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Escuela Superior de Ingenierı́a Mecánica y Eléctrica,
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Abstract. The main objective of this work is to
describe the state of the art of the Stereoscopic Image
Quality Assessments (SIQA) from recent years, thus,
it covers a compendium of models from 2007 to date.
Furthermore, this paper summarizes 27 algorithms
from 17 authors and their possible variations giving
as a result of 280 stereoscopic metrics tested. This
benchmarking is not only intended for researchers on
the Image Quality Evaluation but also for researchers
on the field on acquisition, processing and display of
stereoscopic images. To this aim, we present not only a
survey on image quality metrics but also psychophysical
experiments on image databases available in this field.
First, we sketch a general view of the importance
of Stereoscopic Imaging. Thus, we propose different
classifications in order to group the state of the art
of SIQA. Then, we describe the performance of 280
metrics of SIQA using LIVE 3D Image Database. Results
of algorithms are evaluated with the main purpose of
being a reference for researchers in the Stereoscopic
image quality field who want to perform further tests and
proposing future models.

Keywords. Quality assessment databases, 3D image
quality, stereoscopic image quality, JPEG2000 and
stereoscopy.

1 Introduction

Stereoscopic coding and visualization systems are
now an interesting field of research, but since the

nineteenth century, several researchers presented
some devices that displayed stereoscopic images.
The Wendell’s Stereoscope (Fig. 1(a), built in
1861) or View-Master (Fig. 1(b), commercially
since 1935) are a good example of these
devices. These devices captured two offset
pictures (stereo-pair) separately showing left and
right views to the appropriate eye of the observer.
Then, when both views are combined into the
brain, by means of stereopsis of binocular vision,
they give the illusion of depth.

In general, these kind of stereoscopic past
systems had 3 phases:

1. Capture (Coding),

2. Exposure (Decoding), and

3. Visualization (Displaying).

Nowadays, these stages have not changed,
since they are just digitalized. Today, we capture
stereoscopic images with digital cameras instead
of plate cameras, we use polarized glasses instead
of using anaglyph ones and the screen is no
longer a piece of cardboard or reel, now it is a 3D
television or 3D IMAX Screen.

Figure 2(c) shows the anaglyph image of My
heart is a jungle (Fig. 2(a)), if this image is
seen with anaglyph glasses, we could perceive it
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(a) Wendell’s Stereoscope
(1861)

(b) View-Master (1935)

Fig. 1. (a) Wendell’s Stereoscope and (b) View-Master,
images taken from [10] and [19], respectively

in different slices which depend on the apparent
distance. This effect is similar like watching a
version of its diorama, but digitalized( Figure 2(b)).

Maybe in future, stereoscopic scenarios with
volumetric appearance and high quality will be part
of everyday life, but now three-dimensional content
is not simply a digital diorama, therefore the current
challenge for researchers is to incorporate features
based on the Human Visual System (HVS) for
improving realism and immersiveness.

A general scheme of stereoscopic image quality
assessing is depicted by Figure 3 (green block) and
it is constituted by the following components:

1. Input: Stereoscopic Image, i.e. Left and Right
views,

2. Process: Coding of Stereoscopic Algorithm ,

3. Output: Stereoscopic Representation of 3D
Image, and

4. Feedback: Stereoscopic Image Quality As-
sessment (SIQA).

According to general systems theory, Feedback
makes sure the efficiency of the Process [4].
So, the main objective of the SIQA is to quality
assessment in the Left and Right views, then
we can establish the degradation of the original
stereo-pair. Coding of Stereoscopic Algorithm
is to obtain the less possible degradation or
fluctuations in the original source. Which is why,

any kind stereoscopic image algorithm used in 3D
projections, supports its evaluations employing a
SIQA. So, we can recent evolution of stereoscopic
algorithms is highly correlated with the evolution
of the way to assess its visual quality. In this
way, these methods of assessing stereoscopic
quality have grown not only in number but also in
importance.

The SIQA methods are based on the fact of
evaluating two, or more, views of the same scene
and the most of them employ either a 2D Image
Quality Assessments (2DIQA) or slight adaptation
of some HVS characteristics.

In this sense, it is reasonable to define SIQA as
a variation of a 2DIQA, since in psychophysical
experiments, the human observers subjectively
assess the image quality [29, 13, 41] evaluating
quality from a digital diorama, Figures 1(a) or 2(b),
with lack of volumetric information of the scene.

SIQA algorithms can contribute to predict not
only an objective response in general correlated
with HVS but also the visual discomfort of an
observer. In the early fifties, 3D Cinema was
synonym of sickness and dizziness, sixty years
later is related to blockbusters like Avatar [6].

Therefore, this paper is intended not only
for SIQA researchers but also for researchers
who study the visual discomfort or classical
2DIQA algorithms, since we classify and describe
the most important features of SIQA algorithms
and their combination with 2DIQA, resulting 280
metrics. Then, the main objective of this paper
is to describe, in a general way, several SIQA
algorithms in addition to compare them with the
recent psychophysical experiments in the field.
Which is why, we divided this work in four parts:

1. Current Stereoscopic Image Data Bases.

2. Classification of Stereoscopic Image Quality
Assessments.

3. Description and Discussion of Stereoscopic
Image Quality Assessments.

4. Exposition of Experimental Results.
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(a) Original 2D Image. (b) Diorama seen sideways. (c) Anaglyph 3D Image.

Fig. 2. My heart is a jungle image, (a) and (b) images are taken from [2]

Fig. 3. Cybernetic diagram for describing a general
system for stereoscopic image quality evaluation

2 Stereoscopic Image Data Bases

In SIQA field exists few image databases. Thus, in
this section we highlight some features of the most
used image databases in addition to mention some
features of their psychophysical experiments,
which contain standardized procedures from [20].

The stereoscopic images quality data obtained
by these kind of experiments are based on the
opinion score of an observer of individual quality
judgments, which builds the database (Figure
3, blue block). Each attempt, the images are
classified on a variable scale from excellent to
bad. Then, making use of most common statistical
metrics such as mean, standard deviation or
variance, data are analyzed, giving as a result

the Mean Opinion Scores (MOS). Different
statistical procedures can be applied in the
MOS of every stereoscopic image database
psychophysical experiments, so we recommend to
consult the citation for knowing them. Furthermore,
MOS concentrates experimental results, which
allow the description or comparison of any kind of
stereoscopic assessment metric.

On the one hand we want to present three of the
most used stereoscopic image databases:

— LIVE 3D: Laboratory for Image and Video
Engineering of the University of Texas at
Austin (USA) Stereoscopic image database
the proposed by Moorthy et al. [29],
available at http://live.ece.utexas.edu. Figure
4 shows the 20 Reference images used in this
subjective study, shown only the left-views.

— MMSPG: Stereoscopic image database of the
Multimedia Signal Processing Group of the
École Polytechnique Fédérale de Lausanne
(Switzerland) proposed by Goldmann et
al. [13], Figure 5 shows four samples of
reference images (only Left-views) used in this
subjective study and it is available at:

http://mmspg.epfl.ch/ .

— FISE: Stereoscopic image database of the
Faculty of Information Science and Engi-
neering of the Ningbo University (China)
proposed by Wang et al.[41]. Figure 6
shows four samples of reference images (only
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Fig. 4. Left-images of the 20 source or reference views used in the subjective assessment (LIVE-3D) of Moorthy et
al. [29]

Left-views) used in this subjective study. It
is important to mention that [41] collected
the imagery from the work made by [34],
and they took just 2 of the 7 views that this
image database originally had in order to
have a stereo-pair [17] and it is available at:
http://vision.middlebury.edu/stereo/

It is important to mention these three databases
are not the only projects realized in the
3D/stereoscopic field. For example, [32] and
[18] proposed another databases intended for
improving the stereoscopic image quality. Both

MMSPG and FISE image databases are not
consistent with the size of reference and distorted
images, since in some cases the size is different.
So resizing images could change the precision
of the subjective results. Thereby, this paper
compares the psychophysical experiments of the
LIVE 3D image database against a collected set of
SIQA.

We want to mention their main features. Table
1 depicts the main characteristics of LIVE 3D,
MMSPG and FISE image databases, where
column Features refers to:
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(a) Sofa (b) Sculpture

(c) Trees (d) Construction

Fig. 5. Left-views of sample images used in the
subjective study (MMSPG) of Goldmann et al. [13]

(a) Art (b) Laundry

(c) Bowling1 (d) Dwarves

Fig. 6. Left-views of sample images used in the
subjective study (FISE) of Wang et al. [41]

— Reference Images: Number of original or
reference stereo-pairs.

— Distorted Images:Number of distorted
stereo pairs.

— Format Images: Storage format of original and
distorted stereo-pairs.

— Studio Images: Were the images captured in
controlled conditions? Yes=Studio Images and
No=Outdoor Images.

— Resolution: Size both for Reference and
Distorted Images.

— Views: Views of the same scene.

— Distortions: Number of distortions, in the
case of FISE are JPEG2000(JP2K), JPEG,
Additive White Gaussian (WN) and Gaussian
Blur (Blur). LIVE 3D use all these four noises
in addition to Fast-Fading (FF).

— Observers: The subject pool considered in
the study.

— Camera: Brand and model of the used
camera.

— Capture Process: Simultaneous and Not-
Simultaneous mean respectively that pictures
were captured at the same time or not.

— Stereoscopic Display: Brand and model of the
used stereoscopic display.

It is important to mention that this work is
adequate to judge exclusively stereoscopic images
containing so-called 2D artifacts, since all the
artifacts of LIVE 3D, MMSPG and FISE image
databases are 2D artifacts added separately and
symmetrically to stereoscopic scene, i.e. the left
and right images.

3 Classification of 3D/Stereoscopic
Image Quality Assessments

Before describing a certain SIQA algorithm, we
propose a classification. Note that there are many
possible classifications and we just expose three
of them.

Table 2 shows the 27 metrics from 17 authors
described in this paper. It is important to highlight
that we maintain the name of the image quality
assessment that author gives it, in addition some
of these author propose more than one metric.
Independently of the author, a certain metric is
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Table 1. Main features of LIVE 3D, MMSPG and FISE stereoscopic image databases

````````````Features
3D Image Database LIVE 3D MMSPG FISE

Reference Images 20 10 10
Distorted Images 365 100 20

Image Format BMP PNG PNG
Studio Images no no yes

Resolution 640× 360 1920× 1080 1390× 1110
Views 2 10 2

Distortions 5 Not specified 4
Observers 32 20 20
Camera 1× Nikon D700 2× Canon HG20 1× Canon G1

Capture Process Not-Simultaneous Simultaneous Not-Simultaneous
Stereoscopic Display Viewsonic IZ3D Hyundai S465D Not specified

Table 2. Stereoscopic Image Quality Assessments

Algorithm Metric
Akhter et al.[1] AkMOSp

Benoit et al.[3] d1
d2
d3

Ddl1
Bosc et al.[5] Qs

Campisi et al.[7] Av

Va

Chen et al.[9] Cm

Gorley et al.[14] SBLC

Gu et al.[15] ODDM4

Hewage et al.[16] PSNRedge

Jin et al.[21] MSEms

MSEdp

Joveluro et al.[22] PQM3D

Mao et al.[24] Qmao

Shao et al.[35] Qshao

Shen et al.[38] HDPSNR

Solh et al.[39] 3V QM

Yang et al.[48] IQA
SSA

You et al.[49] Y ouDMOSp

OQ
DQmap1

DQmap2

DQmap3

Zhu et al.[53] ei

referred by its name taking in to account in its
corresponding row.

Thus, in this section all metrics in Table 2 are
classified, then in section 4 they are described and
in section 5 they are tested. Also, SIQA-SET will
be call henceforth to the set of these 27 metrics.

Historically, several authors such as [45]
describe the taxonomy of 2DIQA algorithms as
follows:

— Full-Reference (FR): FR metrics gauge the
quality of a presumably recovered or distorted
image or view giving as a result a complete
knowledge of the original or reference source.

— Reduced-Reference (RR): RR metrics predict
the quality of a presumably recovered or
distorted image or view giving as a result
an incomplete knowledge of the original or
reference source.

— No-Reference (NR): NR metrics assess the
quality of a presumably recovered or distorted
image or view without any knowledge of the
original or reference source.

This classification cannot exactly be applied
in the same from in the SIQA field, since it is
impossible to obtain either original or distorted
stereoscopic images, simply because they are
perceived by a human observer. In this way, we
are not able to obtain the cyclopean image that is
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formed in the brain of the human beeing and we
just can obtain information from left or right views of
the so-called stereoscopic scene in order to predict
other features, including the depth map.

Thus, our first classification is divide the
SIQA-SET in global and local approaches. Global
approaches take the information of whole image
in order to compute the image quality, while
local approaches measure the quality taking
characteristics, features or information pixel by
pixel or in certain regions of the image. So, once
classified SIQA-SET would be as follows:

— Global Approaches: AkMOSp, d1, d2, d3,
Qs, Av, Va, Cm, ODDM4, MSEdp, Qshao,
HDPSNR, 3V QM , IQA, SSA, Y ouDMOSp,
OQ, DQmap1 , DQmap2 , and DQmap3 .

— Local Approaches: Ddl1, SBLC, PSNRedge,
MSEms, PQM3D, Qmao, and ei.

The second classification is based in the
usage of the disparity map. Then, we can
classify SIQA-SET in approaches which employ
the disparity map and approaches which do not
employ it. So, once classified SIQA-SET would be
as follows:

— Approaches with disparity map: d1, d2, d3,
Ddl1, Qs, Cm, PSNRedge, MSEms, MSEdp,
PQM3D, 3V QM , OQ, DQmap1 , DQmap2 , and
DQmap3 .

— Approaches without disparity map: AkMOSp,
Av, Va, SBLC, ODDM4, Qmao, Qshao,
HDPSNR, IQA, SSA, Y ouDMOSp, and ei.

Finally, the third classification is to divide the
SIQA-SET in two groups, the first group combines
features of 2D metrics, which be exchanged by
any other, i.e. these kind of metrics could use
interchangeably MSE or PSNR. In the second
group are the metrics that do not use a 2D metric
and can be consider as purely 3D image quality
assessments. So, once classified SIQA-SET
would be as follows:

— Approaches based on 2DIQA: d1, d2, d3, Av,
Va, PSNRedge, MSEdp, Y ouDMOSp, and
OQ.

— Stereoscopic Approaches: AkMOSp, Ddl1,
Qs, Cm, SBLC, ODDM4, MSEms, PQM3D,
Qmao, Qshao, HDPSNR, 3V QM , IQA, SSA,
DQmap1 , DQmap2 , DQmap3 , and ei.

In Subsections 4.1 and 4.2 we describe all these
metrics using this third classification. Table 3
shows an overview of the classification of all SIQA
described in this paper.

Table 3. Overview of Classification of the SIQA-SET

Metric
Information Disparity Map Base on

Global Local With Without 2DIQA SIQA

AkMOSp X X X
d1 X X X
d2 X X X
d3 X X X
Ddl1 X X X
Qs X X X
Av X X X
Va X X X
Cm X X X

SBLC X X X
ODDM4 X X X
PSNRedge X X X
MSEms X X X
MSEdp X X X
PQM3D X X X
Qmao X X X
Qshao X X X

HDPSNR X X X
3V QM X X X
IQA X X X
SSA X X X

Y ouDMOSp X X X
OQ X X X

DQmap1 X X X
DQmap2 X X X
DQmap3 X X X

ei X X X

4 Stereoscopic Image Quality
Assessments

From Figure 3 green block, any metric of
SIQA-SET assesses the stereoscopic image
quality predicting the MOS or MOSp. There are
some algorithms, such as Qs [5], which use a
disparity map and left image for synthesizing the
right image, so any SIQA needs two images with
a certain disparity. In this section we describe
two ways to divide the state of the art these SIQA
algorithms.

So, it is important mentioning that for both
Metrics based on 2DIQA and Stereoscopic Metrics

Computación y Sistemas, Vol. 23, No. 4, 2019, pp. 1215–1239
doi: 10.13053/CyS-23-4-3156

Experimental Assessment of Quality Metrics in Stereoscopic Imaging 1221

ISSN 2007-9737



provided by the authors were coded ourselves in
MatLab.

4.1 Metrics based on 2DIQA

The SIQA-SET was chosen based on their
reported performance, in the same way we
collected 29 2DIQA in order to provide a baseline
of 2D metrics (2DIQA-SET ).

In the 2DIQA-SET we can find Statistical Image
Quality Assessments (St-IQA), Full-Reference
Image Quality Assessments (FR-IQA), and No-
Reference Image Quality Assessments (NR-IQA).
The fist twelve 2DIQA are part of the MetrixMux
toolbox [40], while the rest of the metrics were
collected from their respective authors.

On the one hand, for describing St-IQA, let
I(i, j) and Î(i, j) be two images to be compared,
being I(i, j) the original reference or source
image, which has to be considered with perfect
and unquestionable quality and Î(i, j) a distorted
version of I(i, j), whose quality in comparison to
I(i, j) is being evaluated.

In the other hand, both FR-IQA and NR-IQA
algorithms just are listed in order to save space
and we do not describe them here, so the reader is
referred to the cited papers.

1. Mean-Squared Error (MSE, St-IQA), de-
fined as:

MSE =
1

NM

N∑
i=1

M∑
j=1

[
I(i, j)− Î(i, j)

]2
. (1)

2. Peak Signal-to-Noise Ratio (PSNR, St-IQA),
defined as:

PSNR = 10 log10

(
Imax2

MSE

)
, (2)

where Imax2 is the maximum possible error or
the peak of the MSE value between I(i, j) and
Î(i, j). That is, for an 8 bit per pixel (bpp)
intensity image, Imax2 = (28 − 1)2 = 65025
[43]. For 24bpp RBG images the PSNR is
also defined by Eq. (2), where RGB MSE
is the average of independent MSE values
estimated in each 8bpp chromatic component,
i.e. MSERed, MSEGreen, and MSEBlue.

3. Structural Similarity Index (SSIM, FR-IQA),
prosed by [47].

4. Multiscale SSIM Index (MSSIM, FR-IQA),
prosed by [47].

5. Visual Signal-to-Noise Ratio (VSNR, FR-IQA),
prosed by [8].

6. Visual Information Fidelity (VIF, FR-IQA),
prosed by [44].

7. Pixel-Based VIF (VIFP, FR-IQA), prosed
by [36].

8. Universal Quality Index (UQI, FR-IQA), prosed
by [42].

9. Image Fidelity Criterion (IFC, NR-IQA), prosed
by [37].

10. Noise Quality Measure (NQM, FR-IQA),
prosed by [11].

11. Weighted Signal-to-Noise Ratio (WSNR, FR-
IQA), prosed by [25].

12. Signal-to-Noise Ratio (SNR, St-IQA), de-
fined as:

SNR = 10 log10

1
NM

∑N
i=1

∑M
j=1 [I(i, j)]2

MSE
. (3)

13. Average Difference (AD, St-IQA), defined as:

AD =
1

NM

N∑
i=1

M∑
j=1

I(i, j)− Î(i, j). (4)

14. Maximum Difference (MD, St-IQA),
defined as:

MD = max
[
I(i, j)− Î(i, j)

]
. (5)

15. Normalized Absolute Error (NAE, St-IQA),
defined as:

NAE =

∑N
i=1

∑M
j=1

∣∣∣I(i, j)− Î(i, j)∣∣∣∑N
i=1

∑M
j=1 I(i, j)

. (6)
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16. Normalized Cross Correlation (NCC, St-IQA),
defined as:

NCC =

∑N
i=1

∑M
j=1

(
I(i, j)× Î(i, j)

)
∑N
i=1

∑M
j=1 (I(i, j))2

. (7)

17. Structural Content (SC, St-IQA), defined as:

SC =

∑N
i=1

∑M
j=1

(
I(i, j)× Î(i, j)

)
∑N
i=1

∑M
j=1

(
Î(i, j)

)2
. (8)

18. Blind Image Quality Index (BIQI, NR-IQA),
prosed by [28].

19. Blind/Referenceless Image Spatial Quality
Evaluator Index (BRISQUE,), NR-IQA),
prosed by [26].

20. Naturalness Image Quality Evaluator (NIQE,
NR-IQA), prosed by [27].

21. No-Reference Peak Signal-to-Noise Ratio
(NR-PSNR, NR-IQA), prosed by [31].

22. Perceptual Peak Signal-to-Noise Ratio
(P2SNR, FR-IQA), prosed by [30].

23. Feature-Similarity (FSIM, FR-IQA), prosed
by [52].

24. Riesz-Transform Feature-Similarity (RFSIM,
FR-IQA), prosed by [51].

25. Peak Signal-to-Noise Ratio with Contrast
Sensitivity Function (PSNRHVSM, FR-IQA),
prosed by [12].

26. JPEG Quality Score (JQS, FR-IQA), prosed
by [46].

27. Practical Image Quality Metric (DCTEX, FR-
IQA), prosed by [50].

28. Most Apparent Distortion (MAD, FR-IQA),
prosed by [23].

29. Perceptual Quality Metric (PQM, FR-IQA),
prosed by [22].

Once the 2DIQA-SET is defined, let us describe
all the stereoscopic algorithms based on it.

— d1, d2, and d3 are global disparity distortion
measures described by Equation 9:

d1 =M ·
√
Ddg,

d2 =M · (Ddg) ,
d3 = Ddg,

(9)

where Ddg is computed using the correlation
coefficient between the original disparity
maps and the corresponding disparity maps
processed after image degradation. M
define the the averaged left and right image
distortion measures.

— Av and Va are defined by Equation 10.
For Av algorithm, a 2DIQA is separately
applied on the left and right views then for
producing a single measure of stereoscopic
assessment, the calculated quality results are
averaged. While Va uses some values in
order to separately weight a predicted score
on the left and right views , these weights are
equal to 0.43 and 0.57 respectively, which are
simmilar from the weights used in the central
approach (0.5). The unequal weights in Va
can be helpful 3D image databases such as
LIVE 3D, since stereoscopic images are taken
sequentially with a 2D camera, thus there are
often important differences between the left
and the right views, due to movement between
the left and right shots.

Av = 1
2 (2DIQAleft + 2DIQAright) ,

Va = 0.43× 2DIQAleft + 0.57× 2DIQAright.
(10)

— PSNRedge is an algorithm, which makes
use of a specific kind of quality metric,
where the reference or original image is
barely employed, since for stereoscopic depth
map transmission this algorithm only uses
extracted information from edges. Different
depth levels are represented by edges and
contours of the depth map and quality
evaluations can be used this information.
This metric uses a Sobel filter both in
original and distorted images in order to
obtain four binary edge marks. Left and
right edge marks are applied to the original
and distorted stereo-pairs. Then, these
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filtered source or original and presumably
distorted stereo-pairs are tested using any
image quality assessment of the 2DIQA-SET .
Finally, the individual results obtained both in
original and distorted images are averaged.

PSNRedge = f (2DIQAbem). (11)

Then, PSNRedge refers to full-reference
2DIQA rating for the depth map and
f (2DIQAbem) refers to the 2DIQA quality
rating for the side information (i.e. edge
information/binary edge mask).

— MSEdp measures the Mean Squared Error or
any 2DIQA between the disparity difference
between reference and distorted stereoscopic
image. It is defined as:

MSEdp = 2DIQA (DPx,DPy), (12)

where DPx, and DPy are disparity map from
reference and distorted image, respectively.

— Y ouDMOSp, and OQ. The fist approach
is obtained performing a nonlinear regression
of a result of a certain metric (IQ) of the
2DIQA-SET , using the following function:

Y ouDMOSP =
a1

1 + exp [−a2 · (IQ− a3)]
. (13)

While the second approach, is a global
combination, which computes two quality
assessments of the distorted image. First,
a result of a certain metric (IQ) and then,
distorted disparity (DQ). This overall quality
(OQ) is taken as the quality of the stereoscopic
image using the following function:

OQ = a · IQd + b ·DQe + c · IQd +DQ
e
, (14)

where a = 3.465, b = 0.002, c = −0.0002,
d = −1.083, and e = 2.2.

4.2 Stereoscopic Metrics

Similarly to the previous section, Stereoscopic
Metrics are described by highlighting only the
main features.

— AkMOSp is a no-reference perceptual quality
assessment based on features local segmen-
tation of artifacts and disparity, i.e. this metric
extracts information from edge and non-edge
areas in addition to evaluate blockiness based
relative disparity estimation. AkMOSp is
computed by the following equation:

AkMOSp =
4

1 + exp [−1.0217 (α ·DZ + β · B · Z − 3)]
+ 1,

(15)

where α and β are the model parameters,
while DZ , B and Z are the overall disparity
feature, blockiness and zero crossing of each
stereo-pair, respectively.

— Ddl1 is obtained by evaluating Equation 17.
The local SSIM measure map Mmap is
evaluated by measuring and fusing it with the
distortion of the local disparity assessment
using point-wise product. The disparity
distortion is evaluated for each pixel p using
the disparity map (DM ) for both views (left and
right) as follows (left view):

Ddlleft = Mmap left

1−

√
DMor (p)

2 −DMdg (p)2

255

.

(16)

Thus, Ddl1 is the average value of theN pixels
ofDdlleft andDdlright maps and by averaging
both results as follows:

Ddl1 =
1

2

(
1

N

∑
N

Ddlleft +
1

N

∑
N

Ddlright

)
. (17)

— Qs analyzes the location of the artifacts by
means of masking images, which are obtained
by evaluating the difference between original
and synthesized views. Then, a threshold Th
is applied in order to identify critical areas. Th
is defined as follows:

Th =
max

(
I − I′

)
10

, (18)

where I is the original image, and I ′ is the
synthesized view. Then, this metric applies
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SSIM measure only on these critical areas
and the final score is the mean SSIM scores
averaged by the number of pixels.

— Cm is a cyclopean image synthesized and
disparity-compensated from stereo views and
it is calculated by:

Cm (x, y) = WL (x, y)× IL (x, y)+
WR [(x+ d) , y]× IR [(x+ d) , y] , (19)

where IL and IR are the left and right images
respectively, and d is a disparity index that
corresponds pixels from IL to those in IR. The
weights WL and WR are calculated from the
normalized Gabor filter magnitude responses.

— SBLC or Stereo Band Limited Contrast
employs RANSAC algorithm to extract regions
with high spatial frequency both in the left
and right images, then, matched points are
found. Thus, Surrounding pixels of these
points are calculated and pixels outside them
are discarded. SBLC is calculated as follows:

SBLC =
(

1
p

∑p
x=0

COrig(x)

LOrig

)
−

(
1
p

∑p
x=0

CComp(x)

LComp

)
,

(20)

where C (x) is the the corresponding matched
regions and then the average of matched
regions founded both in the left and right
images, L is the overall relative mean
luminance, and p is the number of matched
points in a certain region. SBLC estimates
C (x) /L both in Original (Orig) and distorted
(Comp) stereo-pairs.

— ODDM4 is based on the ocular dominance
theory and degree of parallax, the latter is
calculated as follows:

d
θ
= cos

−1

(
L (M) · R (M)

‖L (M)‖2 · ‖R (M)‖2

)
, (21)

where L and R represent left and right views
respectively, and M indicates the central
region of the image.

Ocular dominance theory is introduced by
predicting separately the values of left and

right image quality, i.e. QJ (L) and QJ (R) are
the JPEG Quality Score [46] of the left and
right images. Hence, ODDM4 is defined by:

ODDM4 = QJ (L) +QJ (R) + d
θ
. (22)

— MSEms is based on binocular human visual
system, since it considers the cyclopean
view and perceptibility of depth. This metric
takes into account the masking effects of the
Contrast Sensitive Function (CSF) and depth
variability. Then, in order to differentiate the
stereoscopic image structure, a downsampling
into multi-scale images is applied to the left
channel using a low pass filter. The size
image is H ×W , while number of pixels in the
i-th downsampled image is (H ×W ) /

(
22i

)
.

The final multi-scaled image of left channel is
obtained as:

MSEms =

L∑
i

kiMSEHV SM
(
X
left
i ,Y

left
i

)
, (23)

where X left
i and Y lefti are the i-th downsam-

pled left image both in reference and distorted
image, MSEHV SM is MSE version of the
metric PSNR-HVS-M proposed by [33]; ki is
a constant parameter.

— PQM3D is based on Perceptual Quality Metric
(PQM ), which is developed to measure slight
changes in noises inducted into an normal
image. PQM is obtained subtracting the
PDM (f) from 1 and values less than 0 are
equated to zero as the range of the metric
is between 0 and 1, representing the worst
and best qualities, respectively. The PQM is
calculated as follows:

PQM = 1− PDM (f), (24)

and

PDM (f) =

∑T
t=1W (t)PDM (t)∑T

t=1W (t)
, (25)

where PDM (t) is the distortion on all T
block levels and finally weighted by the
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weighting factor W (t) to obtain the frame level
Perceptual Distortion PDM (f).

Thus, PQM3D is the average of individual
PQM qualities of color and depth images,
rendered into left and right views.

— Qmao is summarized in the following steps:

1. Find the gradient magnitudes using
Sobel operator both on left and right
channels of the original and the distorted
images, respectively.

2. Determine thresholds on the left and right
channel.

3. Classify into edge, texture, and smooth
regions each pixel of left and right images
of the original and distorted images.

4. Use SSIM in order to evaluate six
individual quality assessments of the
images obtained in step 3).

5. The final score Qmao of the stereo-pair
is the combination of the results of the
previous step.

— Qshao extracts distortion-specific features
using only the distorted stereoscopic image.
In this way, Qshao is a two-phase feature
fusion procedure, namely Training phase and
Test phase. First, this metric employs four
distortion categories (Gaussian blur, White
noise, JPEG compression and JPEG2000
compression) in order to predict which kind of
noise distorted the original stereo-pair. Then,
a Support Vector Regression (SVR) is used to
predict the relationship between stereoscopic
features and subjective scores.

— HDPSNR includes a value of stereo vision
into the classical PSNR formula and it is
expressed by:

HDPSNR =

(
10 log

2552

S

)
dB, (26)

where S is a vector summation or Minkowski
summation, defined by:

S =

(
N∑
n=1

|en|2
) 1

2

, (27)

here en is the difference of left and right
images after they are decomposed in N
contourlet subbands and weighted by the
following contrast sensitivity function, being f
is the spatial frequency:

CSF (f) = (0.205 + 0.511) exp
−0.204f

. (28)

— 3V QM is a combination of three distortion
measures:

1. Temporal Inconsistencies (TI),

2. Spatial Outliers (SO), and

3. Temporal Outliers (TO).

Thus, 3V QM is defined as follows:

3V QM = K [1− SO (SO ∩ TO)]
a
(1− TI)b (1− TO)

c
,

(29)

where SO, TO, and TI are normalized to
range 0 to 1 and a,b, and c are determined
by training. K is a constant for scaling
3V QM ranges. (SO ∩ TO) avoids to take
into account a the outlier distortion more than
once. Finally, Equation 29 is apply to left and
right images obtaining two 3V QM matrices,
which are averaged.

— IQA, and SSA assess stereo images from
the perspective of average image quality and
stereo sense, respectively.

IQA is defined as the arithmetic mean of
the Left and Right image gauged by PSNR
as follows:

IQA =
PSNRL + PSNRR

2
, (30)

SSA contains the absolute disparity image,
namely it is the different information from the
stereo-pair and is defined as:

SSA = PSNRM = 10 log
2552

MSEM
, (31)

here MSEM is as follows:

MSEM =

∑
M [|RO − LO| − |RP − LP |]2

M
, (32)
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where RO and LO refers to original stereo-
pairs, while RP and LP are the processed
or recovered ones. M is the number
of nonzero-pixels in the original absolute
disparity image (RO − LO).

— DQmap1 , DQmap2 , and DQmap3 . All these
three approaches are local combinations,
which compute a quality map of the disparity
image resulting an approximate distribution
of the degradation on the distorted disparity
image. Equation 33 computes the quality map
on the disparity image in three different ways.

DQmap1 =
(
D −D

)2
,

DQmap2 =
∣∣∣D −D∣∣∣ ,

DQmap3 = 1−
√
D2−D2

255 ,

(33)

where D and D denote the original disparity
image and the distorted disparity image, re-
spectively.

ei is an overall visual quality measure between
original stereo-pair (org) and the distorted
stereo-pair (dst) and is calculated by:

ei =
∑
k Ak

4

√∑
θ,x,y

∣∣∣rorgk,θ (x, y)− rdstk,θ (x, y)
∣∣∣4+

Bz
4
√∑

x,y |r
org
z (x, y)− rdstz (x, y)|4,

(34)

where rk,θ is the output through Human Visual
System (HSV) formulated as a subset sk,θ at
scale k and phase θ after wavelet decomposi-
tion and rz the perceptual response to depth
of HVS. Ak and Bz are weight coefficients that
are determined experimentally.

4.3 Discussion

Once SIQA-SET is described, we found some
similarities among SIQA that we want to highlight.

In Equation 9, [3] definedM, which is employed
in d1 and d2, in the same way that [7] did
for Av (Equation 10) in addition to [48] for
IQA (Equation 30). Other authors such as
[49] for Y ouDMOSp (Equation 13) and OQ
(Equation 14) or [3] for Va (Equation 9) just

modify these averaging algorithms either weighting
individual qualities of the stereo-pair or performing
a nonlinear regression.

In this sense, [21] proposed MSEdp (Equation
12) in the same way that [3] did it for d3
(Equation 9).

Other SIQA algorithms such as PSNRedge
[16], Qs [5], SBLC [14], or Qmao [24] use
tools of image processing particularly within
edge detection algorithms, since they employ
Sobel operators, RANSAC algorithm or location
of artifacts.

SSA [48] and HDPSNR [38] modify the
well-known algorithm PSNR using respectively
either an absolute squared difference of stereo-pair
or a contrast sensitivity function after a con-
tourlet transformation.

In the case of DQmap3 , [49] eliminated the
parameter Mmap left of the Equation 16 of Ddl1
[3] in order to improve its performance in local
distortions such as JPEG or JPEG2000.

Qshao [35] is the only algorithms that employs a
phase of Training, which is time-consuming task
and had to be repeated every time the image
database is changed or another kind of distortion
is introduced.

While AkMOSp [1], ei [53], Cm [9], and PQM3D

[22] weight right and left views using some features
of HSV such as Normalize Gabor Filters or
responses of HSV in the Wavelet Domain. In the
particular case of AkMOSp, this metric performs
a particular nonlinear regression including local
segmentation of artifacts and disparity.

Finally, ODDM4 [15], MSEms [21], and 3V QM
[39] employ a perceptual 2DIQA, but not as a
simple average, these metrics add another char-
acteristics or weights such as degree of parallax,
depth variability or temporal inconsistencies.
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5 Experimental Results

The evaluation results of every observer group
(MOS) and image quality metric (MOSp) are
normalized to the scope from 0 to 1 according to
following equation:

M̃OSp =
MOSp −MOSmin

p

MOSmax
p −MOSmin

p

, (35)

where MOSp denotes the calculated value of
each metric, M̃OSp denotes the normalized
value. MOSmin

p and MOSmax
p are minimum

and maximum values, which are founded after
predicting the image quality across all LIVE 3D
image database, respectively. We also employ
Equation 35 for normalizing MOS results of the
LIVE 3D image database.

From Figure 3 red block, Strength of Relation-
ship(SR) indicates how related are two effects to
trend or not to the same response.

So, we compare SR and a normalized MOS or
MOSp giving as a result a performance measure
(PM), Thus, we used the following PM’s:

— Pearson’s Linear Correlation
Coefficient (LCC),

— Kendall’s Rank Ordered Correlation Coeffi-
cient (KROCC),

— Spearman’s Rank Ordered Correlation Coeffi-
cient (SROCC), and

— Root-Mean-Squared Error (RMSE).

In this way, we use two kind of non-parametric
correlation SROCC and KROCC, but the most
common indicator is SROCC. Pearson’s Correla-
tion is a linear measure for estimating SR, when
parametric or same nature data are used. In some
cases, results of image quality assessments have
no linear relationship because they have not the
same nature, which is why, it is not quite convenient
to use Linear Correlation Coefficient, for example
MSE and PSNR are the same assessment but
the latter in logarithmic scale and regardless their
same nature, LCC estimates different correlation.

Perfect o good correlation coefficient value with
human perception is close to 1 for any correlation
coefficient. Furthermore, for obtaining better

performance or lower RMSE, the closer to zero
the better.

Besides, we employ three ways for expressing
our results:

— Scatter plots depict the relationship between
subjective results (normalized MOS) and
objective results (normalized MOSp) of a
certain SIQA, listed in Figures 7 to 12.

— Overall performance tables show the results of
the strength of relationship of a part of SIQA
(the best results per PM) across not only all
LIVE 3D image database but also every single
distortion, listed in Tables 4 to 10.

— Correlation performance tables show the
results of the strength of relationship of the
top-ten SIQA of all 17 authors, listed in Tables
11 to 14.

5.1 Metrics based on 2DIQA

In this subsection, we expose the results not only of
SIQA based on 2DIQA but also of certain authors
that propose more than one SIQA. We use ← to
refer that we applied a certain 2DIQA algorithm into
a SIQA.

— d1, d2, d3 and Ddl1. We obtain 88 metrics
after combing d1, d2, and d3 with 2DIQA-SET
in addition to perform Ddl1. If we correlate
these 88 variations with the all 365 images
of the LIVE 3D image database we obtain
the results of the Table 4, which shows
that the best linear correlation is obtained
by d1 ← FSIM (91.69%), see also Figure
7(a). While d2 ← UQI is the best ranking
metric, since both in SROCC and KROCC, it
obtains the best correlation with the human
observers. Also, based on the results of
d1 ← BRISQUE is clear that for the set
of distortions considered, this metric is the
most accurate. Considering just distortions
in the field of image compression, JPEG2000
and JPEG, we can highlight d2 ← UQI is
the best metric in either linear or rank
(not-linear) correlation.
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Table 4. Overall performance of the metrics proposed
by [3] in predicting perceived stereoscopic image quality:
Linear Correlation Coefficient (LCC), Spearman’s Rank
Ordered Correlation Coefficient (SROCC), Kendall’s
Rank Ordered Correlation Coefficient (KROCC) and
Root Mean Squared Error (RMSE)

Distortion SIQA 2DIQA PM Value

ALL

d1 FSIM LCC 0.9169
d2 UQI SROCC 0.9335
d2 UQI KROCC 0.7659
d1 BRISQUE RMSE 0.1485

JP2K

d2 UQI LCC 0.9304
d2 UQI SROCC 0.9104
d2 UQI KROCC 0.7405
d3 MSE RMSE 0.1583

JPEG

d2 UQI LCC 0.7620
d2 UQI SROCC 0.7268
d2 UQI KROCC 0.5212
d3 MSE RMSE 0.1080

WN

Ddl1 none LCC 0.9330
d1 MSSIM SROCC 0.9403
d1 MSE KROCC 0.7861
d1 BRISQUE RMSE 0.1001

Blur

d2 UQI LCC 0.9558
d2 UQI SROCC 0.9306
d1 MSSIM KROCC 0.7758
d1 BRISQUE RMSE 0.1442

FF

d2 UQI LCC 0.8549
d2 UQI SROCC 0.8162
d2 UQI KROCC 0.6245
d2 NR-PSNR RMSE 0.1116

Figures 7(b) and 7(c) depict the scatter plots
both for d2 ← UQI and d1 ← BRISQUE,
where we show the dispersion of the results
obtained by these metrics.

— Av and Va. We could evaluate 58 variations of
these two algorithms and we obtain the results
of the Table 5, which shows that the best
linear correlation is obtained by Av ← UQI
(93.94%), see also Figure 8(a). In Figure 8(b),
Av ←MAD is the best ranking metric, since
both in SROCC and KROCC it obtains the
best correlation with the human observers, in
addition, this metric is the most accurate since
it obtained the less RMSE.

For JPEG2000 Distortion, Av ←MAD is
the best ranking metric, i.e. to average
right and left MAD qualities, if we change
the weighted parameters of the stereo-pair,
namely Va ←MAD, we get the best ranking
metric for JPEG distortion.

(a) d1 ← FSIM

(b) d2 ← UQI

(c) d1 ← BRISQUE

Fig. 7. MOS vs MOSp (both normalized). MOSp is
predicted by (a) d1 using FSIM, (b) d2 using UQI, and (c)
d1 using BRISQUE

— PSNRedge. Despite our modification of this
algorithm, which included using not only
PSNR but also any metric of the 2DIQA-SET
(Table 6), we obtain that PSNRedge ← NCC
is slightly correlated with HVS, Figure 9,
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Table 5. Overall performance of the metrics proposed
by [7] in predicting perceived stereoscopic image quality:
Linear Correlation Coefficient (LCC), Spearman’s Rank
Ordered Correlation Coefficient (SROCC), Kendall’s
Rank Ordered Correlation Coefficient (KROCC) and
Root Mean Squared Error (RMSE)

Distortion SIQA 2DIQA PM Value

ALL

Av UQI LCC 0.9371
Av MAD SROCC 0.9394
Av MAD KROCC 0.7772
Av MAD RMSE 0.0732

JP2K

Av UQI LCC 0.9441
Av MAD SROCC 0.9247
Av MAD KROCC 0.7663
Av MAD RMSE 0.0630

JPEG

Av MAD LCC 0.7686
Va MAD SROCC 0.7388
Va MAD KROCC 0.5408
Av MAD RMSE 0.0529

WN

Av MAD LCC 0.9523
Av MAD SROCC 0.9497
Av MAD KROCC 0.8044
Av MAD RMSE 0.0805

Blur

Av MAD LCC 0.9660
Av MAD SROCC 0.9537
Av MAD KROCC 0.8362
Va BIQI RMSE 0.0759

FF

Av UQI LCC 0.8787
Av UQI SROCC 0.8328
Av UQI KROCC 0.6447
Av MAD RMSE 0.0861

which incidentally is the best metric in
terms of linear correlation. Furthermore,
PSNRedge ← V IFP is the best overall rank-
ing metric with about 15 percent less
correlated with HVS than other metrics
described previously.

— MSEms, and MSEdp. From Table 7, when
we average individual qualities of right and
left depth maps, i.e. MSEdp, it obtained the
best results for LCC (Fig. 10(a)) and RMSE
in all distortions. In this way, MSEdp ← UQI
is highly linear correlated with the opinion of
observers for the included image compression
distortions. The ranking obtained by MSEms
is better correlated with HVS than the one
gotten byMSEdp, across all kind of distortions
of LIVE 3D.

Figure 10(b) shows that not always an
excellent ranking means accuracy of results,
even the difference between estimations is

(a) Av ← UQI

(b) Av ←MAD

Fig. 8. MOS vs MOSp (both normalized). MOSp is
predicted by (a) Av using UQI, and (b) Av using MAD

important, MSEms ranks the 90% of the
results (SROCC) in the same order that an
observer could do it.

— Y ouDMOSp, OQ, DQmap1 , DQmap2 , and
DQmap3 . UQI measures the degree of linear
correlation between original and distorted
signals [42], when it is combined with a
nonlinear regression of average of the quality
of single views, using Equation 13, we found
the best results in all distortions, except
White Noise.

The scatter plot of Figure 11(a) depicts
that Y ouDMOSp results tend to be more
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Table 6. Overall performance of the metric proposed by
[16] in predicting perceived stereoscopic image quality:
Linear Correlation Coefficient (LCC), Spearman’s Rank
Ordered Correlation Coefficient (SROCC), Kendall’s
Rank Ordered Correlation Coefficient (KROCC) and
Root Mean Squared Error (RMSE)

Distortion SIQA 2DIQA PM Value

ALL

PSNRedge NCC LCC 0.5772
PSNRedge VIFP SROCC 0.7976
PSNRedge VIFP KROCC 0.5958
PSNRedge AD RMSE 0.2084

JP2K

PSNRedge NQM LCC 0.7749
PSNRedge NQM SROCC 0.8045
PSNRedge NQM KROCC 0.6082
PSNRedge SC RMSE 0.1641

JPEG

PSNRedge NQM LCC 0.4916
PSNRedge NQM SROCC 0.4860
PSNRedge NQM KROCC 0.3376
PSNRedge VSNR RMSE 0.0913

WN

PSNRedge NQM LCC 0.7999
PSNRedge VIFP SROCC 0.8616
PSNRedge VIFP KROCC 0.6652
PSNRedge NAE RMSE 0.2084

Blur

PSNRedge SSIM LCC 0.8114
PSNRedge NQM SROCC 0.8385
PSNRedge NQM KROCC 0.6646
PSNRedge NAE RMSE 0.1156

FF

PSNRedge NCC LCC 0.7738
PSNRedge NCC SROCC 0.7022
PSNRedge NCC KROCC 0.5188
PSNRedge AD RMSE 0.1449

Fig. 9. MOS vs MOSp (both normalized). MOSp is
predicted by PSNRedge using NCC

concentrated along perfect correlation. In
brief, Table 8 shows that Y ouDMOSp ← UQI
performs better results in terms of any kind of

Table 7. Overall performance of the metrics proposed by
[21] in predicting perceived stereoscopic image quality:
Linear Correlation Coefficient (LCC), Spearman’s Rank
Ordered Correlation Coefficient (SROCC), Kendall’s
Rank Ordered Correlation Coefficient (KROCC) and
Root Mean Squared Error (RMSE)

Distortion SIQA 2DIQA PM Value

ALL

MSEdp UQI LCC 0.7962
MSEms none SROCC 0.8952
MSEms none KROCC 0.7022
MSEdp BIQI RMSE 0.1754

JP2K

MSEdp UQI LCC 0.8512
MSEms none SROCC 0.8608
MSEms none KROCC 0.6620
MSEdp MSE RMSE 0.1583

JPEG

MSEdp UQI LCC 0.5769
MSEdp UQI SROCC 0.5779
MSEdp UQI KROCC 0.4085
MSEdp VSNR RMSE 0.1031

WN

MSEdp UQI LCC 0.8832
MSEms none SROCC 0.9310
MSEms none KROCC 0.7665
MSEdp BIQI RMSE 0.1130

Blur

MSEdp FSIM LCC 0.8531
MSEms none SROCC 0.9318
MSEms none KROCC 0.7717
MSEdp BPSNR RMSE 0.2192

FF

MSEdp PSNRHVSM LCC 0.7244
MSEms none SROCC 0.6859
MSEms none KROCC 0.4998
MSEdp JQS RMSE 0.1766

correlation coefficient but it is not as accurate
as DQmap2 and viceversa, which is why in
Figure 11(b) the results of DQmap2 are more
dispersed and its results are closer to the
perfect result than Y ouDMOSp results.

5.2 Stereoscopic Metrics

In this subsection, we sketch only the results of
metrics that do are not based on a normal metric
or they just are based in one feature of a certain
normal image quality assessment.

Table 9 just contains the results of all
stereoscopic metrics exposed in subsection 4.2.
Where Ddl1 linear correlates in 86.29%, Figure
12(a), being the assessment that estimates the
best Linear Correlation. Furthermore, MSEms is
the best ranked metric obtaining the best results
both in SROCC and KROCC with 89.52% and
70.22%, respectively.
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(a) MSEdp ← UQI

(b) MSEms

Fig. 10. MOS vs MOSp (both normalized). MOSp is
predicted by (a) MSEdp using UQI, and (b) MSEms

Also, DQmap2 is the most precise stereoscopic
assessment for all whole of considered noises and
image compression noises such as JPEG2000 and
JPEG distortions.

Taking in to account only noises produced by
a image compression coder, DQmap3 is best
metric in LCC and SROCC. Figure 12(b) depicts
dispersion of the 365 results of DQmap3 .

5.3 ALL SIQA-SET

Regarding the overall experimental results, Table
10 depicts the performance of all SIQA of the
SIQA-SET exposed in section 4.

Table 8. Overall performance of the metrics proposed
by [49] in predicting perceived 3D image quality:
Linear Correlation Coefficient (LCC), Spearman’s Rank
Ordered Correlation Coefficient (SROCC), Kendall’s
Rank Ordered Correlation Coefficient (KROCC) and
Root Mean Squared Error (RMSE)

Distortion SIQA 2DIQA PM Value

ALL

Y ouDMOSp UQI LCC 0.9371
Y ouDMOSp UQI SROCC 0.9372
Y ouDMOSp UQI KROCC 0.7722
DQmap2 none RMSE 0.1289

JP2K

Y ouDMOSp UQI LCC 0.9441
Y ouDMOSp UQI SROCC 0.9095
Y ouDMOSp UQI KROCC 0.7405
DQmap2 none RMSE 0.0961

JPEG

Y ouDMOSp UQI LCC 0.7678
Y ouDMOSp UQI SROCC 0.7383
Y ouDMOSp UQI KROCC 0.5358
DQmap2 none RMSE 0.0742

WN

Y ouDMOSp SSIM LCC 0.9326
OQ MSSIM SROCC 0.9425
OQ MSSIM KROCC 0.7911

Y ouDMOSp NAE RMSE 0.1237

Blur

Y ouDMOSp UQI LCC 0.9517
Y ouDMOSp MSSIM SROCC 0.9282
Y ouDMOSp AD KROCC 0.7818

OQ VSNR RMSE 0.2097

FF

Y ouDMOSp UQI LCC 0.8787
Y ouDMOSp UQI SROCC 0.8328
Y ouDMOSp UQI KROCC 0.6447
DQmap2 none RMSE 0.1498

Thus, Figure 11(a) shows the metric
Y ouDMOSp ← UQI, this assessment linear
correlates in 93.71% and obtains the best Linear
Correlation.

Furthermore, the best ranked metric is
Av ←MAD, because it is best correlated both in
SROCC and KROCC with 93.94% and 77.72%,
respectively.

Also, we can say that Av ←MAD is the
most precise algorithm for all set of distortions
considered and JPEG2000 and JPEG noises. Re-
garding only these image compression distortions,
Av ←MAD is the best ranking metric, i.e. to
average right and left MAD qualities, if we change
the weighted parameters of the
stereo-pair, namely Va ←MAD, we get the best
ranking metric for JPEG distortion.

In this paper we have presented several
metrics (280) for gauging the quality of a
stereo-pair intended for researchers interested
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(a) Y ouDMOSp ← UQI

(b) DQmap2

Fig. 11. MOS vs MOSp (both normalized). MOSp

is predicted by (a) Y ouDMOSp using UQI, and (b)
DQmap2

in stereoscopic coding, visual discomfort or
stereoscopic displaying. These researchers could
want to found the best metric taking into account a
certain respond in a certain distortion, for example.

The selected metric could be the best overall
measure, which does not mean it would obtain
the best results in all individual distortions. For
those researchers who are interested in knowing
the behavior of the top-ten overall SIQA-SET ,
we propose Tables 11 to 14, which were made
considering the following aspects:

Table 9. Overall performance of the Stereoscopic Met-
rics in predicting perceived stereoscopic image quality:
Linear Correlation Coefficient (LCC), Spearman’s Rank
Ordered Correlation Coefficient (SROCC), Kendall’s
Rank Ordered Correlation Coefficient (KROCC) and
Root Mean Squared Error (RMSE)

Distortion SIQA PM Value

ALL

Ddl1 LCC 0.8629
MSEms SROCC 0.8952
MSEms KROCC 0.7022
DQmap2 RMSE 0.1289

JP2K

DQmap3 LCC 0.8604
DQmap3 SROCC 0.8638
MSEms KROCC 0.6620
DQmap2 RMSE 0.0961

JPEG

DQmap3 LCC 0.5750
DQmap3 SROCC 0.5439
DQmap3 KROCC 0.3806
DQmap2 RMSE 0.0742

WN

Ddl1 LCC 0.9330
Ddl1 SROCC 0.9380
Ddl1 KROCC 0.7829

ODDM4 RMSE 0.1079

Blur

Ddl1 LCC 0.9056
MSEms SROCC 0.9318
MSEms KROCC 0.7717
ODDM4 RMSE 0.1304

FF

ODDM4 LCC 0.7540
ODDM4 SROCC 0.7734
ODDM4 KROCC 0.5783
ODDM4 RMSE 0.1490

— Each Table represents only one Performance
Measure, either LCC, SROCC, KROCC,
or RMSE.

— In order to rank the 17 authors, we just chose
the best metric (across all images in LIVE 3D)
for those authors who proposed more than
one SIQA.

— Regards overall performance, we eliminated
the seven metrics that obtained the worst ef-
fects.

— Once we obtained the top-ten we indicated
with Bold text the best metric, while with italic
text the second best metric.

— Finally, we sorted alphabetically the top-ten by
author name.

From Table 11 Av ← UQI (Fig. 8(a)) and
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(a) Ddl1

(b) DQmap3

Fig. 12. MOS vs MOSp (both normalized). MOSp is
predicted by (a) Ddl1, and (b) DQmap3

Y ouDMOSp ← UQI (Fig. 11(a)) obtained the
best results in linear correlation coefficient not only
in overall performance (93.71%) but also in all
individual distortions, except in White Noise.
For White Noise d1 ← FSIM (Fig. 7(a)) is the
best metric with 93.07%.

Table 12 shows the performance
across SIQA-SET in estimating subjective
3D/stereoscopic image quality using SROCC.
Where Av ←MAD(Fig. 8(b)) obtained
the best results in overall performance
(93.94%), JPEG2000 (92.47%), White Noise
(94.97%), and Gaussian Blur (95.37%). While
Y ouDMOSp ← UQI (Fig. 11(a)) got the best

Table 10. Overall performance across SIQA-SET
in predicting perceived 3D image quality: Linear
Correlation Coefficient (LCC), Spearman’s Rank Or-
dered Correlation Coefficient (SROCC), Kendall’s Rank
Ordered Correlation Coefficient (KROCC) and Root
Mean Squared Error (RMSE)

Distortion SIQA 2DIQA PM Value

ALL

Y ouDMOSp UQI LCC 0.9371
Av MAD SROCC 0.9394
Av MAD KROCC 0.7772
Av MAD RMSE 0.0732

JP2K

Y ouDMOSp UQI LCC 0.9441
Av MAD SROCC 0.9247
Av MAD KROCC 0.7663
Av MAD RMSE 0.0630

JPEG

Av MAD LCC 0.7686
Va MAD SROCC 0.7388
Va MAD KROCC 0.5408
Av MAD RMSE 0.0529

WN

Av MAD LCC 0.9523
Av MAD SROCC 0.9497
Av MAD KROCC 0.8044
Av MAD RMSE 0.0805

Blur

Av MAD LCC 0.9660
Av MAD SROCC 0.9537
Av MAD KROCC 0.8362
Va BIQI RMSE 0.0759

FF

Av UQI LCC 0.8787
Av UQI SROCC 0.8328
Av UQI KROCC 0.6447
Av MAD RMSE 0.0861

results in JPEG (73.83%), and Fast Fading
distortion (83.28%).

From Table 13 Av ←MAD (Fig. 8(b)) obtained
the best results in linear correlation coefficient
not only in overall performance (77.72%) but
also in all individual distortions, except in Fast
Fading distortion. For Fast Fading distortion
Y ouDMOSp ← UQI (Fig. 11(a)) is the best metric
with 64.47%.

Table 14 shows the performance across
SIQA-SET in prediction of the perceived
stereoscopic image quality using Root Mean
Squared Error. Where Av ←MAD (Fig. 8(b))
obtained the best results not only in overall
performance (0.0732), but also in JPEG2000
(0.0630), JPEG (0.0529), White Noise (0.0805),
Gaussian Blur (0.0919), and Fast Fading
distortion (0.0861).
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Table 11. Performance across SIQA-SET in predicting perceived stereoscopic image quality: Linear Correlation
Coefficient (LCC). Bold indicates the best metric, while italics the second best

Author SIQA 2DIQA JP2K JPEG WN Blur FF ALL

Benoit et al.[3] d1 FSIM 0.9119 0.6259 0.9307 0.9358 0.7834 0.9169
Bosc et al.[5] Qs none 0.0259 0.1563 0.8866 0.1853 0.0882 0.4115
Campisi et al.[7] Av UQI 0.9441 0.7678 0.9199 0.9517 0.8787 0.9371
Gu et al.[15] ODDM4 none 0.7728 0.4461 0.9223 0.7024 0.7540 0.7460
Hewage et al.[16] PSNRedge NCC 0.6737 0.3293 0.7997 0.8027 0.7738 0.5772
Jin et al.[21] MSEdp UQI 0.8512 0.5769 0.8832 0.8523 0.6327 0.7962
Joveluro et al.[22] PQM3D none 0.1393 0.2415 0.8477 0.0444 0.1765 0.4790
Mao et al.[24] Qmao none 0.7189 0.1290 0.7701 0.7527 0.4413 0.7082
Yang et al.[48] IQA none 0.7665 0.1187 0.9244 0.7690 0.6993 0.7002
You et al.[49] Y ouDMOSp UQI 0.9441 0.7678 0.9199 0.9517 0.8787 0.9371

Table 12. Performance across SIQA-SET in predicting perceived stereoscopic image quality: Spearman’s Rank
Ordered Correlation Coefficient (SROCC). Bold indicates the best metric, while italics the second best

Author SIQA 2DIQA JP2K JPEG WN Blur FF ALL

Benoit et al.[3] d2 UQI 0.9104 0.7268 0.9248 0.9306 0.8162 0.9335
Campisi et al.[7] Av MAD 0.9247 0.7364 0.9497 0.9537 0.7720 0.9394
Gorley et al.[14] SBLC none 0.6744 0.4431 0.6219 0.6229 0.2133 0.5963
Gu et al.[15] ODDM4 none 0.8131 0.4202 0.9206 0.6577 0.7734 0.7223
Hewage et al.[16] PSNRedge VIFP 0.7802 0.2360 0.8616 0.7958 0.5027 0.7976
Jin et al.[21] MSEms AD 0.8608 0.4484 0.9310 0.9318 0.6859 0.8952
Joveluro et al.[22] PQM3D none 0.0239 0.1329 0.9167 0.1398 0.3360 0.2667
Mao et al.[24] Qmao none 0.7460 0.1629 0.7790 0.6279 0.3599 0.7253
Yang et al.[48] IQA none 0.7993 0.1212 0.9316 0.9020 0.5875 0.8340
You et al.[49] Y ouDMOSp UQI 0.9095 0.7383 0.9255 0.9252 0.8328 0.9372

Table 13. Performance across SIQA-SET in predicting perceived stereoscopic image quality: Kendall’s Rank Ordered
Correlation Coefficient (KROCC). Bold indicates the best metric, while italics the second best

Author SIQA 2DIQA JP2K JPEG WN Blur FF ALL

Benoit et al.[3] d2 UQI 0.7405 0.5212 0.7570 0.7697 0.6245 0.7659
Campisi et al.[7] Av MAD 0.7663 0.5377 0.8044 0.8362 0.5909 0.7772
Gorley et al.[14] SBLC none 0.4608 0.3065 0.4468 0.4141 0.1510 0.4201
Gu et al.[15] ODDM4 none 0.6089 0.2666 0.7456 0.5071 0.5783 0.5284
Hewage et al.[16] PSNRedge VIFP 0.5899 0.1596 0.6652 0.6222 0.3694 0.5958
Jin et al.[21] MSEms AD 0.6620 0.2869 0.7665 0.7717 0.4998 0.7022
Joveluro et al.[22] PQM3D none 0.0152 0.0893 0.7473 0.0929 0.2263 0.1869
Mao et al.[24] Qmao none 0.5418 0.1216 0.5791 0.4525 0.2535 0.5294
Yang et al.[48] IQA none 0.5918 0.0735 0.7665 0.7333 0.4168 0.6296
You et al.[49] Y ouDMOSp UQI 0.7405 0.5358 0.7570 0.7636 0.6447 0.7722

Table 14. Performance across SIQA-SET in predicting perceived stereoscopic image quality: Root Mean Squared Error
(RMSE). Bold indicates the best metric, while italics the second best

Author SIQA 2DIQA JP2K JPEG WN Blur FF ALL

Benoit et al.[3] d1 BRISQUE 0.1935 0.1750 0.1001 0.1442 0.1278 0.1485
Campisi et al.[7] Av MAD 0.0630 0.0529 0.0805 0.0919 0.0861 0.0732
Gorley et al.[14] SBLC none 0.2980 0.1923 0.4733 0.3872 0.5295 0.3750
Gu et al.[15] ODDM4 none 0.1041 0.1654 0.1079 0.1304 0.1490 0.1315
Hewage et al.[16] PSNRedge AD 0.1995 0.1875 0.2949 0.2203 0.1449 0.2084
Jin et al.[21] MSEdp BIQI 0.1840 0.1726 0.1130 0.2714 0.1778 0.1754
Mao et al.[24] Qmao none 0.3899 0.4327 0.3921 0.3730 0.3014 0.3783
Shen et al.[38] HDPSNR none 0.2035 0.2237 0.2981 0.2162 0.2549 0.2415
Yang et al.[48] IQA none 0.2081 0.0931 0.4136 0.3473 0.4275 0.2932
You et al.[49] DQmap2 VSNR 0.0961 0.0742 0.1273 0.2506 0.1498 0.1289
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6 Conclusions and Future Work

This paper describes 27 algorithms SIQA exposed
by 17 authors, summarizing the research made in
3D/stereoscopic image quality field in the recent
years. Nine metrics of this SIQA-SET can
be combined with any 2DIQA, then they were
separated from rest. These metrics were defined
as Metrics based on 2DIQA and they were tested
with 29 2DIQA, having a total of 262. Thus, we
considered that the remaining 18 metrics were
grouped as Stereoscopic Metrics.

For Metrics based on 2DIQA Y ouDMOSp using
UQI got the best linear correlation, 94%, with the
opinion of an observer, same percentage obtained
by Av using MAD but employing a no-linear
correlation. For Stereoscopic Metrics, Ddl1 got
the best linear correlation (86%) with the opinion
of an observer, whereas in the 89% MSEdp
similarly ranked as a human observer, if no-linear
correlation is employed.

The difference between Y ouDMOSp and Av is
that the first use a nonlinear regression function
of the average of certain 2DIQA metric while the
latter is just the mean of one of 29 2DIQA applied
to stereo-pair, in this way Y ouDMOSp with UQI is
linearly better than Av with UQI for just 0.000611%.

So, our results of these 27 algorithms in the
field of SIQA could lead to conclude that Metrics
based on 2DIQA can assess the perceptual quality
of third dimensional or stereoscopic images. The
implication of results of the presented research
should be considered with caution, since the
first matter to observe is that the majority of
the Stereoscopic Metrics are only adaptations of
2DIQA, which add some features such as depth
variances from the disparity map, for instance.
Any perceptual feature is included in the manner
that this disparity information is taken, namely any
algorithm incorporates disparity masking.

It is important to realize that observers employed
not only in LIVE 3D but also in MMSPG or
FISE image databases judge the stereoscopic
image quality watching some slices, apparently
separated, of a 2D scenario, which is a
disadvantage for the Stereoscopic Metrics. Also,
another disadvantage for Stereoscopic Metrics is
that the distortions in LIVE 3D image database

are not designed or applied stereoscopically, since
they separately distorted the left and right images.

Some distortions that LIVE 3D image database
considers, such as Gaussian Blur and Additive
White Gaussian Noise, are global distortions and
therefore, they would not affect too much the
perception of depth. Not only Metrics based
on 2DIQA correlates extremely well with these
distortions but also some Stereoscopic Metrics
do it well, such as d1 or MSEdp. However
for those distortions with localized artifacts, the
performance both of Metrics based on 2DIQA
and Stereoscopic Metrics is lower, especially for
the local blocking artifacts caused by a JPEG
compression. Furthermore, some irregularities
in terms of the depth map appear when
localized distortions are evaluating, which is why
the presented state-of-the-art SIQA-SET does not
correlate well. For JPEG compression distortion,
the performance of Y ouDMOSp and Av is
unexpectedly good in spite of being dependant
functions on a monoscopic image quality.

If we take in to account that Stereoscopic Metrics
are simple designs somehow based on a certain
2DIQA, we also can realize that the gap between
Stereoscopic Metrics and Metrics based on 2DIQA
can be filled proposing assessments with some
features of the best correlated metrics.
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