Pareto-optimal Evolutionary TPB

Generation Algorithm

Procedure Pareto-optimal QPT Generation (U,L, w1,w2, TM)

Input: U,L, w1,w2, TM

 U= <u1, u2,…, um>: Insturctor specified modules for template
generation

 L=< l1, l2,…, lm>: Instructor specified levels for template generation

 w1: percentage of importance assigned to module coverage

 w2: percentage of importance assigned to module coverage

 TM: Instructor specified total marks for QPT

 Output QPT, Pareto-optimal Evolutionary Approach based QPT

 //Assign module-level-weights for QOT

 for each ui in U (i=l to m) do

 for each lj in L (j=1 to n) do

 𝑥𝑖𝑗 ← (𝑢𝑖 x 𝑙𝑗)𝑇𝑀

//Evaluate-Unit-Fitness-Constraints

For i=l to m do

 𝑊𝑈𝑖 = ∑ 𝑥𝑖𝑗
𝑛
𝑗=1

 𝐹𝑢𝑛𝑖𝑡 =
𝑊𝑈𝑖

𝑇𝑀

end for

//Evaluate-Level-Fitness-Constrains

 For j=1 to n do

 𝑊𝐿 = ∑ 𝑥𝑖𝑗
𝑚
𝑖=1

 𝐹𝑙𝑒𝑣𝑒𝑙 =
𝑊𝐿𝑗

𝑇𝑀

end for

//Evaluate-Overall-Fitness-of-Template

𝐹 =
(𝑤1 ∑ 𝐹𝑢𝑛𝑖𝑡 +𝑚

𝑖=1 𝑤1 ∑ 𝐹𝑙𝑒𝑣𝑒𝑙
𝑛
𝑗=1)

𝑤1 + 𝑤2

end procedure

4 Experimental Data

Using the Goa University examination test papers
and the cognitive levels of Bloom's taxonomy,
multiple TPB's were generated for the subject of
Software Engineering (SE) offered at the third year
of the three years bachelor's degree course of
computer science (B.Sc. Computer Science):

Input Data:

1) Total marks= 50,

2) Selected module weights =05, 15, 15, 15,

3) Selected level weights = 15,15,05,15,

4) Population size=10,

5) Mutation rate=0.2,

6) Paper-setter Specified Number of
iterations=50,

7) percentage of importance assigned to module
coverage=0.50,

8) percentage of importance assigned to
taxonomy level coverage =0.50,

9) Expected number of TPBs=3.

5 Obtained Results for GA

SE Pareto-optimal TPB1 of Table 3, SE Pareto-
optimal TPB2 of Table 4 and SE Pareto-optimal
TPB3 of Table 5 below shows the three different
samples of generated TPB's for SE. Generation of
these TPB's were successful within 50 iterations.

5.1 Performance Analysis of TPB Generation

Table 6 shows the experimental results obtained
after iteratively generating the instructor specified
number of SE TPBs (3 in this case).

Table 3. SE Pareto-optimal TPB1

Module/Level know under appl anal
module
weight

Software
Architecture

2 1 1 1 05

Software Test.
Tech.

4 5 1 5 15

Software
Process

5 4 1 5 15

Software Conf.
Mgmt.

4 5 2 4 15

Level weight 15 15 5 15 50

Table 4. SE Pareto-optimal TPB2

Module/Level know under appl anala
module
weight

Software
Architecture

1 2 1 1 05

Software Test.
Tech.

5 4 2 4 15

Software
Process

4 5 1 5 15

Software Conf.
Mgmt.

5 4 1 5 15

Level weight 15 15 5 15 50

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1627–1642
doi: 10.13053/CyS-24-4-3174

Metaheuristic Algorithms for Designing Optimal Test Blueprint 1633

ISSN 2007-9737

Results indicate that the Pareto-optimal based
evolutionary algorithm has achieved optimal TPBs
at the 40th iteration.

5.2 Discussion for the Application of GA

A new approach for generating multiple set of test
papers using TPBs has been discussed. The main
advantage of Pareto-optimal based evolutionary
algorithm as compared to state of art evolutionary
algorithm is that the runtime delay of the
evolutionary genetic approach is significantly
reduced by avoiding randomized approach for
population generation.

We have carried out the experimental study of
Pareto-optimal evolutionary algorithm with a
population size of 10 with its mutation probability of
0.2, which successfully explored the search space
and optimally generated multiple sets of dynamic
blueprints. This new approach is important in
situations where instructors wish to generate
multiple set of test papers in a subject for the same
examination. Examinations such as in-semester,
end-semester etc., forces the proportionate
coverage of modules and cognitive levels.

Using multiple TPBs, there are lesser
probabilities of similar questions automatically
extracted during the question selection process.
Complexity of Pareto-optimal evolutionary
approach has been generally determined in terms
of the relationship between the search space and
the difficulty in finding a solution.

The search space in our multi-objective Pareto-
optimal evolutionary approach-based optimization
problem of dynamic blueprint generation is discrete
and two-dimensional; that is, a solution in the
search space is represented by two different types
of components such as the selected units of the
syllabus and the selected levels of Bloom's
taxonomy. Hence, complexity of this blueprint
generation algorithm is found to be proportional to
the number of units and the number of levels
specified for TPB generation.

6 Bi-Proportional Scaling Method for
Test Paper Blueprint Generation

The dynamic blueprints generated by the
previously discussed genetic approach is

Table 5. SE Pareto-optimal TPB3

Module/Level know under appl anal
module
weight

Software
Architecture

1 1 1 2 05

Software
Test. Tech.

5 5 1 4 15

Software
Process

5 5 1 4 15

Software
Conf. Mgmt.

4 4 2 5 15

Level weight 15 15 5 15 50

Table 6. Performance Analysis of Pareto-optimal

Evolutionary Algorithm

Evolutionary
Algorithm

Pareto-Optimal Evolutionary
Algorithm

Template
No.

Iteration
No.

Fitness
Template

No.
Iteration

No.
Fitness

t1,1 1 0.5001 t1,1 0.7045

t1,2 1 0.5212 t1,2 1 0.7066

t1,3 1 0.5334 t1,3 1 0.7077

t1,4 1 0.5475 t1,4 1 0.7079

t1,5 1 0.5511 t1,5 1 0.7093

t1,6 1 0.5613 t1,6 1 0.7108

t1,7 1 0.5733 t1,7 1 0.7127

t1,8 1 0.5812 t1,8 1 0.7149

t1,9 1 0.5884 t1,9 1 0.7158

t1,10 1 0.6094 t1,10 1 0.7198

t 2,1 2 0.6104 t 2,1 2 0.7202

t 2,2 2 0.6183 t 2,2 2 0.7209

t 3,1 3 0.6275 t 3,1 3 0.8223

t 4,1 4 0.6364 t 4,1 4 0.8291

t32,1 32 0.6603 t32,1 32 0.8717

t32,2 32 0.6686 t32,2 32 0.8726

t34,1 34 0.6911 t34,1 34 0.9313

t34,2 34 0.6936 t34,2 34 0.9326

t 40,1 40 0.7198 t 40,1 40 0.9971

t 40,2 40 0.7205 t 40,2 40 0.9988

t 40,2 40 0.7232 t 40,2 40 0.9997

t 45,1 45 0.7311 t 45,1 45 terminate

t 45,2 45 0.7365 t 45,2 45 terminate

t 50,9 50 0.7399 t50,9 45 terminate

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1627–1642
doi: 10.13053/CyS-24-4-3174

Dimple Valayil Paul1634

ISSN 2007-9737

successful in providing the flexibility for
constructing many qualitatively sound examination
test papers using the same blueprint. Pareto-
optimal based evolutionary algorithm has been
able to reduce the run-time delay, but still is unable
to guarantee always the generation of optimal
solutions within the user specified number of
iterations. In order to overcome the limitation, we
have introduced a matrix balancing technique that
automatically scales and balances all entries of
the TPB.

The Bi-proportional matrix balancing technique
performs iterative scaling and proportional fitting of
the TPB to satisfy the instructor specified number
of modules of the subject, instructor specified
number of levels of taxonomy and instructor
specified marks requirement of each examination.

The mathematical foundation and wide spread
application of matrix scaling problem has attracted
researchers from multiple disciplines to use it in
various applications. Estimating the entries of a
large matrix to satisfy a set of prior consistency
requirements is a problem that frequently occurs in
economics, transportation, statistics, regional
science, operation research and other areas
(Schneider and Zenios, 1990; Gake and
Pukelsheim, 2008; Speed, 2005).

There are several scaling problems, each with
different consistency requirements and therefore
the definition of a scaled matrix is problem
dependent (Mesnard, 2002; Lahr and
Mesnard 2004).

In general, matrix scaling is considered as a
mathematical scaling procedure, which can be
used to ensure that a matrix of data is adjusted so
that the scaled matrix agrees with the original row
and column constraints. The original matrix values
are adjusted gradually through repeated iterations
to fit it to user input row and column constraints. To
solve a problem using matrix scaling procedure,

we need to identify the marginal tables and the
seed cells.

The procedure alternates between fitting the
rows and fitting the columns of the seed cells to the
identified marginal table entries. Result of the fitting
process is a scaled matrix with corresponding set
of estimated cells probabilities or cell means
(Fienberg and Meyer, 2004). An L1-error function
is incorporated normally in matrix scaling problems
for measuring the distance between current row
and column sums and target row and column
marginal entries.

The procedure converges to bi-proportional fit if
and only if the L1-error tends to zero. In case of
non-convergence, a separate procedure to handle
error points (+e and -e) needs to be considered
(Pukelsheim, 2014; Oelbermann, 2013). The seed
cell entries can be of continuous variant or of
discrete variant types (Oelbermann, 2013). In the
continuous variant, non-negative real numbers are
permitted, where as in the discrete variant, non-
negative integers are considered.

Matrix scaling procedure with discrete variant is
found appropriate for TPB scaling. The procedure
alternates between fitting the modules and fitting
the cognitive levels and converges with a bi-
proportionally scaled and balanced TPB. Cognitive
processing levels of a TPB are decided on the
basis of the taxonomy that is selected for
each examination.

The scaled TPB so generated is used for
framing a test paper by performing an intelligent
selection of questions.

6.1 Problem Statement

Given a TPB for subject S of maximum marks TM
as shown in Table 1.10 represented as m × n
matrix where m is the number of units/modules
such that p={p1, p2,...,pm}, n is the number of

Fig. 1. Scaled TPB Generation using Bi-proportional Matrix Scaling Method

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1627–1642
doi: 10.13053/CyS-24-4-3174

Metaheuristic Algorithms for Designing Optimal Test Blueprint 1635

ISSN 2007-9737

levels such that q={q1, q2,...,qn} and each cell xi j
representing the weight assigned to the i-th module
for the i-th taxonomy level, the problem is to
dynamically generate a scaled tpb for the instructor
input number of modules m', instructor input
number of levels n' and instructor input total
marks tm.

6.2 Bi-proportional Matrix Scaling for
Dynamic TPB Generation

The main modules for scaled TPB generation
using bi-proportional matrix scaling procedure are
shown in Figure 1.

The term Question Paper Blueprint (QPT) has

been used interchangeably at many places in the
paper instead of Test Paper Blueprint (TPB).

The brief details of modules of Scaled TPB
generation are presented in different steps below:

Step 1. TPB-Seed-Cell-Generation: Extracts
TPB module-level-weights corresponding to
instructor input m' modules and n' levels and
represents the extracted module-level-weights as
Seed-Cells.

Step 2. Apply-Module-Constraints: Extracts
TPB module weights corresponding to instructor
input m' modules, normalizes the module weights
with respect to instructor input tm (total marks) and
represents the normalized module weights as
scaled-module-weights.

Step 3. Apply-Level-Constraints: Extracts TPB
level weights corresponding to instructor input n'

levels, normalizes the level weights with respect to
instructor input tm (total marks) and represent the
normalized level weights as scaled-level-weights.

Step 4. TPB-Seed-Cell-Scaling: Iteratively scale
the rows and columns of Seed-Cells to fit them to
the scaled-module-weights and scaled-level-
weights until the Seed-Cells meet the imposed
module, level and total marks constraints and
outputs the scaled matrix as tpb.

Step 5. TPB-Seed-Cell-Rounding: It applies
closest integer rounding rule on tpb.

Step 6. L1-error-Fixing: The L1-error
encountered during rounding procedure is
identified by counting along the rows and columns
of tpb and verifying how many of them are not yet
adjusted to the row totals and column
totals respectively.

If L1-error encountered is zero, then the
generated output is considered as an optimal
dynamic tpb. In all the other cases, the generated
output is a near-optimal tpb. L1-error converges by
proportionately adjusting the rows and columns
with +e and –e errors.

Algorithm Design Scaled TPB generation has
been carried out by processing six different
modules such as TPB-Seed-Cell-Generation,
Apply Module-Constraints, Apply Level-
Constraints, TPB-Seed-Cell-Scaling, TPB-Seed-
Cell-Rounding and L1-error-Fixing with a
comprehensive Scaled TPB Generation Algorithm
is Algorithm 2.

Table 7. SE test paper blueprint (SETPB)

Module/Level Know Under appl anal synth eval Cumulative-Module-Weigth

Legacy Systems 1 4 1 1 6 2 15

Requirement Eng. 1 6 2 2 2 2 15

Software Prot. 1 2 2 1 2 2 10

Software Arch. 1 1 1 4 2 6 15

Soft. Test. Tech 1 1 2 2 2 2 10

Software Process 1 1 2 2 2 2 10

Soft. Conf. Mgtm. 1 2 6 2 2 2 15

CASE tools 4 1 1 1 1 2 10

Cumulative-Level-
Weigth

11 18 17 15 19 20 100

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1627–1642
doi: 10.13053/CyS-24-4-3174

Dimple Valayil Paul1636

ISSN 2007-9737

Algorithm 2 Scaled TPB Generation using Bi-

proportional Matrix Scaling

Procedure Scaled QPT Generation (p, q, tm)

 Input: QPT, p, q, tm

 QTP: Instructor specified Question Paper Template

 p= <p1, p2,…,pm> : Instructor specified modules for scaling

 q= <q1, q2,…,qn> : Instructor specified levels for scaling

 tm: Instructor specified total marks for scaled QTP

Output: qpt, Scaled QPT

 //QTP-Seed-Cell-Generation

 for each p, in p (v=l to m´) do

 for each q, in q (w=l to n`) do x`vn ← xij;

 //Apply-Module-Constraints

 //Extract module-weights corresponding to m`modules

 for v=l to m`do u`, ←∑ (𝑥`𝑣𝑛);𝑛
𝑤=1

 //Normalize module-weights with respect to tm total marks

 for v=l to m`do u`v ←(u`v/∑ 𝑢`)𝑚
𝑣=1 x tm;

 // Apply Level-Constraints

// Extract level-weights corresponding to n levels

 for w=1 to n´ do 𝑙´𝑤 ← ∑ (𝑥´𝑚);𝑚
𝑣=1

//Normalize level-weights with respect to tm total marks

 for w=1 to n´do 𝑙´𝑤 ←
𝑙´𝑤

∑ (𝑙´𝑛);𝑛
𝑤=1

 x 𝑡𝑚

//QPT-Seed-Cells-Scaling

 flag_sum_mw=false;

 flag_sum_lw=false;

While (flag_sum_mw=false|| flag_sum_lw=false) do

//Check whether Seed-Cell satisfies imposed module constrains

 for w=1 to m´ do 𝑠𝑢𝑚_𝑚𝑤 ← ∑ 𝑥´𝑣𝑛
𝑛
𝑤=1 ;

 if u´v ≠ 𝑠𝑢𝑚_𝑚𝑤 then exit for

 else if 𝑣 = 𝑚´then

 flag_sum_mw=true;

end if

end for

//Check wheter Seed-Cell satisfies imposed level constraints

 for w=1 to n´ do 𝑠𝑢𝑚𝑙𝑤 ← ∑ 𝑥´𝑣𝑤 ;𝑚
𝑣=1

 if 𝑙´𝑤 ≠ 𝑠𝑢𝑚_𝑙𝑤 then exit for

 else if w=n´ then

 flag_sum_lw=true;

 end if

 end for

//perform iterative alternate scaling of seed-row and seed-

column in order to fit them to scaled moduled-weigths and

scaled-level-weight respectively

if (flag_sum_tw =false|| flag_sum_lw)false) then

// Seed-row-scaling

 for v=1 to m´do

 for w=1 to n´do (
𝑥´𝑣𝑤

∑ 𝑥´𝑣𝑛
𝑛
𝑤=1

) 𝑢´𝑣;

// Seed-column-scaling

 for v=1 to m´ do

 for w=1 to n´ do (
𝑥´𝑣𝑤

∑ 𝑥´𝑣𝑛
𝑚
𝑣=1

) 𝑙´𝑤;

end if

end while

Call QPT-Seed-Cell-Rounding

Call L1-error-Fixing

return qpt // a scaled QPT

end procedure

6.3 Experimental Results for Bi-proportional
Matrix Scaling

Experimental study was carried out using the
following case study. We have considered Bloom's
taxonomy for this study. Experimental data used
for the case study are as follows:

Table 8. SETPB-Seed-Cells

4 1 6 2

2 1 2 2

1 4 2 6

1 2 2 2

2 2 2 2

1 1 1 2

Table 9. SETPB-Scaled-Module-Weights

Module SE-mw

Legacy Systems 15

Software Prot. 7

Software Arch. 16

Soft. Test. Tech 8

Software Process 8

CASE tools 6

Total Marks 60

Table 10. SETPB-Scaled-Level-Weights

Level Under Anal Synth Eval
Total

marks

SE-lw 13 12 17 18 60

Table 11. Initial Stage of SETPB-Seed-Cell-Scaling

Start 13 12 17 18

15 4 1 6 2

7 2 1 2 2

16 1 4 2 6

8 1 2 2 2

8 2 2 2 2

6 1 1 1 2

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1627–1642
doi: 10.13053/CyS-24-4-3174

Metaheuristic Algorithms for Designing Optimal Test Blueprint 1637

ISSN 2007-9737

a) S = Software Engineering (SE), a subject
offered at the third year of the three year
bachelor's degree course of computer science
(B.Sc Computer Science) at Goa University,

b) m=8; m'=6,

c) n=6; n'=4,

d) p = {legacy systems, requirement engineering,
software prototyping, software architecture,
software testing techniques, software
processes, software configuration

Table 12. Iterative Stages of SETPB-Seed-Cell-Scaling

Row Adjustement Column Adjustement

Iteration 1

 12.19 12.56 16.87 18.38 13 12 17 18

15 4.62 1.15 6.92 2.31 15.26 4.92 1.10 6.98 2.26

7 2.00 1.00 2.00 2.00 7.06 2.13 0.96 2.02 1.96

16 1.23 4.92 2.46 7.38 15.73 1.31 4.70 2.48 7.23

8 1.14 2.29 2.29 2.29 7.94 1.22 2.18 2.30 2.24

8 2.00 2.00 2.00 2.00 8.02 2.13 1.91 2.02 1.96

6 1.20 1.20 1.20 2.40 5.99 1.28 1.15 1.21 2.35

Iteration 2

 12.93 12.07 16.92 18.09 13 12 17 18

15 4.84 1.08 6.86 2.22 15.04 4.87 1.08 6.89 2.21

7 2.11 0.95 2.00 1.94 7.01 2.13 0.94 2.01 1.93

16 1.34 4.78 2.52 7.36 15.96 1.34 4.76 2.54 7.32

8 1.23 2.20 2.32 2.25 7.99 1.23 2.19 2.33 2.24

8 2.13 1.91 2.01 1.95 8.00 2.14 1.90 2.02 1.95

6 1.28 1.15 1.21 2.36 6.00 1.29 1.14 1.22 2.34

Iteration 3

 12.99 12.01 16.99 18.01 13 12 17 18

15 4.85 1.07 6.87 2.20 15.01 4.36 1.07 6.87 2.20

7 2.12 0.94 2.00 1.93 7.00 2.13 0.94 2.01 1.93

16 1.35 4.77 2.54 7.34 15.99 1.35 4.77 2.54 7.34

8 1.24 2.19 2.33 2.25 8.00 1.24 2.19 2.33 2.24

8 2.14 1.90 2.02 1.94 8.00 2.14 1.89 2.02 1.94

6 1.29 1.14 1.22 2.35 6.00 1.29 1.14 1.22 2.34

Iteration 4

 13.00 12.00 17.00 18.00 13 12 17 18

15 4.85 1.07 6.87 2.20 15.01 4.85 1.07 6.87 2.20

7 2.13 0.94 2.01 1.93 7.00 2.13 0.94 2.01 1.93

16 1.35 4.77 2.54 7.34 15.99 1.35 4.77 2.55 7.34

8 1.24 2.19 2.33 2.24 8.00 1.24 2.19 2.33 2.24

8 2.14 1.89 2.02 1.94 8.00 2.14 1.89 2.02 1.94

6 1.29 1.14 1.22 2.35 6.00 1.29 1.14 1.22 2.34

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1627–1642
doi: 10.13053/CyS-24-4-3174

Dimple Valayil Paul1638

ISSN 2007-9737

management, CASE tools}; p'= {legacy
systems, software prototyping, software
architecture, software testing techniques,
software configuration management,
CASE tools},

e) q = {knowledge(know), understanding(under),
application(appl), analysis(anal),
synthesis(synth), evaluation(eval)}; q' =
{understanding, analysis, synthesis,
evaluation},

f) TPB = SETPB, an end semester TPB of SE
for maximum marks, TM = 100 as shown in
Table 7; tm = 60.

Sequence of steps carried out for Scaled
SETPB Generation is as below:

Step 1. SETBP-Seed-Cell-Generation: SETPB
seed cells are formulated by extracting SETPB
module-level-weights corresponding to six
selected modules and four selected levels.
SETPB-Seed-Cells formulated are represented in
Table 8.

Step 2. Apply-Module-Constraints: SETPB
scaled-module-weights are generated by
normalizing the module weights of modules such
as legacy systems, software prototyping, software

architecture, software testing techniques, software
configuration management and CASE tools with
respect to 60 marks. SE-scaled-module-weights,
SE-mw generated is shown in Table 9.

Step 3. Apply-Level-Constraints: SETPB
scaled-level-weights are generated by normalizing
the level weights of levels such as understanding,
analysis, synthesis and evaluation with respect to
60 marks. SE-scaled-level-weights, SE-lw
generated are represented in Table 10.

Step 4. SETPB-Seed-Cell-Scaling: SETPBs
iterate alternate scaling starts by merging the SE-
Seed-Cells with SE-mw and SE-lw. Initial stage of
SE-Seed-Cell scaling is shown in Table 11.

SETPBs iterative scaling continues until the
scaled SETPB, SEtpb fulfills SE-mw and SE-lw.
Iterative stages of SE-Seed-Cell-Scaling are
represented in Table 12. SETPB iterative alternate
bi-proportional scaling terminates at the end of
fourth iteration.

Step 5. TPB-Seed-Cell-Rounding: Table 13
represents the scaled and rounded integer values
of SE-Seed-Cells at the end of fourth iteration.

Step 6. L1-error-Fixing: The near optimal SE-
Seed-Cells of Table 13 get proportionately
adjusted with +1 and -1 L1-error. The SE-Seed-
Cells generated after fixing L1-error are shown in
Table 14. The resulting optimal SE-tpb is shown
Table 15.

6.4 Discussion for Bi-proportional Matrix
Scaling

This work focused on an incremental approach for
dynamic test paper generation by using bi-
proportional matrix scaling method. The main
advantage of this approach is that it performs
automatic scaling and balancing of all entries of the
TPB by carrying out iterative scaling and
proportional fitting procedure.

The procedure alternates between fitting the
modules and fitting the cognitive levels and
converges with a bi-proportionally scaled and
balanced TPB. Bi-proportional matrix scaling has
been found successful in generating a scaled TPB
with lesser computational resources.

Table 13. Scaled and Rounded Seed-Cell-Scaling

 13 12 17 18

15 5 1 7 2

7 2 1 2 2

16 1 5 3 7

8 1 2 2 2

8 2 2 2 2

6 1 1 1 2

Table 14. SE-Seed-Cells after L1-error Fixing

 13 12 17 18

15 5 1 7 2

7 2 1 2 2

16 1 5 3 7

8 2 2 2 2

8 2 2 2 2

6 1 1 1 3

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1627–1642
doi: 10.13053/CyS-24-4-3174

Metaheuristic Algorithms for Designing Optimal Test Blueprint 1639

ISSN 2007-9737

An L1-error function is incorporated normally in
matrix scaling problems for measuring the distance
between current row and column sums and target
row and column marginal entries. The procedure
converges to bi-proportional fit if and only if the L1-
error tends to zero.

We have used matrix scaling with discrete
variant, which iteratively scales the TPB, assigns
integer valued marks (integer round up operation)
under different levels of a module, x L1-error by
proportionately adjusting the candidate rows and
columns with +1 and -1 values respectively and
generates a bi-proportionally scaled and balanced.
The dynamic TPB so generated can drastically
reduce the time and e ort of the user while ensuring
test paper quality also.

7 Conclusion

Reforms in the educational system emphasize
more on continuous assessment. Continuous
assessment requires the generation of dynamic
test papers for different examinations.
Automatically generating dynamic TPB, satisfying
instructors specified number of modules and
instructor specified number of taxonomy levels,
has been found to be very important in situations
where novice instructors wish to formulate test
papers for different examinations.

The evolutionary approach of section 2.3 has
been able to generate population of TPBs, but
encountered significant run-time delay during the
iterative population generation. Alternatively,
Pareto-optimal based evolutionary algorithm of
section 2.3 has been able to reduce run-time delay,
but still was unable to always guarantee generation

of optimal solutions within user specified number of
iterations.

In order to overcome these limitations, bi-
proportional matrix balancing technique has been
designed and implemented. The bi-proportional
matrix balancing technique performs iterative
scaling and proportional fitting of the TPB to satisfy
the instructor specified number of modules of
subject, instructor specified number of levels of
taxonomy and Instructor specified marks
requirement of each examination.

The best advantage of bi-proportional scaling
technique is that it avoids re-execution of
computationally expensive multi-objective
evolutionary algorithms for generating different
variants of the successfully generated evolutionary
approach based optimal blueprint.

Finally, our experimental analysis concludes
that evolutionary approach and Pareto-optimal
evolutionary approach are efficient in generating
new and different types of blueprint, whereas
matrix scaling procedure is suitable for re-
generating different variants of an existing
evolutionary algorithm based TPB with lesser
computational resources.

References

1. Bloom, B.S., Engelhart, M.D., Furs, E.J., Hill,
W.H., &. Krath-Wohl, D.R. (1956). Taxonomy of

educational objectives: The classification of
educational goals, Handbook I: Cognitive domain.
David McKay Company.

2. Babalola, J.B. (2011). Knowledge Management:
Principles and Practice. In A. O. Ayeni, U. G.
Emetarom, E. O. Omoregie, J. A. Undie and J. E.

Table 15. Scaled SEtpb

Modul/Level Under Anal Synth Eval
Cumulative-

Module-Weight

Legacy Systems 5 1 7 2 15

Software prot. 2 1 2 2 7

Software Arch 1 5 3 7 16

Soft. Test. Tech 2 2 2 2 8

Soft. Conf. Mgmt. 2 2 2 2 8

CASE tools 1 1 1 3 6

Cumulative-Level-Weight 13 12 17 18 60

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1627–1642
doi: 10.13053/CyS-24-4-3174

Dimple Valayil Paul1640

ISSN 2007-9737

Okon (eds.). Knowledge and Learning
Management [KALM]: Principles, Opportunities,
Application and Challenges. Ibadan: His Lineage
Publishing House.

3. Caramia, M. & Olmo, D. (2008). Multi-Objective

Management in freight Logistics, Increasing
Capacity, Service Level Safety with Optimization
Algorithms. Multi-Objective Optimization, Springer.

4. Coello-Coello, C., Lamont, G.B., & Veldhuizen,
D.A.V. (2007). Evolutionary Algorithms for Solving
Multi-Objective Problems. Genetics and
Evolutionary Computation Series, Springer.

5. Dascalu, M. (2011). Application of Particle Swarm

Optimization to Formative E-Assessment in Project
Management. Informatica Economica Journal, Vol.
15, No. 1, pp. 48–61.

6. Deb, K. (2001). Multi-Objective Optimization Using

Evolutionary Algorithm. John Wiley.

7. Deb, K. & Gupta, H. (2005). Searching for Robust

Pareto-Optimal Solutions in Multi-Objective
Optimization Evolutionary Multi-Criterion
Optimization. MO´05. Lecture Notes in Computer
Science, Vol. 3410, pp. 150–164. DOI:10.1007/978-

3-540-31880-4_11.

8. Enyi, D. & Odoemenam. R.I. (2011).

Administrators Perspective of Challenges in
Implementing Knowledge and Learning
Management Principles in Nigerian Colleges of
Education. In Ayeni, A.O., Emetarom, U.G.,
Omoregie, E.O., Undie, J.A., & Okon, J.E. (eds.).

Knowledge and Learning Management [KALM]:
Principles, Opportunities, Application and
Challenges, Ibadan: HIS Lineage Publishing House.

9. Fienberg, S.E. & Meyer, M.M. (2004). Iterative
proportional fitting. Encyclopedia of Statistical
Sciences, John Wiley.

10. Fogel, D.B. (1994). Applying Evolutionary

Programming to Selected Control Problems.
Computers Mathematics with Applications, Vol. 27,
No. 11, pp. 89–104. DOI:10.1016/0898-1221(94)
90100-7.

11. Fogel, D.B. (1995). A Comparison of Evolutionary

Programming and Genetic Algorithms on selected
Constrained Optimization Problems. Simulation,
Vol. 64, No. 6, pp. 397–404. DOI:10.1177/0037
54979506400605.

12. Gandomi, A., Yang, H., Talatahari, X.S.S., & Alavi,
A.H. (2013). Meta-heuristics in Modeling and
Optimization, Metaheuristic Applications in
Structures and Infrastructures. pp. 1–24, Elsevier.

13. Gaffke, N. & Pukelsheim, F. (2008). Divisor

methods for proportional representation systems: An
optimization approach to vector and matrix

apportionment problems. Mathematical Social
Sciences, Vol. 56, No. 2, pp. 166–184. DOI:

10.1016/j.mathsocsci.2008.01.004

14. Guang, C., Yuxiao, D., Wanlin, G., & Lina, Y.
(2010). An implementation of an automatic
examination paper generation system. Mathematical
and Computer Modeling, Vol. 51, No. 11–12, pp.
1339–1342. DOI:10.1016/j.mcm.2009.11.010.

15. Holland, J.H. (1975). Adaption in Natural and

Artificial Systems: An Introductory Analysis with
Applications to Biology, Control and Artificial
Intelligence. University Press of Michigan.

16. Hu, J., Sun, Y., & Xu, Q. (2011). The Genetic

Algorithm in the Test Paper Generation, Web
Information Systems and Mining. International
Conference on Web Information Systems and
Mining, Vol. 6987, pp. 109–113.

17. Huang, M., Tang, L., & Liang, X. (2009). Research

on Intelligent Test Paper Generation Based on
Improved Genetic Algorithm. Proceedings of IEEE
Chinese Control and Decision Conference (CCDC),
pp. 1884–1886. DOI:10.1109/GCIS.2010.34.

18. Ho, T.F., Yin, P.Y., Hwang, G.J., Shyu, S.J., &
Yean, Y.N. (2009). Multi-Objective parallel test-

sheet composition using enhanced particle swarm
optimization. Educational Technology Society, Vol.

12, No. 4, pp. 193–206.

19. Hwang, G.J., Lin, B.M.T., & Lin, T.L. (2006). An

Effective Approach for Test-Sheet Composition from
Large-Scale Item Banks. Computers Education, Vol.
46, No. 2, pp. 122–139. DOI:
10.1016/j.compedu.2003.11.004.

20. Hwang, G.J., Chu, H.C., & Lin, J.Y. (2008). An

innovative parallel test sheet composition approach
to meet multiple assessment criteria for national
tests. Computers and Education, Vol. 51, No. 3, pp.
1058–1072. DOI:10.1016/j.compedu.2007.10.006.

21. Jun, N. (2019). Research on Optimizing Intelligent

Test Paper Forming Strategy Based on Improved
Genetic Algorithms. Proceedings of the
International Conference on Artificial Intelligence
and Computer Science (AICS), pp. 117–120. DOI:

10.1145/3349341.3349387.

22. Karaboga, D. (2005). An Idea Based On Honey Bee

Swarm for Numerical Optimization, Technical
Report-TR06. ResearchGate, Erciyes University,
Engineering Faculty, Computer Engineering
Department.

23. Kennedy, J. & Eberhart, R.C. (1995). Particle

swarm optimization. Proceedings of IEEE
International Conference on Neural Networks
(ICNN), pp. 1942–1948.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1627–1642
doi: 10.13053/CyS-24-4-3174

Metaheuristic Algorithms for Designing Optimal Test Blueprint 1641

ISSN 2007-9737

https://dl.acm.org/doi/proceedings/10.1145/3349341
https://dl.acm.org/doi/proceedings/10.1145/3349341
https://dl.acm.org/doi/proceedings/10.1145/3349341

24. Khairuddin, N.N. & Hashim, K. (2008).

Application of Bloom's Taxonomy in Software
Engineering Assessments. Proceedings of the 8th
WSEAS International Conference on Applied
Computer Science, pp. 66–69.

25. Krathwohl, D.R. (2002). A revision of Bloom's
taxonomy: An overview. Theory into Practice, Vol.
41, No. 4, pp. 212–219. DOI:10.1207/s15430421
tip4104_2.

26. Lahr, M. & Mesnard L. (2004). Bi-proportional

techniques in input-output analysis: table updating
and structural analysis. Economic Systems
Research, Vol. 16, No. 2, pp. 115–134. DOI:

10.1080/0953531042000219259.

27. Lin, H.Y., Su, J.M., & Tseng, S.S. (2012). An

adaptive test sheet generation mechanism using
genetic algorithm. Mathematical Problems in
Engineering, pp. 1–18.

28. Shushu, L. & Fengying, W. (2010). Strategy and

Realization of Auto-generating Exam Paper Based
on Genetic Algorithm. Proceedings of IEEE
International Conference on Artificial Intelligence
and Computational Intelligence (AICI), pp. 478–482.
DOI:10.1109/AICI.2010.220.

29. Liu, Y., Wang, Y., Du, Y., & Zhang, J. (2008). Multi-

object intellectual test paper assembling based on
adaptive operator genetic algorithm. Computer
Applications, No. S1, pp. 22–24.

30. Lirong, X. & Jianwei, S. (2010). Notice of

Retraction Automatic Generating Test Paper System
Based on Genetic Algorithm. Proceedings of Second
IEEE International Workshop on Education
Technology and Computer Science (ETCS), pp.
272–275. DOI: 10.1109/ETCS.2010.250.

31. Mesnard, L.D. (2002). Normalizing bi-proportional
methods. Annals of Regional Science, Vol. 36, No.
1, pp. 139–144.

32. Ming, L., Jin-gang, M., & Jing, Z. (2009).

Automatic generating test paper strategy based on
improved particle swarm optimization. Proceedings
of IEEE International Symposium on IT in Medicine
and Education (ITIME), pp. 711–715. DOI:10.1109/

ITIME.2009.5236329.

33. Oelbermann, K.F. (2013). Alternate Scaling

algorithm for bi-proportional divisor methods.
Mathematical Social Sciences, Vol. 80, pp. 25–32.
DOI:10.1016/j.mathsocsci.2016.02.003.

34. Peipei, G., Niu, Z., Chen, X., & Chen, W. (2012). A

test sheet generating algorithm based on intelligent
genetic algorithm and hierarchical planning.
Proceedings of SPIE 8334, Fourth International

Conference on Digital Image Processing (ICDIP).
DOI:10.1117/12.966822.

35. Pukelsheim, F. (2014). Bi-proportional Matrix

Scaling and the Iterative Proportional Fitting
Procedure. Proceedings of Annals of Operation
Research, pp. 269–283.

36. Pukelsheim, F. (2012). An L1-analysis of the
Iterative Proportional Fitting procedure. University
of Augsburg.

37. Schneider, M. & Zenios, S. (1990). A comparative

study of algorithms for matrix balancing. Operations
Research, Vol. 38, No. 3, pp. 439–455. DOI:
10.1287/opre.38.3.439.

38. Speed, T.P. (2005). Iterative Proportional Fitting,
Encyclopedia of Biostatistics. Wiley Online Library.

39. Suskie, L. (2009). Assessing student learning: A
common sense guide.Jossey-Bass.

40. Srinivas, M. & Patnaik, M. (1994). Adaptive

Probabilities of Crossover and Mutation in Genetic
Algorithms. IEEE Transactions on Systems, Man
and Cybernetics, Vol. 24, No. 4, pp. 656–667. DOI:
10.1109/21.286385.

41. Talbi, E.G. (2009). Metaheurisitics: From Design to
Implementation. Wiley.

42. Thiele, L. & Zitzler, E. (1999). Multiobjective

evolutionary algorithms: a comparative case study
and the strength of Pareto approach. IEEE
Transactions on Evolutionary Computation, Vol. 3,
No. 4, pp. 257–271. DOI: 10.1109/4235.797969.

43. Yeh, L.C. & LIN, S.P. (2003). The research of
Bloom's taxonomy for educational objects. Journal
of Education Research, Vol. 105, pp. 94–106.

44. Yin, P.Y., Chang, K.C., & Hwang, G.J. (2006). A

particle swarm optimization approach to composing
serial test sheets for multiple assessment criteria.
Educational Technology Society, Vol. 9, No. 3,
pp. 3–15.

45. Zhi, F.L., Ji, S., & Jia, L. (2010). Strategy and

Applied Research of Multi-Constrained Model of
Automatic Test Paper Based on Genetic Algorithm.
Applied Mechanics and Materials, Vol. 37–38, pp.
1223–1230. DOI:10.4028/www.scientific.net/AMM.3
7-38.1223.

46. Zitzler, E., & Deb, K. (2008). Evolutionary Multi-
Objective Optimization. Proceedings of Genetic and
Evolutionary Computation Conference-GECCO, pp.
2467–2486.

Article received on 21/03/2019; accepted on 25/07/2020.

Corresponding author is Dimple Valayil Paul.

Computación y Sistemas, Vol. 24, No. 4, 2020, pp. 1627–1642
doi: 10.13053/CyS-24-4-3174

Dimple Valayil Paul1642

ISSN 2007-9737

