
Do Novice Testers Satisfy Technique Prescription? An Empirical
Study

Diego Vallespir, Carmen Bogado, Silvana Moreno

Universidad de la República,
Computer Science Institute,

Uruguay

{dvallesp, smoreno}@fing.edu.uy, cmbogado@gmail.com

Abstract. White box unit testing focus on examining
code portions at unit level. Each testing technique
considers and examines specific aspects of the code
under test. We have studied whether the test case
sets developed by novice testers who apply white box
techniques meet the coverage criteria they prescribe.
We have conducted an experiment that uses the
Statement Coverage (SC) and All Uses (AU) techniques.
21 subjects applied the testing techniques under study,
10 applied SC and 11 applied AU. We analyzed the
coverage level achieved by each test case set. 9
out of 10 subjects that apply SC managed to meet
the coverage criterion prescribed by the technique.
However, none of the 11 subjects who used AU did.
This result has implications on professional practice and
testing teaching and education.

Keywords. Test technique satisfaction, white box
testing, test coverage, empirical study.

1 Introduction

Each white box testing technique prescribes the
examination of certain code portions. The
prescription of a white box technique is defined
by the code coverage. The coverage determines
which code portions are expected to be executed
with the set of test cases generated with the
technique. For example, the Statement Coverage
technique prescribes that all the statements of the
code should be executed at least once.

We shall say that a set of test cases satisfies
the prescription of a testing technique if the set
meets the coverage criterion it establishes. When
a tester develops a set of test cases that satisfies

a certain technique, we shall say that the tester
satisfies the technique.

We assume that different white box testing
techniques may be more or less difficult to satisfy.
In other words, we believe that developing test
cases that satisfy a specific technique might be
more complex than developing test cases that
satisfy another technique. For example, it seems
more complex to develop a set of test cases that
executes all the definition-use relations than one
that executes all the statements.

The more complex the criterion established by a
technique is it increases not only the difficulty in the
development of the set of test cases, but also the
risk that the set of test cases might not satisfy the
coverage prescribed by the technique.

In this work we study whether novice testers who
apply white box techniques manage to satisfy them
and if there is any difference in the satisfaction of
the prescriptions between techniques with different
coverage criteria.

Satisfying a technique is important from the
point of view of testing professional practice. On
the one hand, not satisfying it might result in a
decrease in the effectiveness of the technique.
On the other hand, the fact that one technique
might be more difficult to satisfy than another one
might indicate the need for specific training for that
technique. Testing is much more important now
than before, considering, for example, continuous
integration and continuous delivery. In these
context, the continuous testing emerged as an
important activity [13]. Continuous testing should

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1429–1442
doi: 10.13053/CyS-23-4-3159

ISSN 2007-9737

assess the coverage achieved by a tester, and it is
important to know how easy (or not) it would be to
achieve it.

From the point of view of research it is also
important to know if the testers manage to satisfy
the techniques. Many controlled experiments with
testing techniques have used human subjects.
Normally the conclusions of these experiments
are: “Technique A has been more effective than
technique B.” In this context, it is worth wondering
whether both techniques have been used correctly
by the subjects, that is to say, whether the testers
have managed to satisfy the techniques.

We have conducted an experiment with State-
ment Coverage (SC) and All Uses (AU) techniques.
We have chosen a white box technique that is
easy to apply (SC) and one that is much more
complex (AU). We expect that using techniques of
a very different degree of difficulty, in case there
are differences in the level of satisfaction achieved
by the testers, these will be more easily noticed.

In the experiment, a group of advanced under
degree students of Computer Science of the
UdelaR (Universidad de la República) develops
test cases using SC and AU for testing a simple
program written in Java. We analyze the coverage
reached by the set of test cases developed by
every subject to know if it satisfies the technique
used to develop it.

This paper is organized in the following way.
Section 2 presents the background of SC and AU
techniques. Section 3 presents the related work.
The experiment setup is presented in section 4.
The results are presented in section 5 and the
discussion in section 6. Section 7 presents the
threats to validity. Finally, section 8 presents the
conclusions and future work.

2 Background: Sentence Coverage
and All Uses

The SC and AU techniques that are used in this
experiment are presented in this section. SC is
based on control flow and AU is based on data flow.

In order to satisfy the SC technique the set of test
cases must execute, at least once, each sentence

of the code. Since this technique is widely known,
we do not go deeper into it here.

The AU technique expresses the coverage of
testing in terms of the definition-use associations of
a program. A definition of a variable occurs when
a value is stored in the variable (x := 7). An use of
a variable occurs when the value of the variable is
read (used). This can be either a p-use or a c-use.
A p-use is the use of a variable in a bifurcation of
the code (if (x==7)). A c-use is when the use is not
in a bifurcation. For example, in (y := 7 + x) there is
a c-use of x (note that here there is also a definition
of y).

The control flow graph is a representation
through a graph of the different execution paths
that can be executed in a program. The nodes
of the graph represent the sentences (or code
blocks) and the edges the bifurcations (if, for, while,
etc). We will use ij to indicate a specific node of
the graph.

An execution path in the control flow graph can
be represented as a sequence of nodes. For
example, i1, i4, i7, represents an execution path
where node 1 is executed first, then node 4 and
finally, node 7.

A definition of a variable x in a node id achieves
a use of the same variable in a node iu, if there is a
definition clear path from id to iu in the control flow
graph, the path is executable and there is an use
of x in node iu.

A path i1, i2,. . . ,in is a definition clear path for
a variable x if the variable x is not defined in the
intermediate nodes of the path (i2,. . . ,in−1).

AU requires that at least one definition clear path
be executed from each definition (of every variable)
to each achievable use (of the same variable).

The classical definitions of the techniques based
on data flow and particularly AU are presented in
an article by Rapss and Weyuker [14].

In Object Oriented languages the basic testing
unit is the class. It is necessary to test its methods
in an individual and in a collective way, so as to test
the interactions generated through the sequence
of calls originated by the invocation of a particular
method. AU can be applied both for the tests of
individual method belonging to a class and for the
methods that interact with other methods of the
same class or of other classes.

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1429–1442
doi: 10.13053/CyS-23-4-3159

Diego Vallespir, Carmen Bogado, Silvana Moreno1430

ISSN 2007-9737

The tests of a class in AU can be carried out in
two levels: Intra-method (Intra) and Inter-method
(Inter). In Intra, only the method under test is
considered for the code coverage. Therefore,
in this case, the methods that interact with the
method under test are not considered at the
moment of developing the test cases. On the
other hand, in Inter, the methods that interact
with the method under test are considered for the
code coverage.

Two types of definition-use pairs to be tested
are identified in relation to these levels. The
Intra-method Pairs are those which take place in
individual methods and test the data flow limited to
such methods. Both definition and use belong to
the method under test. Inter-method Pairs occur
when there is interaction between methods. They
are pairs where the definition belongs to a method
and the corresponding use is located in another
method that belongs to the chain of invocations.

The subjects of the experiment that use AU
technique apply the two types of use-definition
pairs. In other words, in the context of this
experiment, the AU technique is made up of the
two types of pairs.

In most of the literature that presents techniques
based on data flow, the examples that are given
contain simple variables such as integers and
Booleans. However, criteria that normally are
not treated should be defined at the moment of
applying these techniques in arrays or even more
difficult in objects. Establishing these criteria is
essential in order to know under which conditions
the technique is applied. Different conditions
can produce different results in the effectiveness
and cost of AU since in fact, they are different
techniques with the same name. Many of these
conditions refer to how the Inter-method Pairs
should be considered. This experiment establishes
the conditions for the application of the AU
technique based on what is proposed in [9, 10, 7].

We only present one of the set criteria as
an example: how to consider the arrays. An
assignment of an element in a position “x” of an
array “a” (a[x]=something), consists of a definition
of the variable “a” and a use of each variable that
appears in the expression “x”. It should be noted
that a use of the complete array is considered and

not only the use of the element “a[x]”. For an
occurrence of “a[x]” that is not a definition of “a”
(y=a[x]), it determines a use of “a” and a use of
each variable that appears in the expression “x”.
This simplifies the tester’s work since we consider
the use or definition at array level as a whole and
not by element. That is to say, we consider there is
a use of “a” without considering how “x” evaluates
to determine which specific element of the array is
being used or defined.

3 Related Work

There is a need to have empirical evidence about
the effectiveness of the different testing techniques
[8, 5]. However, after 25 years of experiments
referring to testing techniques, Juristo et al. came
to the conclusion that there is limited knowledge
of them [11]. Runeson et al. also reach similar
conclusions [16].

Within that limited knowledge little do we know
about the extent to which testers manage to
satisfy the prescriptions of the testing techniques.
Counting on this knowledge is interesting from
at least two points of view. On the one hand,
it will provide an idea of how complex to apply
the different testing techniques are. On the other
hand, it might question the affirmations of different
controlled experiments about the effectiveness
and cost of testing techniques. It is worth
mentioning that some experiments evaluate the
application of the technique independently from
whether the technique was used correctly or not.
Therefore, the results of effectiveness observed
might correspond to a bad application and not the
real effectiveness of the technique if it is applied
satisfying its prescription.

Basili et al., in one of the first experiments
in testing techniques already established the
importance of ensuring 100% coverage when
evaluating a white box technique [2], some
controlled experiments carried out later have not
had that requirement.

Also, Briand et al. [6], claim that “Another
important practical issue when planning a testing
experiment is related to the fact that when
assessing a testing technique, we need to ensure
that by the time the experiment completes, the

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1429–1442
doi: 10.13053/CyS-23-4-3159

Do Novice Testers Satisfy Technique Prescription? An Empirical Study 1431

ISSN 2007-9737

testing technique has been fully and properly
applied. In other words, if a coverage criterion is
involved, we need to make sure we achieve 100
percent coverage if we want the cost-effectiveness
results to be usable.” We do not share this
statement completely.

Although it is interesting to study the techniques
when they are totally satisfied by the testers, it
is also interesting to study them in their actual
application (where many times they are not totally
satisfied for different reasons).

The usefulness of the results will depend on how
much the context of the experiment is specified,
like, for example, whether or not the satisfaction of
the prescriptions of the techniques was controlled
by the testers of the experiment.

We have not found in the literature articles
that specifically address the satisfaction of the
techniques by the testers. However, we did find
articles indirectly related to our work.

Several articles, and also a review of the
literature show that the professional experience is
one of the factors that affect the effectiveness of
the testing techniques [2, 3, 1, 11]. One of the
questions that arises is whether the experience
is related to the satisfaction of the technique.
Furthermore, is the experience related to the
correct use of the technique and the correct use
of the technique to the effectiveness?

Juristo et al. presented a study of a set of
eight replications of an experiment, in which they
differentiate the technique and its use by the
subjects. The replications were not identical; there
is a set of context factors that varied. They made
the following propositions [12]:

— Lack of experience in programming diminishes
the effectiveness of the decision coverage
technique.

— Knowledge of the technique could affect its
effectiveness.

— Techniques could be less effective if the
subjects are not motivated.

— Techniques are more effective if the work is
done in pairs.

— Work done under pressure does not seem
to affect the effectiveness of the decision
coverage technique.

— Tiredness does not seem to affect the
effectiveness of the technique.

— Having previous information of the program
does not seem to affect the effectiveness of
the technique.

In the future, we might ask ourselves if each of
these situations is related to the satisfaction of the
technique. For example, does lack of experience
in programming diminish the satisfaction of the
technique by the tester because it does not reach
the prescribed coverage? Or, if the work is done in
pairs, does satisfaction of the prescribed coverage
criterion of the technique increase compared to the
work done by only one tester?

Barner et al. detected that the introduction
of code coverage tools during tests improves
the test coverage and that the impact made by
the introduction of the tool was different among
senior staff from junior staff [4]. Rothermel et al.
present that the introduction of a coverage tool
when the testers use the criterion definition-use,
improves the coverage reached [15]. These
experiments show that the use of code coverage
tools might have an impact on the satisfaction of
the technique prescription. They falso show that
testers not always satisfy the testing techniques
they use. In our experiment testers do not use code
coverage tools.

4 Experiment Setup

4.1 Goals, Hypothesis and Metrics

The goal of our experiment is to compare the
test cases developed by a group of testers
using the SC and AU techniques as regards the
satisfaction level of the coverage criteria prescribed
by the techniques.

The satisfaction level of a coverage criterion
of a set of test cases is defined as the
coverage percentage achieved in relation to the
one prescribed by the technique. This percentage
is calculated as the number of items (of the

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1429–1442
doi: 10.13053/CyS-23-4-3159

Diego Vallespir, Carmen Bogado, Silvana Moreno1432

ISSN 2007-9737

type prescribed by the technique) covered by the
set of test cases divided by the total number of
executable items (of the type prescribed by the
technique) of the program under test. A set of test
cases satisfies a technique when the satisfaction
level of the coverage criterion prescribed by the
technique is equal to 100%:

satisfaction level =
covered items

executable total items
× 100.

The items depend on the technique that is
being considered. For the SC techniques the
items are statements in the program. One of
the response variables of our experiment is the
number of statements covered by a set of test
cases developed by a tester who used the SC (M1)
technique. Besides, we must consider the total
number of statements of the code being tested
(M2)

In the case of AU the items are the definition-use
pairs that contain at least one executable
definition-clear path, and both the intra-method
and the inter-method are considered. A response
variable of the experiment is the number of
definition-use pairs with at least one definition-clear
path covered by a set of tests developed by
a tester who used the AU technique (M3).
We should also consider the total number of
definition-use pairs that contains at least one
executable definition-clear paths of the code being
tested (M4).

Our research question is “What is the level of
satisfaction of a coverage criterion achieved by
a set of tests developed by a tester?” From
this question we derive the following null and
alternative hypotheses.

The null hypothesis establishes that the median
of the level of satisfaction of the techniques is the
same. The corresponding alternative hypothesis
indicates that the medians are different:

H0 = Mdn(L. Sat. SC) = Mdn(L. Sat.AU),

H1 = Mdn(L. Sat. SC) <> Mdn(L. Sat.AU).

The factor of this experiment is the testing
technique and the alternatives are the techniques
to be evaluated: SC and AU. The response
variable considered in this experiment is the level
of satisfaction of the coverage criteria. The metrics
associated with this variable are M1, M2, M3
and M4.

The response variables are the following:

satisfaction level (SC) =
M1

M2
,

satisfaction level (AU) =
M3

M4
.

4.2 Experimental Task

The experimental material consists of the program
under test, its source code, its Javadoc and a
script the subjects must follow when they perform
the testing activity. The script is presented in
this section, and the program is presented in the
following.

The subjects use a script to make the tests
during the experiment. This script is explained to
the subjects during the training they receive as part
of the empirical study.

The process the subjects must follow is
presented in the script. The process is made up of
three phases: Preparation, Design and Execution.
This section presents a summary of the process
which is presented in full in the Annex 5.

During the Preparation phase the subject must
perform an initial checkup to guarantee that the test
can be carried out. He must verify that he has the
source files of the program and the Javadoc of the
classes.

In the Design phase the subject develops the
cases trying to satisfy the prescriptions of the
testing technique assigned.

Once he has designed the test cases, the
subject codifies them in JUnit. During this phase
the subject might find defects in the program
without executing even one test case.

When a subject finds a defect, the same as
when he is in the Execution phase, he must
warn a member of the research team in order to
correct the defect. After the correction the subject
continues his work. The aim of this way of working

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1429–1442
doi: 10.13053/CyS-23-4-3159

Do Novice Testers Satisfy Technique Prescription? An Empirical Study 1433

ISSN 2007-9737

is to simulate as far as possible a tester’s real
work. Testing in the industry is produced iteratively
interacting with a code debugging task.

During the Execution phase the test cases are
executed. This phase ends when there are no test
cases that fail. While there are test cases that fail
the subject must:

1. Choose a test case that fails.

2. Look for and find in the program the defect that
produces the failure.

3. Request the correction of the defect from the
research team.

4. Run the test case again to confirm that the
correction was made correctly.

The correction of the defects found during the
tests is not something usual in the experiments
that study testing techniques. Incorporating the
correction of defects simulates the practice of unit
testing better. However, the correction of the
defects found by the subjects was done by the
research team in order not to lose control of the
experiment. The aim of this is that when different
subjects find the same defect its correction should
be identical for all of them.

4.3 Experimental Object: The Program

The program used in this experiment is written
in Java. It receives an array of integers as a
parameter and it gives it back without repeated
elements and ordered from small to large. It
has two classes (Orderer and OrdererWithoutRep).
The interaction between the classes is simple: the
class OrdererWithoutRep invokes a method of the
class Orderer for the array to be ordered before the
repeated elements are eliminated.

The signature, specification and source code
of the method order of the class Orderer
and the method orderWithoutRep of the class
OrdererWithoutRep are presented here (the
specification and program is exactly what the
students receive):

public static void order(int[] a)

The method returns the array ordered from smaller
to larger. In case the array is null or empty, it
remains unchanged.
a: entry parameter that contains the integers to
be ordered.

public static void order(int[] a){

for(int i=a.length-1; i>0; i--){

int swapped = 0;

int find = 0;

for (int j=0; j<i; j++){

if (a[j] > a[j+1]){

int aux = a[j];

a[j+1] = a[j];

a[j] = aux;

swapped=1;

}

}

if (swapped == 0) {

return;

}

}

}

public static int orderWithoutRep (int[] a)
The method returns the array ordered from smaller
to larger and without repeated elements from the
position 0 to the position a.length - the number
of elements repeated - 1. And from there up to
a.length -1 the values are unknown (that is to say,
they are irrelevant).

public static int orderWithoutRep(int[] a){

int countElim = 0;

Orderer.order(a);

for(int i=0; i<a.length-1; i++){

if (a[i] == a[i+1]) {

move(a, i+1);

countElim++;

}

}

return countElim;

}

private static void move(int[] a, int i){

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1429–1442
doi: 10.13053/CyS-23-4-3159

Diego Vallespir, Carmen Bogado, Silvana Moreno1434

ISSN 2007-9737

for(int j=i; j<a.length-1; j++){

a[j]=a[j+1];

}

}

Example : a = [5, 4, 5, 6, 6, 5]
Number of repeated elements = 3. Number 5

is repeated twice and 6 one. The array a (after
the method is executed) from the position 0 to the
position 2 is [4,5,6]. Position 2 is calculated as 6-
3-1. From position 3 to 5 (a.length -1) the values of
a are unknown. In case the array is null or empty,
0 is returned as the number of repeated elements
and array a remains null or emtpy depending on
the case.

A set of defects has been injected in order to
simulate as much as possible the reality of the
testing task. Which are the defects injected is not
relevant to this research (they can be found in [19])
since they do not affect the satisfaction level of
the coverage criterion achieved by a tester when
applying one of the techniques.

Each correction of a defect by a researcher is
a change in the original program. As different
subjects find different defects, each one of them
has a version of the program. 11 versions of the
program were developed during this experiment.
The number of lines of code goes from 20 to
23. The number of items to be covered for AU
goes from 113 to 124. The difference in the
number of items between SC and AU is not a threat
to the validity of the experiment. For the same
program it is normal that the AU items be more
than the SC items. The number of items to cover
is intrinsic to the technique and therefore should
not be considered a threat to the validity of the
experiment.

4.4 Experiment Design

The design of the experiment corresponds to a
design of one factor (testing technique) with two
alternatives (SC and AU). 21 subjects participate
in it. 10 apply the SC technique and 11 apply the
AU technique.

The design is slightly unbalanced due to the fact
that the enrollment to the course is not mandatory

and 21 people enrolled in it. It was decided to have
one more person applying the AU technique.

All the subjects use only one technique (the
assigned one). The assignment of the subjects to
the technique is random. All the subjects work on
the same program.

4.5 Subjects

The subjects of the experiment are undergraduate
students of the Computer Science degree program
of the Engineering School of the Universidad de
la República (UdelaR), located in Uruguay. All
of them are advanced students since they are in
fourth or fifth year of the program. They have
completed a Programming Workshop Course and
an Object Orientation Course successfully.

All of them have completed a software engineer-
ing course in which, among other things, different
testing techniques are studied. We consider that
the group that participates in the experiment is
homogeneous due to the fact that they are at a
similar stage in the program and due to the training
they received as part of the experiment.

The students take part in the experiment in order
to get credits and this is one of their motivation.
It is mandatory for them to attend the training
sessions and they must also perform the testing
technique following the material provided by the
researchers. The students do not know that they
are taking part in an experiment; they think they
are taking a course with an important laboratory
practice component.

However, at the end of the course, we asked the
students for their consent to use the test cases their
produced with research purpose. We fully informed
the students about the research we were doing and
how the data would be used. This is one of the
most important ethical issues in empirical studies
in software engineering [17, 20].

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1429–1442
doi: 10.13053/CyS-23-4-3159

Do Novice Testers Satisfy Technique Prescription? An Empirical Study 1435

ISSN 2007-9737

4.6 Training

The subjects who enroll in the course undergo
training that aims at ensuring they have the
necessary knowledge and practice to test the
program of the experiment with the selected
techniques. The training is made up of two parts:
JUnit learning session and technique learning
session. Figure 1 presents the different training
activities.

Fig. 1. Training of the subjects

The aim of the JUnit Learning session is for each
subject to learn how to use the JUnit tool that they
will be using to codify the test cases. As a task
all the subjects are provided with a specification of
a simple program and they are asked to implement
that specification in Java and to test its functionality
using Junit. The subject is supposed to study JUnit
individually since this tool is not explained during
the theoretical training classes.

This session is taken by the students out of the
classroom and has a one-week duration. Once
it has been completed, the students hand in the
implementation in Java and the implementation of
the test cases using JUnit. These submissions are
revised by the researchers to check whether the
student has acquired the necessary knowledge of
JUnit to participate in the experiment.

Once the JUnit Learning session has been
completed the Techniques Learning session takes
place. This session aims at allowing the
subjects to learn the SC and AU techniques. A
theoretical/practical course of 9 hours is conducted
during a day. In the first part of the day there is a
theoretical class where the testing techniques to be
used are presented and explained in detail.

The verification script they must follow when they
perform the tests is also presented. During the

second part of the day practical exercises to be
solved in groups and individually are done. These
exercises are practice in the use of the experiment
techniques.

4.7 Operation

The tests on the experiment program are
performed in a session of one day: 4 hours in the
morning and 5 in the afternoon with a one-hour
pause to have lunch. This session takes place
seven days apart from the training session. In
this session the subjects individually apply the
technique allocated to each one, developing the
necessary test cases and executing them.

In order to complete the work the subjects follow
the script provided in the Learning Techniques
session. At the end of the session the subjects
hand in the JUnit classes developed and the notes
they have made in order to be able to apply the
technique (control flow graphs, identified paths,
etc). Once all the works have been submitted,
the researchers revise them and return them
individually to each student.

Both the training and the tests on the program
were conducted twice. This was due to the fact that
the students who enrolled for the first experiment
were only 10, so we decided to make a replication.
The first one had 10 subjects (5 SC and 5 AU)
and the second one had 11 subjects (5 SC and 6
AU). The two training sessions and the execution
took 3 weeks in total. There were only a few
weeks between the works done by one group and
the other. All the conditions (trainers, researchers,
materials, training, etc) were identical for the two
instances carried out. Due to this, data analysis is
done on the total of subjects that participated (10
SC y 11 AU).

During the execution of the experiment no
significant deviations from what was planned were
found.

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1429–1442
doi: 10.13053/CyS-23-4-3159

Diego Vallespir, Carmen Bogado, Silvana Moreno1436

ISSN 2007-9737

5 The Testing Script

In tables 2-4, we present the scripts of white box
techniques used in the experiment. The script
describes the process to perform the tests by the
subjects. It involves three phases: Preparation,
Design and Execution.

6 Results

6.1 Descriptive Statistics

The total of items of the program under test for SC
depends on the final version of the program each
subject has. As it has already been mentioned,
those totals go from 20 to 23 items (LOCS counted
by the CodeCover tool).

This situation is the same with the total of
items of the program when the AU technique
is considered. In this case is the number of
definition-use pairs that have at least one exe-
cutable definition-clear path. This measurement
was done manually. The different variants of the
programs contain from 113 to 124 items.

The number of items covered by each set of test
cases the subjects developed is calculated. Table
5 shows the proportion (ratio) of items covered
in relation to the total items the final version of
the program has for each one of the subjects
(satisfaction level of a coverage criterion expressed
in percentage).

Figure 2 presents the box and whisker graph
of the level of satisfaction achieved using SC and
using AU. It is clear that the distributions of both
techniques are very different. Only one subject in
SC does not manage to satisfy the technique and
his level of satisfaction is over 90% . On the other
hand, the AU technique has a minimum of 56% and
a maximum of 98%.

Table 6 presents the number of subjects that
used each one of the two techniques, the median of
the level of satisfaction, and the interquartile range.

Fig. 2. Box and Whisker of the Level of Satisfaction of
the Techniques

6.2 Hypothesis Testing

The observations we have (10 and 11) are too
few to carry out parametric tests. Therefore we
applied the non-parametric Mann-Whitney U test.
The null hypothesis indicates that the medians of
the satisfaction level of both techniques is the same
(see 4).

The Mann-Whitney test indicates that there is
statistical evidence to reject the null hypothesis.
The significance level obtained is of 0.0002. That
is to say, with more than 99% confidence we
show that there is a significant difference in
the satisfaction of the degree of coverage the
testers achieved applying SC and AU, being
significantly higher the satisfaction of SC.

7 Discussion

The results are compelling. 90% of the subjects
who used the SC technique managed to satisfy
the prescribed coverage criterion. On the other
hand, none of the subjects who employed the
AU technique managed to satisfy it (the maximum
level of satisfaction was 98.3%). This clearly
indicates that satisfying AU is much more complex
than satisfying SC. In other words, developing test
cases sets that satisfy AU is more complex than
developing test cases sets that satisfy SC.

The aim of this work is to know whether novice
testers with training in the techniques are able to
comply with the prescriptions of the techniques
when they develop test cases. This experiment

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1429–1442
doi: 10.13053/CyS-23-4-3159

Do Novice Testers Satisfy Technique Prescription? An Empirical Study 1437

ISSN 2007-9737

Table 1. Script of the testing process

Step Phases Description
1 Preparation

— Prepare activities for verification.

2 Design
— Develop the test cases that meet the criterion of the requested technique.

— Implement the cases in JUnit.

— Record the required data of the phase.

3 Execution
— Execute the designed test cases.

— Find the defects associated with the test cases that fail.

— Record the required data of the phase.

Table 2. Script for the Preparation phase: Conduct an initial check up guaranteeing that the required verification can be
carried out

Step Activities Description
1 Files

— Verify you have the source files to test.

— Verify you have the Class Diagram.

— Verify you have the javadoc of the classes to test.

— Verify you have the defects and time record form.

Table 3. Script for the Design Phase: Design the test cases satisfying the criterion of the testing technique to apply. The
cases must be designed in bottom-up form

Step Activities Description
1 Define the

Data Set — Record the start time of this activity.

— For each method to test define the set of input values that meet the established criterion.

2 Define the
expected
results

— Define the expected outcome (or expected behavior) for each element of the Set of Data.

3 Reduce
— Eliminate the test cases that cannot be executed (impossible paths, etc.) Check whether the criterion

is still met. In case it is not met, return to step 1 trying to meet the criterion.

4 Implemen-
tation of the
test cases in
JUnit

— Implementation of all the test cases designed in JUnit.

5 Recording of
the end of de-
sign

— Record the end of design time.

NOTE 1: If there are pauses during design they should be subtracted from the total time. Due to this the total time of the pauses
during design should be entered.

NOTE 2: Should any defect be found during the design phase it must be recorded as it is explained in the execution phase.

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1429–1442
doi: 10.13053/CyS-23-4-3159

Diego Vallespir, Carmen Bogado, Silvana Moreno1438

ISSN 2007-9737

Table 4. Script for the Execution phase: Execute the designed test cases. The cases must be executed bottom-up

Step Activities Description
1 Execute test

case — Execute the test cases

2 Analize the
obtained
outcome

— If no test case has failed the phase is finished.

3 Find defects
— While there are test cases that failed:

– Choose one of the test cases that fail.

– Search and find the defect in the program that originates the failure. A debugging tool can be
used.

– Record the defect following step 4.

– Request the correction of the defect from the research team.

– Execute the test case again to confirm that the correction by the research team has been
done properly.

– The correction changed the program. So, you should analyze if you need to design more test
cases in order to meet the stablished criterion (use the design phase script again)

4 Recording of
Defects — For each defect found record the following data:

– General description of the defect. It is important that the description should be clear and
precise.

– Name of the file that contains the defect.

– Line in which the defect is found. In case the defect is not in a specific line enter 0 (zero).
Warning: if the file being testes was modified in relation to the original (because a defect was
corrected), the line of the original file must be indicated.

– Structure associated with the defect (ej.: IF, FOR, WHILE, name of the method, etc.). If the
defect does not have an associated line this field must be filled in compulsorily.

– Beginning line of the structure (compulsory if an associated structure is indicated.).

shows that the answer depends on the technique
under consideration. It can be stated that
the testers normally manage to satisfy the SC
technique when they apply it (at least for very small
programs such as the one used in this experiment).
However, normally they do not satisfy the AU
technique; particularly in this experiment none of
the testers managed to satisfy the AU technique
(not even for a very small program). We believe
that in more complex programs the difference in
satisfaction of the techniques will increase even
more. In fact, AU will be even more difficult to
satisfy than SC.

These results have impact on the practice of
unit testing, on the empirical research of white box
testing techniques, and in the way we teach the

techniques. Learning how to manage techniques
like AU is not easy.

If a software development team decides to
perform complex unit tests (like AU), it is investing
more time in the design of the test cases than it
would if it used simpler techniques (like SC). The
cost analysis of the execution of these techniques
is presented in another article [18]. Such analysis
presented that the cost measured in minutes to
design the test cases using the AU technique was
almost 2.5 times longer than for the SC technique.

Apart from the fact that AU is more expensive
than SC, it is probable that the coverage criterion
prescribed by the technique is not being satisfied.
Therefore, the team might not get the expected

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1429–1442
doi: 10.13053/CyS-23-4-3159

Do Novice Testers Satisfy Technique Prescription? An Empirical Study 1439

ISSN 2007-9737

Table 5. Level of Satisfaction of the Coverage per
subject in Percentage

Technique SC Tecnnique AU
Sub. Ratio %Sat. Sub. Ratio %Sat.

1 21/21 100.0 11 91/116 78.4
2 20/20 100.0 12 93/117 79.5
3 21/21 100.0 13 114/116 98.3
4 20/20 100.0 14 65/116 56.0
5 20/21 92.3 15 100/121 82.6
6 20/20 100.0 16 84/113 74.3
7 21/21 100.0 17 111/116 95.7
8 23/23 100.0 18 112/124 90.3
9 22/22 100.0 19 109/116 94.0

10 23/23 100.0 20 115/120 95.8
21 88/124 71.0

Table 6. Median and Interquartile Range of the Level of
Satisfaction of the Techniques

#Subjects Median IQR
SC 10 100% 0
AU 11 82.6% 21.4

return as regards effectiveness since the real
coverage is less than the theoretical one. In the
same article mentioned before [18], we show that
we could not distinguish with statistical validity
between the effectiveness of these two techniques.
Would it be possible that AU were not more
effective than SC because the testers did not
manage to satisfy its prescription?

These results also have an impact on the
experiments that compare the effectiveness of
different testing techniques. Normally in these
experiments it is concluded, with statistical
evidence, that a certain technique is more effective
than another. In the light of the results we have
obtained, it is the application of the techniques by
the testers and not the technique itself that is more
or less efective

In other words, if in an experiment that aims at
knowing the effectiveness and/or cost of different
testing techniques with human subjects applying
different techniques, AU turns out to be less
effective than SC; it should not be held that AU is
less effective than SC. Given the results we have

obtained, in fact the degraded version of AU the
subjects apply is less effective than the very close
version to the SC prescription.

8 Threats to Validity

There are several threats to the validity of this
experiment. Due to this, it is important to replicate
it in order to find out if the conclusions can
be generalized. The threats we consider most
important are mentioned below.

The subjects are all under-degree students.
Although they are all advanced students and they
received careful training, they are not professionals
in software development. This might mean that the
test cases developed be “worse” than the ones an
expert might develop.

Only one program is used in the experiment.
Therefore, the obtained results might be due to
specific features of the program and not of the
studied techniques. It is necessary to replicate
the experiment with different types of programs in
order to generalize the results.

The program is very small in terms of number of
lines of code. It is necessary, like in the previous
case, to conduct replications with programs of
different size so as to observe if the same results
are obtained.

The obtained results are only applicable to SC
and AU. However, it seems that the complexity
inherent to the technique might serve as an
indicator of the level of satisfaction of the coverage
criterion that will be achieved. Future replications
should consider other white box techniques to
confirm it is really the inherent complexity and not
the specific technique which affects the level of
satisfaction.

9 Conclusions and Future Work

In this article we present an empirical work that
aims to know if novice testers manage to satisfy
the coverage criteria prescribed by white box
techniques. In our particular case we studied the
SC and AU techniques.

We found that novice testers normally satisfy the
SC technique while they are unable to satisfy the

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1429–1442
doi: 10.13053/CyS-23-4-3159

Diego Vallespir, Carmen Bogado, Silvana Moreno1440

ISSN 2007-9737

AU technique. 90% of the subjects that applied
SC managed to satisfy the technique. On the
other hand, none of the subjects who applied
AU managed to satisfy it. We found statistical
evidence, applying the Mann-Whitney test, that the
SC technique has a higher level of satisfaction than
the AU technique.

Our future work consists in replicating this
experiment trying to eliminate the most important
threats to validity that were presented. It is
important to have different programs and of
different sizes, and to use both professionals and
students in the experiments and to apply other
white box techniques.

References

1. Armour, P. G. (2005). The unconscious art of
software testing. Commun. ACM, Vol. 48, No. 1,
pp. 15–18.

2. Basili, V. & Selby, R. (1987). Comparing the ef-
fectiveness of software testing strategies. Software
Engineering, IEEE Transactions on, Vol. SE-13,
No. 12, pp. 1278–1296.

3. Beer, A. & Ramler, R. (2008). The role of
experience in software testing practice. Software
Engineering and Advanced Applications, 2008.
SEAA ’08. 34th Euromicro Conference, pp. 258–
265.

4. Berner, S., Weber, R., & Keller, R. (2007).
Enhancing software testing by judicious use of
code coverage information. Software Engineering,
2007. ICSE 2007. 29th International Conference on,
pp. 612–620.

5. Bertolino, A. (2007). Software testing research:
Achievements, challenges, dreams. 2007 Future of
Software Engineering, FOSE ’07, IEEE Computer
Society, Washington, DC, USA, pp. 85–103.

6. Briand, L., Di Penta, M., & Labiche, Y. (2004).
Assessing and improving state-based class testing:
a series of experiments. Software Engineering,
IEEE Transactions on, Vol. 30, No. 11, pp. 770–783.

7. Frankl, P. G. & Weyuker, E. J. (1988). An applicable
family of data flow testing criteria. IEEE Transactions
on Software Engineering, Vol. 14, No. 10, pp. 1483–
1498.

8. Harrold, M. J. (2000). Testing: a roadmap.
Proceedings of the Conference on The Future of
Software Engineering, ICSE ’00, ACM, New York,
NY, USA, pp. 61–72.

9. Harrold, M. J. & Rothermel, G. (1994). Performing
data flow testing on classes. SIGSOFT Softw. Eng.
Notes, Vol. 19, No. 5, pp. 154–163.

10. Harrold, M. J. & Soffa, M. L. (1989). Interprocedual
data flow testing. TAV3: Proceedings of the ACM
SIGSOFT ’89 third Symposium on Software Testing,
Analysis, and Verification, ACM, New York, NY,
USA, pp. 158–167.

11. Juristo, N., Moreno, A. M., & Vegas, S.
(2004). Reviewing 25 years of testing technique
experiments. Empirical Softw. Engg., Vol. 9, No. 1-2,
pp. 7–44.

12. Juristo, N., Vegas, S., Solari, M., Abrahao, S.,
& Ramos, I. (2012). Comparing the effectiveness
of equivalence partitioning, branch testing and code
reading by stepwise abstraction applied by subjects.
Software Testing, Verification and Validation (ICST),
2012 IEEE Fifth International Conference on,
pp. 330–339.

13. Mascheroni, M. A. & Irrazabal, E. (2018). Con-
tinuous testing and solutions for testing problems
in continuous delivery: A systematic literature
review. Computación y Sistemas, Vol. 22, No. 3,
pp. 1009–1038.

14. Rapps, S. & Weyuker, E. J. (1982). Data flow
analysis techniques for test data selection. ICSE’82:
Proceedings of the 6th international conference
on Software engineering, IEEE Computer Society
Press, Los Alamitos, CA, USA, pp. 272–278.

15. Rothermel, K. J., Cook, C. R., Burnett, M. M.,
Schonfeld, J., Green, T. R. G., & Rothermel,
G. (2000). Wysiwyt testing in the spreadsheet
paradigm: an empirical evaluation. Proceedings
of the 22nd international conference on Software
engineering, ICSE ’00, ACM, pp. 230–239.

16. Runeson, P., Andersson, C., Thelin, T., Andrews,
A., & Berling, T. (2006). What do we know
about defect detection methods? [software testing].
Software, IEEE, Vol. 23, No. 3, pp. 82–90.

17. Singer, J. & Vinson, N. G. (2002). Ethical issues
in empirical studies of software engineering. IEEE
Transactions on Software Engineering, Vol. 28,
No. 12, pp. 1171–1180.

18. Vallespir, D., Bogado, C., Moreno, S., & Herbert,
J. (2010). Comparing verification techniques: All

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1429–1442
doi: 10.13053/CyS-23-4-3159

Do Novice Testers Satisfy Technique Prescription? An Empirical Study 1441

ISSN 2007-9737

uses and statement coverage. Ibero-American Sym-
posium on Software Engineering and Knowledge
Engineering, pp. 85–95.

19. Vallespir, D. & Herbert, J. (2009). Effectiveness
and cost of verification techniques: Preliminary
conclusions on five techniques. Computer Science
(ENC), 2009 Mexican International Conference on,
pp. 264–271.

20. Vinson, N. G. & Singer, J. (2008). A practical guide
to ethical research involving humans. In Shull, F.,
Singer, J., & Sjøberg, D. I. K., editors, Guide to
Advanced Empirical Software Engineering. Springer
London, London, pp. 229–256.

Article received on 04/03/2019; accepted on 16/08/2019.
Corresponding author is Diego Vallespir.

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1429–1442
doi: 10.13053/CyS-23-4-3159

Diego Vallespir, Carmen Bogado, Silvana Moreno1442

ISSN 2007-9737

